ЧЕБЫШЕВСКИЙ СБОРНИК

Том 26. Выпуск 1.

УДК 511.3

DOI 10.22405/2226-8383-2025-26-1-157-163

Гиперболическая дзета-функция диагональных решёток

А. П. Крылов, Н. М. Добровольский, И. Н. Балаба

Крылов Александр Петрович — аспирант, Тульский государственный педагогический университет им. Л. Н. Толстого (г. Тула).

e-mail: alek.krylov@gmail.com

Добровольский Николай Михайлович — доктор физико-математических наук, профессор, Тульский государственный педагогический университет им. Л. Н. Толстого (г. Тула). e-mail: dobrovol@tsput.ru

Балаба Ирина Николаевна — доктор физико-математических наук, профессор, Тульский государственный педагогический университет им. Л. Н. Толстого (г. Тула). *e-mail: ibalaba@mail.ru*

Аннотация

В работе изучаются свойства гиперболической дзета-функции диагональных решёток. Доказывается теорема об аналитическом продолжении этой функции.

Ключевые слова: гиперболическая дзета-функция решёток, метрическое пространство решёток, унимодулярные решётки, диагональные решетки, фундаментальные решётки.

Библиография: 5 названий.

Для цитирования:

Крылов А. П., Добровольский Н. М., Балаба И. Н. Гиперболическая дзета-функция диагональных решёток // Чебышевский сборник, 2025, т. 26, вып. 1, с. 157–163.

CHEBYSHEVSKII SBORNIK

Vol. 26. No. 1.

UDC 511.3

DOI 10.22405/2226-8383-2025-26-1-157-163

Hyperbolic zeta function of diagonal unimodular lattices

A. P. Krylov, N. M. Dobrovol'skii, I. N. Balaba

Krylov Alexander Petrovich — postgraduate student, Tula State Lev Tolstoy Pedagogical University (Tula).

e-mail: alek.krylov@gmail.com

Dobrovol'skii Nikolai Mikhailovich — doctor of physical and mathematical sciences, professor, Tula State Lev Tolstoy Pedagogical University (Tula).

e-mail: dobrovol@tsput.ru

Balaba Irina Nikolaevna — doctor of physical and mathematical sciences, professor, Tula State Lev Tolstoy Pedagogical University (Tula).

e-mail: ibalaba@mail.ru

Abstract

The paper studies the properties of the hyperbolic zeta function of diagonal two-dimensional unimodular lattices. A theorem on the analytic continuation of this function is proved.

Keywords: hyperbolic zeta function of lattices, metric lattice space, unimodular lattices, diagonal lattices, fundamental lattices.

Bibliography: 5 title.

For citation:

Krylov, A. P., Dobrovol'skii, N. M., Balaba, I. N. 2025, "Hyperbolic zeta function of diagonal lattices", *Chebyshevskii sbornik*, vol. 26, no. 1, pp. 157–163.

1. Введение

В работе [4] была доказана полнота метрического пространства диагональных унимодулярных решёток. Каждая диагональная унимодулярная решётка является декартовой решёткой, а, следовательно, гиперболическая дзета-функция этой решётки имеет аналитическое продолжение на всю комплексную плоскость за исключением точки $\alpha = 1$, где у неё полюс s-ого порядка. (см. [1], [5]).

Для дальнейшего нам потребуется функциональное уравнение для дзета-функции Римана:

$$\zeta(\alpha) = M(\alpha)\zeta(1-\alpha), \quad M(\alpha) = \frac{2\Gamma(1-\alpha)}{(2\pi)^{1-\alpha}}\sin\frac{\pi\alpha}{2} - \text{ множитель Римана}, \quad \alpha = \sigma + it, \quad \sigma < 0.$$

Здесь $\Gamma(x)$ — гамма функция Эйлера.

Цель нашей работы — изучить свойства аналитического продолжения гиперболической дзета-функции диагональных решёток в левой полуплоскости.

2. Метрика Касселса

Как известно (см. [2], стр. 165), множество всех s-мерных решёток PR_s является полным метрическим пространством относительно метрики

$$\rho(\Lambda, \Gamma) = \max(\ln(1+\mu), \ln(1+\nu)) = \ln(1+\max(\mu, \nu)), \tag{1}$$

где

$$\mu = \inf_{\Gamma = A \cdot \Lambda} \|A - I\|, \quad \nu = \inf_{\Lambda = B \cdot \Gamma} \|B - I\|.$$

Рассмотрим пространство $\mathbb{R}^s_+ = (0, \infty)^s$ и введем на нём новую метрику $\rho(\vec{x}, \vec{y})$, заданную следующим образом:

$$\rho(\vec{x}, \vec{y}) = \max(\ln(1+\mu), \ln(1+\nu)) = \ln(1+\max(\mu, \nu)), \tag{2}$$

где

$$\mu = \max_{j=1,\dots,s} \left| 1 - \frac{x_j}{y_j} \right|, \quad \nu = \max_{j=1,\dots,s} \left| 1 - \frac{y_j}{x_j} \right|,$$

которую назовём метрикой Касселса. Нетрудно видеть, что

$$\rho(\vec{x}, \vec{y}) = \max_{j=1,\dots,s} \max\left(\ln\left(1 + \left|1 - \frac{x_j}{y_j}\right|\right), \ln\left(1 + \left|1 - \frac{y_j}{x_j}\right|\right)\right). \tag{3}$$

Очевидно, что $\rho(\vec{x},\vec{x})=0$ для любого $\vec{x}\in\mathbb{R}^s_+$ и $\rho(\vec{x},\vec{y})=\rho(\vec{y},\vec{x})=0$ для любых $\vec{x},\vec{y}\in\mathbb{R}^s_+$. Так как $\frac{x}{y}=\frac{x}{z}\cdot\frac{z}{y}$, то при $\beta=\frac{x}{z}-1$, $\gamma=\frac{z}{y}-1$, $\delta=\frac{x}{y}-1$ имеем: $\delta=\beta+\gamma+\beta\cdot\gamma$, $|\delta|\leqslant|\beta|+|\gamma|+|\beta|\cdot|\gamma|$,

 $1 + \left| 1 - \frac{x}{y} \right| \leqslant 1 + \left| 1 - \frac{z}{z} \right| + \left| 1 - \frac{z}{y} \right| + \left| 1 - \frac{z}{z} \right| \cdot \left| 1 - \frac{z}{y} \right| \leqslant \left(1 + \left| 1 - \frac{x}{z} \right| \right) \left(1 + \left| 1 - \frac{z}{y} \right| \right).$ Отсюда следует неравенство треугольника: $\ln \left(1 + \left| 1 - \frac{x}{y} \right| \right) \leqslant \ln \left(1 + \left| 1 - \frac{x}{z} \right| \right) + \ln \left(1 + \left| 1 - \frac{z}{y} \right| \right),$ $\rho(\vec{x}, \vec{y}) \leqslant \rho(\vec{x}, \vec{z}) + \rho(\vec{z}, \vec{y}).$

Будем через RC^s обозначать пространство $\mathbb{R}^s_+ = (0, \infty)^s$ и называть его пространством Касселса. Ясно, что оно гомеоморфно простраству диагональных решёток.

3. Дзета-функция диагональных унимодулярных решёток

Диагональные решётки — самый простой класс решёток. Они получаются растяжением по координатам фундаментальной решётки \mathbb{Z}^s : $\Lambda(d_1,\ldots,d_s)=\{(d_1m_1,\ldots,d_sm_s)|m_1,\ldots,m_s\in\mathbb{Z}\},$ $(d_1,\ldots,d_s>0).$

Диагональная унимодулярная решётка $\Lambda U(d_1,\ldots,d_{s-1})=\Lambda\left(d_1,\ldots,d_{s-1},\frac{1}{d_1\cdot\ldots\cdot d_{s-1}}\right),\,d_1,\ldots,d_{s-1}>0.$

Всякая решётка при $s\geqslant 2$ имеет бесконечно много базисов. Действительно, если $GL_s(\mathbb{Z})$ — линейная унимодулярная группа, состоящая из квадратных матриц порядка s

$$M = \begin{pmatrix} m_{1,1} & \dots & m_{1,s} \\ \vdots & \ddots & \vdots \\ m_{s,1} & \dots & m_{s,s} \end{pmatrix}, \quad m_{i,j} \in \mathbb{Z} \quad (i,j=1,\dots,s), \quad \det M = \pm 1,$$

то для любого базиса $\vec{\lambda}_1 = (\lambda_{1,1}, \dots, \lambda_{1,s}), \dots, \vec{\lambda}_s = (\lambda_{s,1}, \dots, \lambda_{s,s})$ решётки Λ все базисы имеют вид $\vec{\lambda}_1' = \vec{\lambda}_1 \cdot M, \dots, \vec{\lambda}_s' = \vec{\lambda}_s \cdot M$, где $M \in GL_s(\mathbb{Z})$.

Отсюда следует, что произвольная базисная матрица $M(d_1,\ldots,d_{s-1})$ диагональной унимодулярной решётки $\Lambda U(d_1,\ldots,d_{s-1})$ имеет вид

$$M(d_1, \dots, d_{s-1}) = \begin{pmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \frac{1}{d_1 \dots d_{s-1}} \end{pmatrix} \cdot M = \begin{pmatrix} d_1 m_{1,1} & \dots & \dots & d_1 m_{1,s} \\ d_2 m_{2,1} & \dots & \dots & d_2 m_{2,s} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{m_{s,1}}{d_1 \dots d_{s-1}} & \dots & \dots & \frac{m_{s,s}}{d_1 \dots d_{s-1}} \end{pmatrix},$$

$$M \in GL_s(\mathbb{Z}).$$

В работе [4] доказана лемма о расстояниях (определение метрики на пространстве решёток см. [2], стр.165).

ЛЕММА 1. Пусть $D_1 = \max\left(\frac{d_1}{d_1'}, \dots, \frac{d_{s-1}}{d_{s-1}'}, \frac{d_1' \dots \cdot d_{s-1}'}{d_1 \dots \cdot d_{s-1}}\right), \ D_2 = \max\left(\frac{d_1'}{d_1}, \dots, \frac{d_{s-1}'}{d_{s-1}}, \frac{d_1' \dots \cdot d_{s-1}}{d_1' \dots \cdot d_{s-1}'}\right) \ u$ $D_1 \geqslant D_2, \ mor\partial a \ D_2 \geqslant 1 \ u \ \rho(\Lambda U(d_1, \dots, d_{s-1}), \Lambda U(d_1', \dots, d_{s-1}')) \leqslant \ln(sD_1 + 1 - s).$

Доказательство. См. [4]. □

ЛЕММА 2. Пусть $D_1 = \max\left(\frac{d_1}{d_1'}, \dots, \frac{d_{s-1}}{d_{s-1}'}, \frac{d_1' \cdot \dots \cdot d_{s-1}'}{d_1 \cdot \dots \cdot d_{s-1}}\right), \ D_2 = \max\left(\frac{d_1'}{d_1}, \dots, \frac{d_{s-1}'}{d_{s-1}}, \frac{d_1' \cdot \dots \cdot d_{s-1}}{d_1' \cdot \dots \cdot d_{s-1}'}\right)$ $u \ D_1 \geqslant D_2, \ ecnu \ \Lambda U(d_1, \dots, d_{s-1}) = A \cdot \Lambda U(d_1', \dots, d_{s-1}') \ u \ \|A - E_s\| \leqslant \delta < \frac{1}{D_2}, \ morda$ $d_{\nu} = d_{\nu}'(1 + \delta_{\nu,\nu}) \ 1 \leqslant \nu \leqslant s-1, \ d_1' \cdot \dots \cdot d_{s-1}' = (1 + \delta_{s,s})d_1 \cdot \dots \cdot d_{s-1}, \ rde \ 0 \leqslant |\delta_{\nu,\nu}| \leqslant \frac{\delta}{sD_2}$ $(\nu = 1, \dots, s).$

Доказательство. См. [4]. \square

Положим $d_s = \frac{1}{d_1 \dots d_{s-1}}$, тогда $d_1 \dots d_s = 1$ и $D = \max(d_1, \dots, d_s) \geqslant 1$, $D1 = \min(d_1, \dots, d_s) \leqslant 1$.

Гиперболическая дзета-функция диагональной унимодулярной решётки $\Lambda U(d_1,\ldots,d_{s-1})$ имеет вид:

$$\zeta_H(\Lambda U(d_1,\ldots,d_{s-1})|\alpha) = \sum_{\vec{m}\in\mathbb{Z}} \frac{1}{\overline{d_1m_1}^{\alpha} \cdot \ldots \cdot \overline{d_{s-1}m_{s-1}}^{\alpha} \cdot \left(\frac{\overline{m_s}}{\overline{d_1...d_{s-1}}}\right)^{\alpha}} \quad (\alpha = \sigma + it, \quad \sigma > 1).$$

Без ограничения общности, будем считать, что $d_1 \geqslant \ldots \geqslant d_k > 1 = d_{k+1} = \ldots = d_{n-1} > d_n \geqslant \ldots \geqslant d_s$. Ясно, что если $\Lambda(d_1, \ldots, d_s) \neq \mathbb{Z}^s$, то $1 \leqslant k < n \leqslant s$.

Нетрудно видеть, что $\zeta_H(\mathbb{Z}^s|\alpha)=(1+2\zeta(\alpha))^s-1$. Отсюда следует функциональное уравнение

$$\zeta_H(\mathbb{Z}^s|\alpha) = (1 + 2M(\alpha)\zeta(1 - \alpha))^s - 1, \quad \alpha = \sigma + it, \quad \sigma < 0.$$
(4)

Для $d \geqslant 1$ введём обозначение

$$f(d|\alpha) = \sum_{1 \le m < d} \left(1 - \frac{1}{\left(\frac{1}{d}m\right)^{\alpha}} \right) = \sum_{1 \le m < d} \left(1 - \frac{d^{\alpha}}{m^{\alpha}} \right),$$

получим при $\Lambda(d_1,\ldots,d_s) \neq \mathbb{Z}^s$

$$\zeta_H(\Lambda(d_1,\ldots,d_s)|\alpha) = \prod_{j=1}^k \left(1 + \frac{2}{d_j^{\alpha}}\zeta(\alpha)\right) (1 + 2\zeta(\alpha))^{n-1-k} \prod_{j=n}^s \left(1 + \frac{2}{d_j^{\alpha}}\zeta(\alpha) + 2f\left(\frac{1}{d_j}|\alpha\right)\right) - 1.$$
(5)

Так как при $0 < d \leqslant 1$ имеем равенство $f(d|\alpha) = 0$, то равенство (5) можно переписать в виде

$$\zeta_H(\Lambda(d_1,\ldots,d_s)|\alpha) = \prod_{j=1}^s \left(1 + \frac{2}{d_j^{\alpha}}\zeta(\alpha) + 2f\left(\frac{1}{d_j}|\alpha\right)\right) - 1.$$
 (6)

Это равенство можно переписать по степеням дзета-функции Римана. Получим

$$\zeta_H(\Lambda(d_1,\ldots,d_s)|\alpha) = \prod_{j=1}^s \left(1 + 2f\left(\frac{1}{d_j}|\alpha\right)\right) - 1 + \sum_{k=1}^s 2^k \zeta(\alpha)^k \sum_{1 \leqslant j_1 < \ldots < j_k \leqslant s} \prod_{\nu=1}^s \frac{1}{d_{j\nu}^{\alpha}} \cdot \prod_{j=1, j \neq j_1, \ldots, j_k} \left(1 + 2f\left(\frac{1}{d_j}|\alpha\right)\right).$$

Нам потребуется ещё значение $f(d|1) = \sum_{1 \leq m < d} \left(1 - \frac{d}{m}\right)$. Заметим, что $f(d|\alpha)$ — непрерывная функция от d > 0 при любом значении α .

4. Непрерывность гиперболической дзета-функции решёток на пространстве диагональных унимодулярных решёток

Как было отмечено во введении, диагональная унимодулярная решётка является декартовой и поэтому имеет аналитическое продолжение на всю комплексную плоскость.

ЛЕММА 3. Для гиперболической дзета-функции диагональной решётки справедливо функциональное уравнение

$$\zeta_H(\Lambda(d_1,\ldots,d_s)|\alpha) = \prod_{j=1}^s \left(1 + \frac{2}{d_j^{\alpha}} M(\alpha) \zeta(1-\alpha) + 2f\left(\frac{1}{d_j}|\alpha\right)\right) - 1.$$
 (7)

 $npu \ \alpha = \sigma + it, \quad \sigma < 0.$

Доказательство. Действительно, функция $f(d|\alpha)$ является аналитической на всей комплексной плоскости, поэтому, подставляя в выражение для гиперболической дзета-функции диагональной унимодулярной решётки функциональное уравнение для дзета-функции Римана, получим утверждение леммы. \square

ТЕОРЕМА 1. Для любой диагональной решётки $\Lambda(d_1,\ldots,d_s)$ гиперболическая дзета-функция $\zeta_H(\Lambda(d_1,\ldots,d_s)|\alpha)$ является аналитической функцией на всей комплексной плоскости кроме точки $\alpha=1$, в которой у неё полюс s-ого порядка с вычетом

$$\operatorname{Res}_{1}\zeta_{H}(\Lambda(d_{1},\ldots,d_{s})|\alpha) = 2 \sum_{1 \leq j_{1} \leq s} \frac{1}{d_{j_{1}}} \prod_{j=1,j\neq j_{1}}^{s} \left(1 + 2f\left(\frac{1}{d_{j}}|1\right)\right) + \sum_{k=2}^{s} 2^{k} \sum_{1 \leq j_{1} < \ldots < j_{k} \leq s} \prod_{\nu=1}^{k} \frac{1}{d_{j_{\nu}}} \cdot \prod_{j=1,j\neq j_{1},\ldots,j_{k}}^{s} \left(1 + 2f\left(\frac{1}{d_{j}}|1\right)\right) \sum_{j=1}^{\frac{k+1}{2}} C_{k}^{j} C_{k-j}^{j-1} \gamma^{k-2j+1} (-\gamma_{1})^{j-1}.$$

Доказательство. Как известно, дзета-функция Римана мероморфна с единственным полюсом первого порядка при $\alpha=1$ и раскладывается в ряд Лорана в точке $\alpha=1$

$$\zeta(\alpha) = \frac{1}{\alpha - 1} + \sum_{n=0}^{\infty} \frac{\gamma_n}{n!} (1 - \alpha)^n,$$

где

$$\gamma_n = \lim_{m \to \infty} \left(\left(\sum_{k=1}^m \frac{(\ln k)^n}{k} \right) - \frac{(\ln m)^{n+1}}{n+1} \right)$$

— константы Стилтьеса, а $\gamma_0 = \gamma$ — константа Эйлера.

Таким образом, для дзета-функции Римана справедливо равенство

$$\zeta(\alpha) = \frac{1}{\alpha - 1} + \gamma + r(\alpha), \quad r(\alpha) = \sum_{n=1}^{\infty} \frac{\gamma_n}{n!} (1 - \alpha)^n = (\alpha - 1) r_1(\alpha), \quad r_1(\alpha) = -\sum_{n=1}^{\infty} \frac{\gamma_n}{n!} (1 - \alpha)^{n-1}$$

и функции $r(\alpha)$ и $r_1(\alpha)$ — голоморфные функции на всей комплексной области. Для дальнейшего потребуется важное равенство $r_1(1) = -\gamma_1$.

В частности, для вычета дзета-функции Римана имеем хорошо известное равенство $\mathrm{Res}_1\zeta(\alpha)=1.$

Отсюда следует, что при $k \geqslant 2$

$$\zeta^{k}(\alpha) = \frac{1}{(\alpha - 1)^{k}} + \sum_{j=0}^{k-1} C_{k}^{j} \frac{1}{(\alpha - 1)^{j}} (\gamma + r(\alpha))^{k-j} = \frac{1}{(\alpha - 1)^{k}} + \sum_{j=1}^{k-1} C_{k}^{j} \frac{1}{(\alpha - 1)^{j}} (\gamma + (\alpha - 1)r_{1}(\alpha))^{k-j} + (\gamma + r(\alpha))^{k} = \frac{1}{(\alpha - 1)^{k}} + \sum_{j=1}^{k-1} C_{k}^{j} \frac{\gamma^{k-j}}{(\alpha - 1)^{j}} + \sum_{j=1}^{k-1} C_{k}^{j} \sum_{m=0}^{m-1} C_{k-j}^{m} \frac{\gamma^{k-j-m}r_{1}(\alpha)^{m}}{(\alpha - 1)^{j-m}} + (\gamma + r(\alpha))^{k} = \sum_{j=1}^{k} C_{k}^{j} \frac{\gamma^{k-j}}{(\alpha - 1)^{j}} + \sum_{j=2}^{k-1} C_{k}^{j}.$$

$$\cdot \sum_{m=0}^{\min(k-j,j-2)} C_{k-j}^{m} \frac{\gamma^{k-j-m}r_{1}(\alpha)^{m}}{(\alpha - 1)^{j-m}} + \frac{1}{\alpha - 1} \sum_{j=1}^{\frac{k+1}{2}} C_{k}^{j} C_{k-j}^{j-1} \gamma^{k-2j+1} r_{1}(\alpha)^{j-1} + \sum_{j=1}^{\frac{k}{2}} C_{k}^{j} \sum_{m=j}^{k-j} C_{k-j}^{m} \gamma^{k-j-m} r_{1}(\alpha)^{m} (\alpha - 1)^{m-j} + (\gamma + r(\alpha))^{k}.$$

Отсюда следует, что

$$\operatorname{Res}_{1}\zeta^{k}(\alpha) = \sum_{j=1}^{\frac{k+1}{2}} C_{k}^{j} C_{k-j}^{j-1} \gamma^{k-2j+1} r_{1}(1)^{j-1} = \sum_{j=1}^{\frac{k+1}{2}} C_{k}^{j} C_{k-j}^{j-1} \gamma^{k-2j+1} (-\gamma_{1})^{j-1}.$$

Так как все функции, стоящие в правой части равенства (6) являются либо голоморфными, либо мероморфными кроме точки $\alpha=1$, то и левая часть является мероморфной функцией на всей комплексной плоскости кроме точки $\alpha=1$, в которой у неё полюс s-ого порядка. Для вычета в этой точке имеем равенство

$$\operatorname{Res}_{1}\zeta_{H}(\Lambda(d_{1},\ldots,d_{s})|\alpha) = 2 \sum_{1 \leq j_{1} \leq s} \frac{1}{d_{j_{1}}} \prod_{j=1,j \neq j_{1}}^{s} \left(1 + 2f\left(\frac{1}{d_{j}}|1\right)\right) + \sum_{k=2}^{s} 2^{k} \sum_{1 \leq j_{1} < \ldots < j_{k} \leq s} \prod_{\nu=1}^{k} \frac{1}{d_{j_{\nu}}} \cdot \prod_{j=1,j \neq j_{1},\ldots,j_{k}} \left(1 + 2f\left(\frac{1}{d_{j}}|1\right)\right) \sum_{j=1}^{\frac{k+1}{2}} C_{k}^{j} C_{k-j}^{j-1} \gamma^{k-2j+1} (-\gamma_{1})^{j-1}.$$

и теорема полностью доказана.

ТЕОРЕМА 2. На метрическом пространстве диагональных решёток гиперболическая дзета-функция $\zeta_H(\Lambda(d_1,\ldots,d_s)|\alpha)$ и её вычет в точке $\alpha=1$ являются непрерывными функциями, как функции от параметров d_1,\ldots,d_s .

Доказательство. Все функции, стоящие в правой части равенства (6) являются непрерывными функциями от d_1, \ldots, d_s при $d_1, \ldots, d_s > 0$, поэтому и левая часть будет непрерывной функцией от d_1, \ldots, d_s .

Аналогично, имеем

$$\operatorname{Res}_{1}\zeta_{H}(\Lambda(d_{1},\ldots,d_{s})|\alpha) = 2\sum_{1\leqslant j_{1}\leqslant s} \frac{1}{d_{j_{1}}} \prod_{j=1,j\neq j_{1}}^{s} \left(1+2f\left(\frac{1}{d_{j}}\middle|1\right)\right) + \sum_{k=2}^{s} 2^{k} \sum_{1\leqslant j_{1}<\ldots< j_{k}\leqslant s} \prod_{\nu=1}^{k} \frac{1}{d_{j_{\nu}}} \cdot \prod_{j=1,j\neq j_{1},\ldots,j_{k}}^{s} \left(1+2f\left(\frac{1}{d_{j}}\middle|1\right)\right) \sum_{j=1}^{\frac{k+1}{2}} C_{k}^{j} C_{k-j}^{j-1} \gamma^{k-2j+1} (-\gamma_{1})^{j-1},$$

поэтому вычет в точке $\alpha=1$ является непрерывной функцией от d_1,\ldots,d_s .

Так как метрическое пространство диагональных решёток гомеоморфно пространству $\mathbb{R}^s_+ = (0, \infty)^s$, то теорема полностью доказана. \square

Так как множество диагональных унимодулярных решёток является подпространством всех диагональных решёток, то утверждение теоремы 2 справедливо и для гиперболической дзета-функции диагональных унимодулярных решёток.

5. Заключение

Из доказанных теорем возникает вопрос о дифференциальных свойствах гиперболической дзета-функции диагональных унимодулярных решёток на пространстве всех диагональных решёток. Ответ на этот вопрос будет темой нашей следующей работы.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

1. Л. П. Добровольская, М. Н. Добровольский, Н. М. Добровольский, Н. Н. Добровольский Гиперболические дзета-функции сеток и решёток и вычисление оптимальных коэффициентов // Чебышевский сборник 2012. Т. 13, вып. 4(44). С. 4–107.

- 2. Касселс Д. Введение в геометрию чисел. М.: Мир, 1965. 422 с.
- 3. А. П. Крылов, Н. М. Добровольский. Метрическое пространство двумерных диагональных унимодулярных решёток // Записки научных семинаров Тульской школы теории чисел. 2022. Вып. 1, С. 37–41.
- 4. А. П. Крылов. Метрическое пространство диагональных унимодулярных решёток // Записки научных семинаров Тульской школы теории чисел. 2025. Вып. 3, С. .
- 5. Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol'skii N. M., Dobrovolsky N. N. On Hyperbolic Zeta Function of Lattices // Continuous and Distributed Systems. Solid Mechanics and Its Applications. Vol. 211. 2014. P. 23–62. doi: 10.1007/978-3-319-03146-0 2.

REFERENCES

- Dobrovol'skaya, L. P., Dobrovol'skii, M. N., Dobrovol'skii, N. M. & Dobrovol'skii, N. N. 2012, "The hyperbolic Zeta function of grids and lattices, and calculation of optimal coefficients", Chebyshevskii sbornik, vol. 13, no. 4(44), pp. 4 -- 107.
- 2. Kassels, D. 1965, "Vvedenie v geometriyu chisel", [Introduction to the geometry of numbers], *Mir, Moscow*, (Russia).
- 3. Krylov, A. P., Dobrovolsky, N. M. 2022, "Metric space of two-dimensional diagonal unimodular lattices", Notes of scientific seminars of the Tula School of Number Theory, Iss. 1, pp. 37 41.
- 4. Krylov, A.P., 2025, "Metric space of diagonal unimodular lattices", *Proceedings of Scientific Seminars of Tula School of Number Theory*, vol. 3, pp. 37 41.
- 5. Dobrovol'skaya, L. P., Dobrovol'skii, M. N., Dobrovol'skii, N. M. & Dobrovol'skii, N. N. 2014, "On Hyperbolic Zeta Function of Lattices", Continuous and Distributed Systems. Solid Mechanics and Its Applications, vol. 211, pp. 23 62.

Получено: 18.11.2024

Принято в печать: 10.03.2025