ЧЕБЫШЕВСКИЙ СБОРНИК Том 26. Выпуск 2. УДК 517 DOI 10.22405/2226-8383-2025-26-2-160-175 ### Неприводимые представления колчанов, ассоциированных с кольцами Е. Матович **Матович Елена** — Белградский университет (г. Белград, Сербия). e-mail: jmatovic@mas.bq.ac.rs #### Аннотация В этой статье мы представляем текущие исследования по классификации неприводимых представлений следующего колчана или, скорее, диграфа (который в этой статье мы обозначаем через A): $$v_1 \xrightarrow{e_1} v_0 \longleftarrow e_0$$ Каждое представление $\mathbb A$ задается двумя векторными пространствами W_0 и W_1 и двумя гомоморфизмами $\varphi_0:W_0\to W_0$ и $\varphi_1:W_1\to W_0$: $$W_1 \xrightarrow{\varphi_1} W_0 \swarrow \varphi_0$$ Обозначим предыдущее представление через $(W_1,W_0,\varphi_1,\varphi_0)$. Если $\dim(W_0)=n$ и $\dim(W_1)=m$, то можно определить $W_0=K^n$ и $W_1=K^m$, и тогда φ_0 и φ_1 отождествляются соответственно с $n\times n$ и $n\times m$ матрицами M_0 и M_1 , так что указанное представление определяется четырехкратным (m,n,M_1,M_0) . Вычислим неприводимые представления для некоторого m. Ключевые слова: конечные кольца, направленные графы, колчанные представления Библиография: 3 названия. #### Для цитирования: Матович Е. Неприводимые представления колчанов, ассоциированных с кольцами // Чебышевский сборник, 2025, т. 26, вып. 2, с. 160-175. ### CHEBYSHEVSKII SBORNIK Vol. 26. No. 2. UDC 517 DOI 10.22405/2226-8383-2025-26-2-160-175 # Irreducible representations of quivers associated to rings J. Matović **Jelena Matović** — University of Belgrade (Belgrade, Serbia). e-mail: jmatovic@mas.bq.ac.rs #### Abstract In this paper we present the ongoing research on classifying irreducible representations of the following quiver, or rather the digraph (which throughout this paper we denote by \mathbb{A}): $$v_1 \xrightarrow{e_1} v_0 \longleftarrow e_0$$ Every representation of \mathbb{A} is given by two vector spaces W_0 and W_1 , and two homomorphisms $\varphi_0: W_0 \to W_0$ and $\varphi_1: W_1 \to W_0$: We denote the previous representation by $(W_1, W_0, \varphi_1, \varphi_0)$. If $\dim(W_0) = n$ and $\dim(W_1) = m$, we may identify $W_0 = K^n$ and $W_1 = K^m$, and then φ_0 and φ_1 are identified respectively with $n \times n$ and $n \times m$ matrices M_0 and M_1 , so the above representation is determined by the quadruple (m, n, M_1, M_0) . We calculate irreducible representations for some m. Keywords: finite rings, directed graphs, quiver representations Bibliography: 3 titles. #### For citation: Matović, J. 2025, "Irreducible representations of quivers associated to rings", *Chebyshevskii sbornik*, vol. 26, no. 2, pp. 160–175. ### 1. Introduction We are interested in classifying irreducible representations of the following quiver, or rather the digraph (which throughout this paper we denote by \mathbb{A}): $$v_1 \xrightarrow{e_1} v_0 \longleftrightarrow e_0$$ This digraph appears as a subdigraph of the digraphs associated with commutative rings in the following way (see [2] and [3] for details): For a ring R we define $G_R = (R^2, E)$, where E is given by $E = \{(a,b) \to (a+b,ab) \mid a,b \in R\}$. Now, the digraph \mathbb{A} appears in the following way: For $a \in R$, $a \neq 0$, we always have: $$(0,a) \longrightarrow (a,0)$$ The present work is merely a beginning of a research project of understanding irreducible representations of digraphs G_R . ### 2. Preliminaries Throughout, K will always be an algebraically closed field. DEFINITION 1. Let G = (V, E) be a digraph. For $e \in E$ denote by $s(e) \in V$ and $t(e) \in V$ the starting and the target vertex of the edge e respectively (i.e. e = (s(e), t(e))). - (a) A representation of the graph G is a collection $\{W_v \mid v \in V\}$ of vector spaces over a field K together with a collection of linear mappings (i.e. vector space-homomorphisms) $\{\varphi_e : W_{s(e)} \to W_{t(e)} \mid e \in E\}$. - (b) The representation ($\{W_v \mid v \in V\}, \{\varphi_e \mid e \in E\}$) with $W_v = 0$ for all $v \in V$ (and so $\varphi_e = 0$ for all $e \in E$, too) is said to be the zero-representation of G. - (c) Two representations ($\{W_v \mid v \in V\}$, $\{\varphi_e \mid e \in E\}$) and ($\{W_v' \mid v \in V\}$, $\{\varphi_e' \mid e \in E\}$) are said to be isomorphic if there is a collection of vector space-isomorphisms $\{\theta_v : W_v \to W_v' \mid v \in V\}$ such that for each $e \in E$ the following diagram commutes: $$W_{s(e)} \xrightarrow{\varphi_e} W_{t(e)}$$ $$\theta_{s(e)} \downarrow \qquad \qquad \downarrow \theta_{t(e)}$$ $$W'_{s(e)} \xrightarrow{\varphi'_e} W'_{t(e)}$$ i.e. for each $e \in E$, $\varphi'_e \circ \theta_{s(e)} = \theta_{t(e)} \circ \varphi_e$ holds. - (d) The sum of two representations $(\{W_v \mid v \in V\}, \{\varphi_e \mid e \in E\})$ and $(\{W_v' \mid v \in V\}, \{\varphi_e' \mid e \in E\})$ is the representation given by $W_v \oplus W_v'$ for all $v \in V$ and $\varphi_e \oplus \varphi_e'$ for all $e \in E$. - (e) A representation ($\{W_v \mid v \in V\}$, $\{\varphi_e \mid e \in E\}$) is irreducible if it is not isomorphic to a sum of two non-zero-representations. (see [1] for details) **Утверждение 5.** (i) Consider the loop-digraph $\mathbb{L} = (\{v_0\}, \{e_0 = v_0 \rightarrow v_0\})$: $$v_0 \bigcirc e_0$$ Every irreducible representation of \mathbb{L} is isomorphic to a representation given by $W_{v_0} = K^n$ and $\varphi_{e_0} = J_{n,a}$, where $n \geqslant 1$, $\alpha \neq 0$ and $J_{n,\alpha}$ is the Jordan $(n \times n)$ -block matrix: $$J_{n,\alpha} = \begin{bmatrix} \alpha & 1 & 0 & \dots & 0 & 0 \\ 0 & \alpha & 1 & \dots & 0 & 0 \\ 0 & 0 & \alpha & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \alpha & 1 \\ 0 & 0 & 0 & \dots & 0 & \alpha \end{bmatrix}$$ Moreover, these representations are mutually non-isomorphic. (ii) A matrix $A \in GL_n(K)$ commutes with $J_{n,\alpha}$ if and only if A is of the form: $$A = \begin{bmatrix} a_1 & a_2 & a_3 & \dots & a_n \\ 0 & a_1 & a_2 & \dots & a_{n-1} \\ 0 & 0 & a_1 & \dots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_1 \end{bmatrix}, \quad a_1 \neq 0.$$ We now return to the digraph \mathbb{A} . Every representation of \mathbb{A} is given by two vector spaces W_0 and W_1 , and two homomorphisms $\varphi_0: W_0 \to W_0$ and $\varphi_1: W_1 \to W_0$: $$W_1 \xrightarrow{\varphi_1} W_0 \longrightarrow \varphi_0$$ We denote the previous representation by $(W_1, W_0, \varphi_1, \varphi_0)$. If $\dim(W_0) = n$ and $\dim(W_1) = m$, we may identify $W_0 = K^n$ and $W_1 = K^m$, and then φ_0 and φ_1 are identified respectively with $n \times n$ and $n \times m$ matrices M_0 and M_1 , so the above representation is determined by the quadruple (m, n, M_1, M_0) . LEMMA 1. Consider a representation determined by (m, n, M_1, M_0) . - (i) If the representation is irreducible, then $m \leq n$ and $\operatorname{rank}(M_1) = m$. - (ii) If $m \leq n$, rank $(M_1) = m$ and M_0 is similar to $J_{n,\alpha}$ for some $\alpha \neq 0$, then the representation is irreducible. PROOF. (i) Suppose that the following representation is irreducible: $$K^m \xrightarrow{M_1} K^n \stackrel{\swarrow}{\longrightarrow} M_0$$ Denote by φ_0 and φ_1 mappings given by M_0 and M_1 respectively. It suffices to prove that $\varphi_1: K^m \to K^n$ is injective (which clearly implies both $m \leq n$ and $\operatorname{rank}(M_1) = m$). Suppose not; then $\ker \varphi_1$ is non-trivial. Find $W \leq K^m$ such that $K^m = \ker \varphi_1 \oplus W$. Then the above representation is (equal to) the sum of non-zero representations ($\ker \varphi_1, 0, 0, 0$) and $(W, K^n, \varphi_1 \upharpoonright W, \varphi_0)$. This contradicts the irreducibility of the representation. (ii) Suppose that $m \leq n$, rank $(M_1) = m$ and M_0 is similar to $J_{n,\alpha}$. If $P \in GL_n(K)$ is such that $M_0 = P^{-1}J_{n,\alpha}P$, note that we have the following isomorphism of the representations given by (m, n, M_1, M_0) and $(m, n, PM_1, J_{n,\alpha})$: $$\begin{array}{ccc} M_0 & J_{n,\alpha} \\ & & & \\ \downarrow & & & \\ K^n & \longrightarrow & K^n \\ M_1 & & & & \\ M_1 & & & & \\ & & & \downarrow \\ K^m & \longrightarrow & K^m \end{array}$$ $(I_m \text{ is the identity } (m \times m)\text{-matrix.})$ Clearly, $\operatorname{rank}(PM_1) = m$, so it suffices to prove irreducibility of the representation given by $(m, n, M, J_{n,\alpha})$ where $m \leq n$ and $\operatorname{rank}(M) = m$. Suppose that we have the following reduction: $$J_{n,\alpha} \qquad M'_0 \qquad M''_0$$ $$\downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad$$ where θ_0 and θ_1 are isomorphisms. By Fact 5(i), one of W'_0 and W''_0 must be zero, as otherwise the above reduction in particular would give a reduction of a Jordan block representation of the loop graph (which is irreducible by Fact 5(i)). Without loss of generality we may assume W''_0 , so the reduction becomes: $$\begin{array}{cccc} J_{n,\alpha} & M'_0 & 0 \\ & & & & & & \\ K^n & & & & & & \\ M & & & & & M'_1 & & & \\ M & & & & & & M'_1 & & & \\ K^m & & & & & & & M'_1 \oplus W''_1 \end{array}$$ Now, $m \leq n$ and rank(M) = m yield that the homomorphism given by M is injective, so the one given by $M'_1 \oplus 0$ on the right-hand side is also injective. This means that $W''_1 = 0$, so the above reduction is in fact trivial. Therefore, our representation is irreducible. \square Although, by the previous lemma, M_0 being a Jordan block matrix is a sufficient condition for irreducibility, it is not a necessary condition as the following easy example shows. Замечание 1. Consider the following representation: $$K \xrightarrow{\begin{bmatrix} 1 \\ 1 \end{bmatrix}} K^2 \xrightarrow{\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}}$$ If it is reducible, we would have $\lambda, \mu, \alpha, \beta \in K^{\times}$ and $\begin{bmatrix} x & y \\ u & v \end{bmatrix} \in GL_2(K)$ such that the following diagram commutes: $$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$ $$K^{2} \xrightarrow{K^{2}} K \oplus K$$ $$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \mu \qquad 0$$ $$K \xrightarrow{\lambda \oplus 0} K \oplus 0$$ By commutativity of the "square" part we have $\begin{bmatrix} x & y \\ u & v \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \mu \\ 0 \end{bmatrix} \lambda$, where from we conclude u+v=0, i.e. v=-u. Now, by commutativity of the "loop" part we have $\begin{bmatrix} x & y \\ u & -u \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = 0$ $$=\begin{bmatrix}\alpha & 0\\0 & \beta\end{bmatrix}\begin{bmatrix}x & y\\u & -u\end{bmatrix}, \text{ i.e. }\begin{bmatrix}x & 2y\\u & -2u\end{bmatrix}=\begin{bmatrix}\alpha x & \alpha y\\\beta u & -\beta u\end{bmatrix}. \text{ From the bottom row we obtain } u=\beta u=2u,$$ so $u=0,$ and hence $v=0.$ This is a contradiction as $\begin{bmatrix}x & y\\u & v\end{bmatrix}$ is regular. As a first step in our investigation, we consider the special case of irreducible representations given by Lemma 1(ii). So we aim to classify irreducible representations given by (m, n, M_1, M_0) , where $m \leq n$, rank $(M_1) = m$ (this is necessary by Lemma 1(i)), and M_0 is similar to $J_{n,\alpha}$ for some $\alpha \neq 0$. If $M_0 = P^{-1}J_{n,\alpha}P$, then the representation given by (m, n, M_1, M_0) is clearly isomorphic to the one given by $(m, n, PM_1, J_{n,\alpha})$, so we may suppose that $M_0 = J_{n,\alpha}$. For the representation given my $(m, n, M_1, J_{n,\alpha})$ we say that it is of type (m, n, α) . # 3. Irreducible representations of type $(1, n, \alpha)$ Throughout this section, denote by M_i the $(n \times 1)$ -matrix: $$M_i := \begin{bmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{bmatrix}^T$$ with 1 in the i-th row. LEMMA 2. Suppose that we have the following irreducible representation of type $(1, n, \alpha)$: $$K \xrightarrow{M} K^n \bigcup J_{n,\alpha}$$ where $M = \begin{bmatrix} m_1 & m_2 & \dots & m_n \end{bmatrix}^T$. Then if $i \leq n$ is such that $m_i \neq 0$ and $m_j = 0$ for all $i < j \leq n$, the above representation is isomorphic to: $$K \xrightarrow{M_i} K^n \bigcup J_{n,\alpha}$$ PROOF. We need to find $\lambda \in K^{\times}$ and $A \in GL_n(K)$ such that the following diagram commutes: $$\begin{array}{c|c} K & \xrightarrow{M} & K^n & & J_{n,\alpha} \\ \downarrow & & \downarrow & & \downarrow \\ \lambda \downarrow & & & \downarrow & & \downarrow \\ K & \xrightarrow{M_i} & K^n & & & J_{n,\alpha} \end{array}$$ i.e. such that $AM = M_i \lambda$ and $AJ_{n,\alpha} = J_{n,\alpha}A$. By Fact 5, A is of the following form: $$A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ 0 & a_1 & \dots & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_1 \end{bmatrix}$$ where $a_1 \neq 0$, so we must show that the following equation (in variables $a_1, \ldots, a_n, \lambda$) has a solution: $$\begin{bmatrix} a_1 & a_2 & \dots & a_n \\ 0 & a_1 & \dots & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_1 \end{bmatrix} \begin{bmatrix} m_1 \\ \vdots \\ m_i \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ \lambda \\ \vdots \\ 0 \end{bmatrix} \leftarrow i$$ This reduces to the system: $$a_1m_1 + a_2m_2 + \dots + a_{i-1}m_{i-1} + a_im_i = 0$$ $a_1m_2 + \dots + a_{i-2}m_{i-1} + a_{i-1}m_i = 0$ \vdots $a_1m_{i-1} + a_2m_i = 0$ $a_1m_i = \lambda$ so we see that we may take e.g. $\lambda = m_i \in K^{\times}$, $a_1 = 1$ and recursively find $a_2 = -a_1 m_{i-1}/m_i$, ..., $a_i = -(a_1 m_1 + \dots + a_{i-1} m_{i-1})/m_i$; we may also put $a_{i+1} = \dots = a_n = 0$. \square LEMMA 3. If $1 \le i < j \le n$, then the representations: $$K \xrightarrow{M_i} K^n \bigcup J_{n,\alpha} \quad and \quad K \xrightarrow{M_j} K^n \bigcup J_{n,\alpha}$$ are non-isomorphic. PROOF. We have to show that for no $\lambda \in K^{\times}$ and A of the form: $$A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ 0 & a_1 & \dots & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_1 \end{bmatrix}$$ where $a_1 \neq 0$, $AM_i = M_i \lambda$, i.e. $$\begin{bmatrix} a_1 & a_2 & \dots & a_n \\ 0 & a_1 & \dots & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_1 \end{bmatrix} \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \leftarrow i = \begin{bmatrix} 0 \\ \vdots \\ \lambda \\ \vdots \\ 0 \end{bmatrix} \leftarrow j$$ holds. This is obvious as it implies $a_1 \cdot 1 = 0$ as i < j. \square As a direct corollary of the previous two lemmas we obtain: Theorem 1. Up to isomorphism, all non-isomorphic irreducible representations of type $(1, n, \alpha)$ are given by (for $i \leq n$): $$K \xrightarrow{M_i} K^n \bigcup J_{n,\alpha}$$ In particular, there are exactly n non-isomorphic representations of type $(1, n, \alpha)$. # 4. Irreducible representations of type $(n-1, n, \alpha)$ Throughout this section, denote by M_i the $(n \times (n-1))$ -matrix: $$M_i := egin{bmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 & 0 & \dots & 0 \ dots & dots & \ddots & dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 & 0 & \dots & 0 \ 0 & 0 & \dots & 0 & 0 & \dots & 0 \ 0 & 0 & \dots & 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 0 & 0 & \dots & 1 \end{bmatrix} egin{array}{c} \leftarrow & i-1 \ \leftarrow & i \ \leftarrow & i+1 \ dots & dots & \ddots & dots & dots \ 0 & 0 & \dots & 0 & 0 & \dots & 1 \end{bmatrix}$$ so the matrix I_{n-1} with a zero-row added as the *i*-th row. Moreover, we also fix the following notation. For an $(n \times (n-1))$ -matrix M, rank_i(M) denotes the rank of the matrix obtained by deleting the *i*-th row from M. LEMMA 4. Suppose that we have the following irreducible representation of type $(n-1, n, \alpha)$: $$K^{n-1} \xrightarrow{M} K^n \bigcup J_{n,\alpha}$$ Then if $i \leq n$ is such that $\operatorname{rank}_i(M) = n - 1$ and $\operatorname{rank}_j(M) < n - 1$ for all j < i, the above representation is isomorphic to: $$K^{n-1} \xrightarrow{M_i} K^n \bigcup J_{n,\alpha}$$ PROOF. Suppose that $\operatorname{rank}_i(M) = n-1$ and $\operatorname{rank}_j(M) < n-1$ for all j < i. Since $\operatorname{rank}(M_i) = n-1$, by elementary transformations of columns only, we may transform M to the matrix of the following form: $$M' := MQ = \begin{bmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ m_1 & \dots & m_{i-1} & m_i & \dots & m_{n-1} \\ 0 & \dots & 0 & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 1 \end{bmatrix} \leftarrow i - 1$$ where $Q \in GL_{n-1}(K)$ is the product of all elementary matrices used in the transformation. Since elementary transformations of columns don't change the row-rank, rank_j(MQ) < n-1 for all j < i too. From here we directly see that it must be $m_1 = \cdots = m_{i-1} = 0$, so: $$M' = \begin{bmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & m_i & \dots & m_{n-1} \\ 0 & \dots & 0 & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 1 \end{bmatrix} \leftarrow \begin{matrix} i - 1 \\ \leftarrow & i \\ \leftarrow & i + 1 \end{matrix}$$ Thus we have an isomorphism of representations: $$K^{n-1} \xrightarrow{M} K^{n} \searrow J_{n,\alpha}$$ $$Q^{-1} \downarrow \qquad \downarrow I_{n}$$ $$K^{n-1} \xrightarrow{M'} K^{n} \searrow J_{n,\alpha}$$ Now, it suffices to find an isomorphism of representations of the following form: $$K^{n-1} \xrightarrow{M'} K^n \xrightarrow{\searrow} J_{n,\alpha}$$ $$A \downarrow \qquad \qquad \downarrow B$$ $$K^{n-1} \xrightarrow{M_i} K^n \xrightarrow{\searrow} J_{n,\alpha}$$ So we need $A \in GL_{n-1}(K)$ and $B \in GL_n(K)$ such that $M_iA = BM'$ and $BJ_{n,\alpha} = J_{n,\alpha}B$. Since, $BJ_{n,\alpha} = J_{n,\alpha}B$, by Fact 5(ii), B must be found in the following form: $$B = \begin{bmatrix} b_1 & b_2 & \dots & b_n \\ 0 & b_1 & \dots & b_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & b_1 \end{bmatrix}, \quad b_1 \neq 0,$$ so we have to check that for such B, $BM' = M_iA$ has a solution (for A and B). Note that the i-th row of M_iA (for any A) is zero, so let us first look at the i-th row of BM'. We have: $$(BM')_i = \begin{bmatrix} 0 & \dots & 0 & b_1 & b_2 & \dots & b_{n-i+1} \end{bmatrix} \begin{bmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & m_i & \dots & m_{n-1} \\ 0 & \dots & 0 & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 1 \end{bmatrix}$$ and the i-th row equals: $$\begin{bmatrix} 0 & \dots & 0 & b_1 m_i + b_2 & b_1 m_{i+1} + b_3 & \dots & b_1 m_{n-1} + b_{n-i+1} \end{bmatrix}.$$ Put $b_1 = 1, b_2 = -m_i, b_3 = -m_{i+1}, \dots, b_{n-i+1} = -m_{n-1}$, then the obtained row is zero, and further put $b_{n-i+2} = \dots = b_n = 0$. For the obtained matrix B, BM' has the i-th row zero. Now set A to be BM' after deleting the i-th row. It is easy to see that A is an upper triangular matrix with ones on the diagonal, thus it is regular, and that $BM' = M_i A$. This finishes the proof. \square Lemma 5. If $1 \le i < j \le n$, then the representations: $$K^{n-1} \xrightarrow{M_i} K^n \bigcirc J_{n,\alpha} \quad and \quad K^{n-1} \xrightarrow{M_j} K^n \bigcirc J_{n,\alpha}$$ are non-isomorphic. PROOF. We have to show that there are no $A \in GL_{n-1}(K)$ and $B \in GL_n(K)$ of the form: $$B = \begin{bmatrix} b_1 & b_2 & \dots & b_n \\ 0 & b_1 & \dots & b_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & b_1 \end{bmatrix}$$ where $b_1 \neq 0$, such that $BM_i = M_jA$. The *j*-th row of M_jA is zero, while *j*-th row of BM_i has $b_1 \neq 0$ in the place (j, j - 1) (as $j - 1 \geqslant i$). Therefore, the two representations are non-isomorphic. As a direct corollary of the previous two lemmas we obtain: Theorem 2. Up to isomorphism, all irreducible representations of type $(n-1, n, \alpha)$ are given by (for $i \leq n$): $$K \xrightarrow{M_i} K^n \bigcup J_{n,\alpha}$$ In particular, there are exactly n non-isomorphic representations of type $(n-1, n, \alpha)$. # 5. Irreducible representations of type $(2, n, \alpha)$ Throughout this section, denote by $M_{m,k}(x_1,\ldots,x_{m-1})$ the $(n\times 2)$ -matrix: $$M_{m,k}(x_1,\ldots,x_{m-1}) := egin{bmatrix} x_1 & 0 & & & & & \\ x_2 & 0 & & & & & & \\ \vdots & \vdots & & & & & \\ x_{m-1} & 0 & & \leftarrow & m \\ 1 & 0 & \leftarrow & m \\ 0 & 0 & & & & \\ \vdots & \vdots & & & & \\ 0 & 0 & & & & \\ 0 & 1 & \leftarrow & k \\ 0 & 0 & & & \\ \vdots & \vdots & & & \\ 0 & 0 & & & \\ \vdots & \vdots & & & \\ 0 & 0 & & & \\ \end{bmatrix}$$ where $1 \leq m < k \leq n$ and $x_1, x_2, \dots, x_{m-1} \in K$. For i < m and $x_1, \dots, x_{m-2} \in K$ denote $M_{m,k,i}(x_1, \dots, x_{m-2}) := M_{m,k}(x_1, \dots, x_{i-1}, 0, x_i, \dots, x_{m-2})$. LEMMA 6. If $(m_1, k_1) \neq (m_2, k_2)$, then the representations: $$K^2 \xrightarrow{M_{m_1,k_1}(\vec{x})} K^n \bigcup J_{n,\alpha} \quad and \quad K^2 \xrightarrow{M_{m_2,k_2}(\vec{y})} K^n \bigcup J_{n,\alpha}$$ are non-isomorphic for arbitrary $\vec{x}, \vec{y} \in K^{m-1}$. PROOF. We have to show that there are no $A \in GL_2(K)$ and $B \in GL_n(K)$ of the form: $$B = \begin{bmatrix} b_1 & b_2 & \dots & b_n \\ 0 & b_1 & \dots & b_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & b_1 \end{bmatrix}$$ where $b_1 \neq 0$, such that $BM_{m_1,k_1} = M_{m_2,k_2}A$. If $k_1 < k_2$, the k_1 -th row of BM_{m_1,k_1} has 1 in place $(k_1,2)$, while the same place in k_1 -th row of $M_{m_2,k_2}A$ is 0. If $k_1 = k_2$ and $m_1 < m_2$, then m_2 -th row of BM_{m_1,k_1} is zero, while m_2 -th row of $M_{m_2,k_2}A$ has 1 in place $(m_2,1)$. Therefore, the two representations are non-isomorphic. \square Consider an irreducible representation of type $(2, n, \alpha)$: $$K^2 \xrightarrow{M} K^n \bigcup J_{n,\alpha}$$ Recall that the rank of M is two. Define: $$k_M := \max \left\{ k \leqslant n \colon (\exists m < k) \ \operatorname{rank} \begin{bmatrix} M_m \\ M_k \end{bmatrix} = 2 \right\},$$ where M_i denotes the *i*-th row of M, and then: $$m_M := \max \left\{ m < k_M \colon \operatorname{rank} \begin{bmatrix} M_m \\ M_{k_M} \end{bmatrix} = 2 \right\}.$$ From now on we fix the previous representation, i.e. the matrix M, so to simplify the notation, we denote k_M and m_M only by k and m. Lemma 7. There is $\vec{x} \in K^{m-1}$ such that the above representation is isomorphic to the one given by $M_{m,k}(\vec{x})$. Moreover, if k < 2m, then the above representation is isomorphic to the one given by $M_{m,k,2m-k}(\vec{x})$ for some $\vec{x} \in K^{m-2}$. PROOF. By elementary transformations of columns only, and the fact that m-th and k-th rows are linearly independent, we may transform M to the matrix of the following form: $$M' := MQ = \begin{bmatrix} a_{11} & a_{12} \\ \vdots & \vdots \\ a_{m-1,1} & a_{m-1,2} \\ 1 & 0 & \leftarrow m \\ a_{m+1,1} & a_{m+1,2} \\ \vdots & \vdots \\ a_{k-1,1} & a_{k-1,2} \\ 0 & 1 & \leftarrow k \\ a_{k+1,1} & a_{k+1,2} \\ \vdots & \vdots \\ a_{n,1} & a_{n,2} \end{bmatrix}$$ where $Q \in GL_2(K)$ is the product of all elementary matrices used in the transformation. Recall that elementary transformations of columns don't change the rank of rows. Hence, for i > k, by the choice of k, i-th row is linearly dependent with k-th and with m-th row, so we see that $a_{i,1} = a_{i,2} = 0$. Similarly, for m < i < k, by the choice of m now, i-th row is lineary dependent with k-th row, so we see that $a_{i,1} = 0$. Therefore, our matrix M' equals: $$M' = \begin{bmatrix} a_{11} & a_{12} \\ \vdots & \vdots \\ a_{m-1,1} & a_{m-1,2} \\ 1 & 0 & \leftarrow m \\ 0 & a_{m+1,2} \\ \vdots & \vdots & \vdots \\ 0 & a_{k-1,2} \\ 0 & 1 & \leftarrow k \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{bmatrix}$$ Clearly, representations given by M and M' are isomorphic. It suffices to find an isomorphism of representations given by M' and $M_{m,k}(\vec{x})$ for some $\vec{x} \in K^{m-1}$. We do that by finding $B \in GL_n(K)$ such that $BM' = M_{m,k}(\vec{x})$ and $BJ_{n,\alpha} = J_{n,\alpha}B$. Since, $BJ_{n,\alpha} = J_{n,\alpha}B$, by Fact 5(ii), B must be found in the following form: $$B = \begin{bmatrix} b_1 & b_2 & \dots & b_n \\ 0 & b_1 & \dots & b_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & b_1 \end{bmatrix}, \quad b_1 \neq 0.$$ (1) Consider BM': $$BM' = \begin{bmatrix} \sum_{i=1}^{m-1} b_i a_{i,1} + b_m & \sum_{i=1}^{k-1} b_i a_{i,2} + b_k \\ \sum_{m=2}^{m-2} b_i a_{i+1,1} + b_{m-1} & \sum_{i=1}^{k-2} b_i a_{i+1,2} + b_{k-1} \\ \vdots & \vdots & \vdots \\ b_1 & \sum_{i=1}^{k-m} b_i a_{i+m-1,2} + b_{k-m+1} & \leftarrow m \\ \sum_{i=1}^{k-m-1} b_i a_{i+m,2} + b_{k-m} & \vdots \\ \vdots & \vdots & \vdots \\ 0 & b_1 a_{k-1,2} + b_2 \\ 0 & b_1 & \leftarrow k \\ 0 & \vdots & \vdots \\ 0 & 0 & \end{bmatrix}$$ It is clear that if we recursively put $b_1=1$ and $b_{k-j}=-\sum_{i=1}^{k-j-1}b_ia_{i+m,2}$ for $j=k-2,k-3,\ldots,0$, we obtain the desired zeroes in the second column, i.e. we obtain $M_{m,k}(\vec{x})$, where \vec{x} can be easily calculated. For the "moreover" part, suppose that k < 2m, and set i = 2m - k. We prove that $B \in GL_n(K)$ of the form (1), and $\vec{y} \in K^{m-2}$ can be found such that $BM_{m,k}(\vec{x}) = M_{m,k,i}(\vec{y}) \begin{bmatrix} 1 & -x_i \\ 0 & 1 \end{bmatrix}$; clearly, this finishes the proof. For, put $b_1 = 1$, and consider $BM_{m,k}(\vec{x}) = M_{m,k,i}(\vec{y}) \begin{bmatrix} 1 & -x_i \\ 0 & 1 \end{bmatrix}$: $$\begin{bmatrix} \sum_{j=1}^{m-1} b_j x_j + b_m & b_k \\ \sum_{j=1}^{m-2} b_j x_{j+1} + b_{m-1} & b_{k-1} \\ \vdots & \vdots & \vdots \\ \sum_{j=1}^{m-i+1} b_j x_{j+i-1} + b_{m-i+2} & b_{k-i+2} \\ \sum_{j=1}^{m-i} b_j x_{j+i-1} + b_{m-i+1} & b_{k-i+1} & \leftarrow i \\ \sum_{j=1}^{m-i-1} b_j x_{j+i-1} + b_{m-i} & b_{k-i} \\ \vdots & \vdots & \vdots \\ x_{m-1} + b_2 & b_{k-m+2} \\ 1 & b_{k-m+1} & \leftarrow m \\ 0 & b_{k-m} \\ \vdots & \vdots & \vdots \\ 0 & 0 & \vdots \\ \vdots & \vdots & \vdots \\ 0 & 0 & \vdots \\ 0 & 0 & \end{bmatrix}$$ We first note that we must set $b_2 = \cdots = b_{k-m} = 0$ and $b_{k-m+1} = -x_i$. Now, we calculate that $y_{m-2} = x_{m-1}, \ldots, y_i = x_{i+1}$, and we set $b_{k-m+1} = -x_i y_{m-2}, \ldots, b_{k-i} = -x_i y_i$. Look at the *i*-th row. On the left hand side, since m-i=m-2m+k=k-m and m-i+1=m-2m+k+1=k-m+1, we have $x_i + b_{m-i+1} = x_i + b_{k-m+1} = x_i - x_i = 0$ (note that other terms in the sume are zero), so it just remains to set $b_{k-i+1} = 0$. Finally, we can now calculate y_{i-1} , then set $b_{k-i+2} = -x_i y_{i-1}$, calculate b_{k-i+3} , then set $b_{k-i+3} = -x_i y_{i-2}$, etc. \square Lemma 8. If $k \ge 2m$, representation determined by $M_{m,k}(\vec{x})$ and $M_{m,k}(\vec{y})$ are non-isomorphic for distinct $\vec{x}, \vec{y} \in K^{m-1}$. If k = 2m - i, representation determined by $M_{m,k,i}(\vec{x})$ and $M_{m,k,i}(\vec{y})$ are non-isomorphic for distinct $\vec{x}, \vec{y} \in K^{m-2}$. PROOF. We have to show that there are no $A \in GL_2(K)$ and $B \in GL_n(K)$ of the form: $$B = \begin{bmatrix} b_1 & b_2 & \dots & b_n \\ 0 & b_1 & \dots & b_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & b_1 \end{bmatrix}$$ where $b_1 = 1$, such that $BM_{m,k}(\vec{x}) = M_{m,k}(\vec{y})A$. We have the following equation: $$\begin{bmatrix} 1 & b_2 & b_3 & \dots & b_{n-1} & b_n \\ 0 & 1 & b_2 & \dots & b_{n-2} & b_{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & b_2 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 & 0 \\ x_2 & 0 \\ \vdots & \vdots \\ x_{m-1} & 0 \\ 1 & 0 & \leftarrow m \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & \\ \vdots & \vdots \\ 0 & 1 & \leftarrow k \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & \end{bmatrix} = \begin{bmatrix} y_1 & 0 \\ y_2 & 0 \\ \vdots & \vdots \\ y_{m-1} & 0 \\ 1 & 0 & \leftarrow m \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 1 & \leftarrow k \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & \\ \vdots & \vdots \\ 0 & 0 & \\ \vdots & \vdots \\ 0 & 0 & \\ \vdots & \vdots \\ 0 & 0 & \\ \vdots & \vdots \\ 0 & 0 & \\ \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$ Then we have: have: $$\begin{bmatrix} x_1 + b_2 x_2 + b_3 x_3 + \dots + b_m & b_k \\ x_2 + b_2 x_3 + \dots + b_{m-1} & b_{k-1} \\ \vdots & \vdots & & \vdots \\ x_{m-1} + b_2 & b_{k-m+2} \\ 1 & b_{k-m+1} & \leftarrow m \\ 0 & b_{k-m} \\ 0 & & b_{k-m} \\ \vdots & & \vdots \\ 0 & 0 & 0 \\ \vdots & \vdots & & \\ y_{m-1} & y_{m-1} b \\ 1 & b & \leftarrow m \\ 0 & 0 & 0 \\ \vdots & \vdots & & \\ y_{m-1} & y_{m-1} b \\ 1 & b & \leftarrow m \\ 0 & 0 & 0 \\ \vdots & \vdots & & \\ 0 & 0 & 0 \\ \vdots & \vdots & & \\ 0 & 1 & \leftarrow k \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 1 & \leftarrow k \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & \\ \end{bmatrix}$$ Put $b = b_{k-m+1}$, $b_2 = b_3 = \cdots = b_{k-m} = 0$, and we can choose $b_k = y_1 b_{k-m+1}$, $b_{k-1} = y_2 b_{k-m+1}, \ldots, b_{k-m+2} = y_{m-1} b_{k-m+1}$. For $k \ge 2m$ we have $k-m \ge m$, and it yields that $x_i = y_i$ for $1 \le i < m$. In the case k = 2m - i for $1 \le i < m$ we have following equation: $$\begin{bmatrix} 1 & b_2 & b_3 & \dots & b_{n-1} & b_n \\ 0 & 1 & b_2 & \dots & b_{n-2} & b_{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & b_2 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 & 0 & & & & \\ x_2 & 0 & & & \\ \vdots & \vdots & & & \\ 0 & 0 & & & \\ \vdots & \vdots & & & \\ x_{m-1} & 0 & & & \\ 1 & 0 & \leftarrow & m \\ 0 & 0 & & & \\ \vdots & \vdots & & & \\ 0 & 0 & & & \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \vdots & \vdots & & \\ 0 & 1 & \leftarrow & k \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \vdots & \vdots & & \\ 0 & 1 & \leftarrow & k \\ 0 & 0 & & \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \end{bmatrix}$$ $$\begin{bmatrix} x_1 + b_2 x_2 + \dots + b_{m-1} x_{m-1} + b_m & b_k \\ x_2 + b_2 x_3 + \dots + b_{m-1} & b_{k-1} \\ \vdots & & \vdots \\ b_2 x_{i+1} + \dots + b_{m-i} x_{m-i} + b_{m-i+1} & b_{k-i} \\ \vdots & & \vdots \\ x_{m-1} + b_2 & b_{k-m+2} \\ 0 & b_{k-m} \\ 0 & b_{k-m} \\ \vdots & \vdots \\ 0 & 0 \\ \vdots & \vdots \\ y_{m-1} & y_{m-1} b \\ 1 & b & \leftarrow m \\ 0 & 0 \\ \vdots & \vdots \\ y_{m-1} & y_{m-1} b \\ 1 & b & \leftarrow m \\ 0 & 0 \\ 0 & 0 \\ \vdots & \vdots \end{bmatrix}$$ Notice that $b_2 = \cdots = b_{k-m} = b_{m-i} = 0$, $b_{k-i} = 0$ $b = b_{k-m+1} = b_{m-i+1}$. Then $\vec{x}_i = \vec{y}_i$ for $\vec{x}, \vec{y} \in K^{m-2}$. This finishes the proof. \square Directly from the previous three lemmas we have: Theorem 3. Up to isomorphism, all irreducible representations of type $(2, n, \alpha)$ are given by the following matrices: - $M_{m,k}(\vec{x})$ where $1 \leq m < k \leq n$, $k \geq 2m$ and $\vec{x} \in K^{m-1}$, and - $M_{m,k,2m-k}(\vec{x})$ where $1 \leq m < k \leq n$, k < 2m and $\vec{x} \in K^{m-2}$. # СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ - 1. Barot M. Introduction to the Representation Theory of Algebras. Cham: Springer, 2015. 352 p. - 2. Lipkovski A.T. Digraphs associated with finite rings // Publications de l'Institut Mathématique. 2012. Vol. 92, no. 106. P. 35–41. - 3. Lipkovski A.T., Matović J. Quivers associated with finite rings a cohomological approach // Filomat. 2023. Vol. 37, no. 25. P. 8583–8589. ### REFERENCES - 1. Barot, M., 2015, Introduction to the Representation Theory of Algebras, Cham: Springer. - 2. Lipkovski, A.T., 2012, "Digraphs associated with finite rings", *Publications de l'Institut Mathématique*, vol. 92, no. 106, pp. 35–41. - 3. Lipkovski, A.T., Matović, J., 2023, "Quivers associated with finite rings a cohomological approach", *Filomat*, vol. 37, no. 25, pp. 8583–8589. Получено: 12.01.2025 Принято в печать: 07.04.2025