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Abstract

In this paper we present the ongoing research on classifying irreducible representations of
the following quiver, or rather the digraph (which throughout this paper we denote by A):

el
V] —— V0 QEO

Every representation of A is given by two vector spaces W and W7, and two homomorphisms
(p02W0—>W0 and<p1:W1—>W0:

1
W e

We denote the previous representation by (Wq, Wy, ¢1, o). If dim(Wp) = n and dim(W;) = m,
we may identify Wy = K™ and W7 = K™, and then ¢y and ¢; are identified respectively
with n x n and n x m matrices My and My, so the above representation is determined by the
quadruple (m,n, M7, My). We calculate irreducible representations for some m.
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1. Introduction

We are interested in classifying irreducible representations of the following quiver, or rather the
digraph (which throughout this paper we denote by A):

€1
v] — Vo €n

This digraph appears as a subdigraph of the digraphs associated with commutative rings in the
following way (see [2] and [3] for details): For a ring R we define Gg = (R?, E), where F is given by
E ={(a,b) — (a+b,ab) | a,b € R}. Now, the digraph A appears in the following way: For a € R,
a # 0, we always have:
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(0,a) — (a,0) 3

The present work is merely a beginning of a research project of understanding irreducible
representations of digraphs Gg.

2. Preliminaries

Throughout, K will always be an algebraically closed field.

DEFINITION 1. Let G = (V, E) be a digraph. For e € E denote by s(e) € V and t(e) € V the
starting and the target vertex of the edge e respectively (i.e. e = (s(e),t(e))).

(a) A representation of the graph G is a collection {W, | v € V} of vector spaces over
a field K together with a collection of linear mappings (i.e. vector space-homomorphisms)

{we : Wye) = Wyey | e € E}.

(b) The representation ({W, |v €V}, {pe| e € E}) with Wy, =0 for allv € V (and so p. =0 for
all e € E, too) is said to be the zero-representation of G.

(¢) Two representations ({W, | v € V}, {pe | € € E}) and {W, | v e V},{¢. | e € E}) are said
to be isomorphic if there is a collection of vector space-isomorphisms {0, : Wy, — W/ |v € V'}
such that for each e € E the following diagram commutes:

Pe
Wie) —— Wie)

es(e)j Jet(s)

! !
Wiy —— Wice)

e

i.e. for each e € E, ¢, o Os(e) = O(e) © pe holds.

(d) The sum of two representations ({W, |v € V},{¢c | e € E}) and (W) |ve V},{¢.|ec E})
is the representation giwen by W, @ W) for allv € V and p. ® ¢, for all e € E.

(e) A representation ({W, | v € V},{¢e | e € E}) is irreducible if it is not isomorphic to a sum of
two non-zero-representations. (see [1] for details)

VYreepxkaenue 5. (i) Consider the loop-digraph L = ({vo},{eo = vo — vo}):

2D

Every irreducible representation of L is isomorphic to a representation given by W,, = K"
and pey, = Jpa, where n > 1, a # 0 and Jp, o is the Jordan (n x n)-block matriz:

a 1 0 ... 0 O

0O a1 ... 0O

0 0 aa ... 00
Jn,a: .

0 0 O a 1

10 0 O 0 o
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Moreover, these representations are mutually non-isomorphic.

(11) A matriz A € GL,(K) commutes with Jy, o if and only if A is of the form:

_al as as ... Ay,
0 a1 as ... ap_1
A=10 0 a1 ... apn-2 . a1 #0.
0 0 0 ... ay |

We now return to the digraph A. Every representation of A is given by two vector spaces Wy
and W1, and two homomorphisms ¢ : Wy — Wy and ¢ : W1 — Wy

1
e e

We denote the previous representation by (Wi, Wy, 1, ¢o). If dim(Wy) = n and dim(W;) = m,
we may identify Wy = K™ and W7 = K™, and then ¢y and ¢; are identified respectively with
n X n and n X m matrices My and M;, so the above representation is determined by the quadruple
(m,n, My, My).

LEMMA 1. Consider a representation determined by (m,n, My, My).
(i) If the representation is irreducible, then m < n and rank(M;) = m.

(it) If m < n, rank(M;) = m and My is similar to J,, o for some o # 0, then the representation
1s irreducible.

PROOF. (i) Suppose that the following representation is irreducible:

My
Km —— K" Mo

Denote by ¢g and ;1 mappings given by My and M; respectively.

It suffices to prove that ¢ : K™ — K" is injective (which clearly implies both m < n and
rank(M;) = m). Suppose not; then kere; is non-trivial. Find W < K™ such that K™ = kerg & W.
Then the above representation is (equal to) the sum of non-zero representations (kerys,0,0,0) and
(W, K™, ¢11w, ¢o)- This contradicts the irreducibility of the representation.

(ii) Suppose that m < n, rank(M;) = m and My is similar to Jp, o. If P € GL,(K) is such
that My = P‘lJn,aP, note that we have the following isomorphism of the representations given by
(m,n, My, Mp) and (m,n, PMy, J, o):

My Jn,a

(), ()

Kn s KN

]PM1

Km s KM
m

My
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(I, is the identity (m x m)-matrix.) Clearly, rank(PM;) = m, so it suffices to prove irreducibility
of the representation given by (m,n, M, Jy o) where m < n and rank(M) = m.
Suppose that we have the following reduction:

Tua My MY
O, ()0
Kn W/ W//
M M{] ]M{’
Km ——— W] & WY/

1

where 6y and 6 are isomorphisms. By Fact 5(i), one of W{j and W must be zero, as otherwise the
above reduction in particular would give a reduction of a Jordan block representation of the loop
graph (which is irreducible by Fact 5(i)). Without loss of generality we may assume W[, so the
reduction becomes:

M!
Jna o

O . 00

K”—>W’ & 0

M{] ‘

Km——— Wi & WY
1

M

Now, m < n and rank(M) = m yield that the homomorphism given by M is injective, so the one
given by M{ @ 0 on the right-hand side is also injective. This means that W{' = 0, so the above
reduction is in fact trivial. Therefore, our representation is irreducible. O

Although, by the previous lemma, My being a Jordan block matrix is a sufficient condition for
irreducibility, it is not a necessary condition as the following easy example shows.

SAMEYAHUE 1. Consider the following representation:

Leps

If it is reducible, we would have X\, u,co, 5 € K* and [z g] € GLy(K) such that the following

K

diagram commutes:

- 1
By commutativity of the “square” part we have E ﬂ L = [’g] A, where from we conclude

‘ . 1
u+v=0, i.e. v=—u. Now, by commutativity of the “loop” part we have [i —yu} {0 g] =
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_|la Oz y| . |z 2y | |ar a«ay o
= {O ﬁ] [u —u}’ i.e. L‘ —Qu] = [ﬁu —57«6} From the bottom row we obtain u = fu = 2u,

sou =0, and hence v =0. This is a contradiction as [z g] 1s reqular.

As a first step in our investigation, we consider the special case of irreducible representations
given by Lemma 1(ii). So we aim to classify irreducible representations given by (m,n, My, My),
where m < n, rank(M;) = m (this is necessary by Lemma 1(i)), and My is similar to J,, o for some
a # 0. If My = P1J,, o P, then the representation given by (m,n, My, M) is clearly isomorphic
to the one given by (m,n, PMy, Jy »), so we may suppose that My = J, o. For the representation
given my (m,n, My, Jy, o) we say that it is of type (m,n, o).

3. Irreducible representations of type (1,n,«)

Throughout this section, denote by M; the (n x 1)-matrix:

M= ...0 10 ... 0"

with 1 in the i-th row.
LEMMA 2. Suppose that we have the following irreducible representation of type (1,n,):

M
K%KHDJH,Q

where M = [ml me ... mn]T. Then if 1 < n is such that m; # 0 and m; = 0 for all i < j < n,
the above representation is isomorphic to:

i.e. such that AM = M;\ and AJ, o = JpoA. By Fact 5, A is of the following form:

ay az ... Qp,
A 0 ay ... Qp-—1
0 0 NN ai
where a; # 0, so we must show that the following equation (in variables ay, ..., an, \) has a solution:
mq —0—
ay az ... (079
0 aq Ap—1
" L R Y P,
S . : 0 )
- 0 - - -
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This reduces to the system:

aymiy + asmz + ... + ai-—1mi—1 + aym; = 0
aymg + ... + a_omy—1 + ai—1m; = 0
aym;—1 + asm; = 0
atm; = A
so we see that we may take e.g. A =m; € K*, a; = 1 and recursively find ag = —aym;—1/my, ...,
a; = —(aimq + - -+ + aj—1m;—1)/m;; we may also put a;41 =---=a, =0. O

LEMMA 3. If 1 < i< j < n, then the representations:

are non-isomorphic.

Proor. We have to show that for no A € K* and A of the form:

ay az ... Qp,
A 0 (1'1 P o o |
0 O al
where al 7& 0, AM,L = Mj)\, ie.
_0_ _O_
ar ag ... Ay, .
0 a Ap—1 :
. 1| «—1 = Al 7
0 0 e al : :
_0_ ._O_.

holds. This is obvious as it implies a1 -1 =0as i < j. O
As a direct corollary of the previous two lemmas we obtain:

THEOREM 1. Up to isomorphism, all non-isomorphic irreducible representations of type (1,n, )
are given by (fori < n):

In particular, there are exactly n non-isomorphic representations of type (1,n, ).
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4. Irreducible representations of type (n — 1,n, «a)

Throughout this section, denote by M; the (n x (n — 1))-matrix:

10 ... 00 ... 0

01 ... 00 ... 0

0 0 10 o] « i—1
Miz=1g o .. L0«

00 ... 01 ...0 « i+1

00 ... 00 ... 1]

so the matrix I,,_1 with a zero-row added as the i-th row. Moreover, we also fix the following
notation. For an (n x (n — 1))-matrix M, rank;(M) denotes the rank of the matrix obtained by
deleting the i-th row from M.

LEMMA 4. Suppose that we have the following irreducible representation of type (n — 1,n,a):

Kn—l L Kn D Jn,a

Then if i < n is such that rank;(M) = n — 1 and rank;(M) < n — 1 for all j < i, the above
representation 1s isomorphic to:

M;
K'n.—l — K" D r]n,a

Proo¥r. Suppose that rank; (M) = n—1 and rank;(M) < n—1 for all j < 4. Since rank(M;) = n—1,
by elementary transformations of columns only, we may transform M to the matrix of the following

form: -~ _
1 0 0 0
0 1 0 0 — 1—1
M’ :MQ: mir ... Mi—1 My ... Mp—1 < )
0o ... 0 1 ... 0 — 141
0o ... 0 o0 ... 1 |

where Q € GL,_1(K) is the product of all elementary matrices used in the transformation. Since
elementary transformations of columns don’t change the row-rank, rank;(M@Q) < n—1for all j <1

too. From here we directly see that it must be m; =---=m;_1 =0, so:
1 ... 0 0 ... 0
0 1 0 0 +— i—1
M =10 ... m; ... Mp—1 — 1
0o ... 0 1 ... 0 — 1+1
10 0 0 1]
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Thus we have an isomorphism of representations:

anl L) K" 3 Jn,a

n—1 n Jn -
ot D
Now, it suffices to find an isomorphism of representations of the following form:

Ml
e s

A |B

Knot = KT 3 In.a
I3

So we need A € GL,,_1(K) and B € GL,(K) such that M;A = BM' and BJ, o = Jy,oB. Since,
BJy o = JnoB, by Fact 5(ii), B must be found in the following form:

by by ... by
0 b ... by

= . ~1 . ) b17é07
0 0 ... b

so we have to check that for such B, BM’' = M; A has a solution (for A and B). Note that the i-th
row of M;A (for any A) is zero, so let us first look at the i-th row of BM’. We have:

1 ... 0 0 ... 0
0o ... 1 0 ... 0
(BM’)Z: [0 ... 0 b1 bQ bn—i+1] 0o ... 0 m; ... Mnp—-1

0 0 1 0
10 0 0 1]

and the i-th row equals:

[O e 0 bym;+b2 bymip1 +bs ... bimp_1+ bnﬂ#l] .
Put by =1,bs = —my, b3 = —mjit1,...,bp—i+1 = —Mmp_1, then the obtained row is zero, and further
put by_jyo = -+ = b, = 0. For the obtained matrix B, BM' has the i-th row zero. Now set A to

be BM' after deleting the i-th row. It is easy to see that A is an upper triangular matrix with ones
on the diagonal, thus it is regular, and that BM’ = M;A. This finishes the proof. O

LEMMA 5. If 1 < i < j < n, then the representations:

M; M;
anl — K" D Jn,oc and anl — K" 3 Jn,a

are non-isomorphic.
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PrOOF. We have to show that there are no A € GL,,_1(K) and B € GL,,(K) of the form:

b1 by ... by

0 by ... bp1
B=1. . . :

0 0 ... b

where by # 0, such that BM; = M;A. The j-th row of M;A is zero, while j-th row of BM; has
b1 # 0 in the place (j,j — 1) (as j — 1 > 7). Therefore, the two representations are non-isomorphic.
O

As a direct corollary of the previous two lemmas we obtain:

THEOREM 2. Up to isomorphism, all irreducible representations of type (n — 1,n,a) are given
by (for i < n):

M;
e e

In particular, there are exactly n non-isomorphic representations of type (n — 1,n, ).

5. Irreducible representations of type (2,n,«)

Throughout this section, denote by M, p(x1,...,2m-1) the (n x 2)-matrix:

il 0
i) 0
Tm—1 0
1 0 < m
0 0
Mm,k(xl,...,a:m_l) = :
0
0 1 +« k
0 0
L 0 0 |
where 1 < m < k < n and z1,29,...,2m—1 € K. For i < m and z1,...,z,_2 € K denote
Mm,k,i(xlv e ,(L‘m_Q) = Mm7k(x1, e ,xi_l,(),xl-, N ,xm_g).

LEMMA 6. If (mq, k1) # (mae, k2), then the representations:

k: k

are non-isomorphic for arbitrary Z,7 € K™ 1.
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PrOOF. We have to show that there are no A € GLo(K) and B € GL,,(K) of the form:

by b2 ... by

0 b1 ... by
B=|. . . :

0 0 ... b

where by # 0, such that BM,,, 1, = My, k, A. If k1 < kg, the ki-th row of BM,,, 1, has 1 in place
(k1,2), while the same place in ki-th row of M, y, A is 0. If k1 = ko and m; < mg, then mo-th
row of BM,y,, i, is zero, while ma-th row of M,y,, 1, A has 1 in place (mg,1). Therefore, the two
representations are non-isomorphic. O

Consider an irreducible representation of type (2,n, «):

K2 L Kn D Jn,a

Recall that the rank of M is two. Define:

kp := max {k <n: (Im < k) rank [Mm] = 2} ,
Mj,

where M; denotes the i-th row of M, and then:
mur = max{m < ks rank [Mm] = }

From now on we fix the previous representation, i.e. the matrix M, so to simplify the notation, we
denote kjs and mys only by k and m.

LEMMA 7. There is £ € K™ ! such that the above representation is isomorphic to the one
gwen by My, 1,(Z). Moreover, if k < 2m, then the above representation is isomorphic to the one
given by My, g om—k(T) for some T € K™ 2.

PROOF. By elementary transformations of columns only, and the fact that m-th and k-th rows are
linearly independent, we may transform M to the matrix of the following form:

ai a12

Am—1,1 Am—1,2

1 0 —~ m
Um+1,1  Om+1,2
M =MQ = : :
akp—1,1  Qk—12

0 1 «— k
ag+1,1  Qk+1,2

Gn 1 Qn,2

where @ € GLy(K) is the product of all elementary matrices used in the transformation. Recall
that elementary transformations of columns don’t change the rank of rows. Hence, for i > k, by the
choice of k, i-th row is linearly dependent with k-th and with m-th row, so we see that a; 1 = a;2 = 0.
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Similarly, for m < ¢ < k, by the choice of m now, i-th row is lineary dependent with k-th row, so
we see that a; 1 = 0. Therefore, our matrix M’ equals:

[ an ai2 ]

Gm—1,1 Om-1,2
1 0 ~— m
0 Ami1,2

M/ — .

0 ak—12
0 1 — k
0 0

- O 0 -

Clearly, representations given by M and M’ are isomorphic. It suffices to find an isomorphism of
representations given by M’ and M,, (%) for some ¥ € K™~!. We do that by finding B € GL,(K)
such that BM' = M,, (%) and BJ, o = JpoB. Since, BJ, o = Jy oB, by Fact 5(ii), B must be
found in the following form:

by by ... by,
0 b1 ... by_q
=1. . A I £ 0. (1)
0O 0 ... b
Consider BM’:
[ m—1 k—1 ]
Z bia;1 + by, Z bia; 2 + by,
i=1 i=1
m—2 k—2
biait 1,1 + b1 Z biaii 1,2 + b1
i=1 i=1
k—m
by Z biitm—12+bg—my1 < m
BM' = et
0 Z biai—‘rm,Q + bkfm
i=1
0 biag_12 + b2
0 bl — k
0 0
k—j—1
It is clear that if we recursively put by = 1 and by_; = — Z bitiymo for j =k—2,k-3,...,0,
i=1

we obtain the desired zeroes in the second column, i.e. we obtain My, (), where Z can be easily
calculated.
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For the “moreover” part, suppose that k < 2m, and set i = 2m — k. We prove that B € GL,,(K)

of the form (1), and ¥ € K™ 2 can be found such that BM,, 1 (%) = My, k() [

1
0

—1x Z} ; clearly,

1 .
this finishes the proof. For, put by = 1, and consider BM,, ;(Z) = My, .i(¥) {0 fl]:
_ 1 -
Z bj:Ej + by, bi
j=1
m—2
bizjt1 + bm—1 bi—1 _ )
j=1 Y —ZiY1
Y2 —TiY2
m—i+1 : :
Z bjf”jJrifl +bm_ive  br—it2 Yi-1  —TiYi—1
j=1 0 0 — 1
— . Yi —ZiYi
Z bjTjti-1 +bm—iv1  bp_iy1 0 _
Jj=1 :
—i! | Ym—-2 —TiYm-—2
bjzjyi—1 + by br—i ! —z; — m
J=1 0 0
Tm—1+ b2 bk7m+2 0 O
1 bkomir 4= m 0 1 —k
0 Ok—m 0 0
0 bQ O O
0 1 +— k
0
- 0 0 -
We first note that we must set b = -+ = by_,,, = 0 and by_p,11 = —x;. Now, we calculate that
Ym—2 = Tm—1,-- -, Yi = Tit+1, and we set bg_m+1 = —TYm—2, .- ., bp—i = —2;y;. Look at the i-th row.

On the left hand side, since m—i =m—-2m+k=k—mandm—i+1=m—2m+k+1=k—m+1,
we have x; + by—it1 = ¥ + bg—my1 = x; — ; = 0 (note that other terms in the sume are zero), so
it just remains to set by_;11 = 0. Finally, we can now calculate y;_1, then set by_;1o = —z;¥i—1,
calculate by_;13, then set by_;13 = —x;y;—2, etc. O

LEMMA 8. Ifk > 2m, representation determined by M,, (L) and M,, () are non-isomorphic
for distinct &,y € K™ 1. If k = 2m — i, representation determined by My, .;(%) and My, x;(9) are
non-isomorphic for distinct 7,7 € K™ 2.

PrOOF. We have to show that there are no A € GLy(K) and B € GL,(K) of the form:

b1 b
0 b

bn
bn—l

0 0 ... b
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where by = 1, such that BM,, 1,(Z) = M, () A. We have the following equation:

[z O 1 [ 1 O 1
xT9 0 Y2 0
- A Tm—1 0 Ym—1 0
(1) bf 23 Z"*l bb” 1 0 «m 1 0 « m
.2 n.—2 n—1 0 0 0 0 1 b
: 0 0 = 0 0 {0 1]
0 0 O 1 bo
v 00 b 0 1 « k 0 1 « k
0 0
| O 0 | | 0 0 ]
Then we have:
(1 + bowy + b3xz + -+ + by, by, i - b -
To+boxs+ -+ by br_1 y y
. , Y2 Yyob
Tm—1 + b2 bk—m+2 . .
Ym—1 ymflb
1 Dhomir < m 1 b +— m
0 bk—m
0 b 0 0
0 bo
0 1 “ k 8 N
0 0
i 0 0 | | 0 0 i
Put b = bx_ym41, b2 = b3 = --- = by_p, = 0, and we can choose by, = y1bk—m+1,bp—1 =
= Y2bk—m+1, -+ Okemt2 = Ym—1bk—m+1- For k > 2m we have k—m > m, and it yields that z; = y;

for 1 <i<m.
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In the case k = 2m — i for 1 < i < m we have following equation:

I 0 Y1 0
xT9 0 Y2 0
0 0 0 0 <« 1
[1 by by . bp_1 by ] : : :
0 1 by byo by_i| |Tm-1 0 Ym-1 O
) . 1 0 «~ m| _ 1 0 <~ m||1 b
: 0 0 o 0 0 01
0 0 O 1 by 0 0 0 0
00 0 ... 0 1|
0 1 « k 0 1 « k
0 0
| O 0 i | 0 0 i
[ 21 4+ bowo + -+ + by 1 Ty—1 + by br 1 C b q
+bows 4 -+ by b
T2 + boxs | m—1 k. 1 " yob
baxiv1 + -+ bm—iTm—i + bm—ir1  bp—; 0 0
1+b by
Tm 11 2 bk m+2 . Yt Ym1b
k=mtl 1 b — m
0 bk—m =
0 b 0 0
homet 0 0
0 bo
0 1 k& 8 Lok
0 0
i 0 0 | | O 0 i
Notice that bg = = bk,m = bm_i = 0, bkfi =0b= bk7m+1 = bm—i+l- Then fz = 37; for

Z,7 € K™ 2. This finishes the proof. O
Directly from the previous three lemmas we have:

THEOREM 3. Up to isomorphism, all irreducible representations of type (2,n,a) are given by
the following matrices:

o My, 1 (%) where 1l <m <k<n, k>2m and ¥ € K™ and

o M jom—i(Z) where 1 <m < k<n, k<2m and € K™ 2.
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