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Аннотация

В статье полученно, что линейная комбинация периодической дзета-
функции и периодической дзета-функции Гурвица и более общие комби-
нации этих функций имеют бесконечно много нулей, лежащих в правой
стороне критической полосы.
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Abstract

In the paper, we obtain that a linear combination of the periodic and
periodic Hurwitz zeta-functions, and more general combinations of these func-
tions have infinitely many zeros lying in the right-hand side of the critical
strip.
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1. Introduction

Let s = σ + it be a complex variable, and let ζ(s) and ζ(s, α) with 0 < α 6 1
denote the Riemann and Hurwitz zeta-functions, respectively. In this paper, we deal
with generalizations of the functions ζ(s) and ζ(s, α). Let a = {am : m ∈ N} and
b = {bm : m ∈ N0 = N ∪ {0}} be two periodic sequences of complex numbers with
minimal periods k ∈ N and l ∈ N, respectively. The periodic zeta-function ζ(s; a)
and periodic Hurwitz zeta-function ζ(s, α; b) are defined, for σ > 1, by the Dirichlet
series

ζ(s; a) =
∞∑

m=1

am
ms

and ζ(a, α; b) =
∞∑

m=0

bm
(m+ α)s

,

and, in view of the equalities

ζ(s; a) =
1

ks

k∑

m=1

amζ
(
s, m

k

)
,

ζ(s, α; b) =
1

ls

l−1∑

m=0

bmζ
(
s, m+α

l

)
,

which are valid for σ > 1, have analytic continuation to the whole complex plane,
except for possible simple poles at the point s = 1. Clearly, ζ(s; a) = ζ(s) for am ≡ 1,
and ζ(s, α; b) = ζ(s, α) for bm ≡ 1.

The distribution of zeros of the function ζ(s; a) was considered in [18], see also
[20]. Define

ca = max(|am| : 1 6 m 6 k), ma = min{1 6 m 6 k : am 6= 0},

A(a) =
maca
|ama

| ,

a±m =
1√
k

k∑

j=1

aj exp
{
±2πijm

k

}
,

a
± =

{
a±m : m ∈ N

}

and
B(a) = max

{
A(a±)

}
.

Then in [18], it was obtained that ζ(s; a) 6= 0 for σ > 1 + A(a). Moreover, for
σ < −B(a), the function ζ(s; a) can only have zeros close to the negative real axis
if ma+ = ma− , and close to the straight line given by the equation

σ = 1 +
πt

log
m

a
−

m
a
+

if ma+ 6= ma− .
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Denote by ρ = β+ iγ the zeros of the function ζ(s; a). The zeros with β < −B(a)
are called trivial. The number of trivial zeros ρ with |ρ| 6 R is asymptotically equal
to cR with some c = c(a) > 0. Other zeros of ζ(s; a) are called non-trivial, and, by
the above remarks, they lie in the strip −B(a) 6 σ 6 1 + A(a).

Let N(T ; a) be the number of non-trivial zeros ρ of ζ(s; a) with |γ| 6 T . Then
[18]

N(T ; a) =
T

π
log

kT

2πema

√
ma−ma+

+O(log T ).

Moreover, the non-trivial zeros of ζ(s; a) are clustered around the critical line σ = 1
2
.

In [15], it was obtained that the functions F (ζ(s; a)) for some classes of operators
F of the space of analytic functions have infinitely many zeros in the strip 1

2
< σ < 1.

The paper [2] is devoted to zeros of the function ζ(s, α; b). From properties of
Dirichlet series, it follows that there exists σ1 > 0 such that ζ(s, α; b) 6= 0 for σ > σ1.
For simplicity, suppose that b0 = 1, and

q±(m) =

l−1∑

k=0

bk exp
{
±2πimα+k

l

}
.

Denote by ρ(s, l̂) the distance of s from the line l̂ on the complex plane, and let, for
ε > 0,

Lε(l̂) =
{
s ∈ C : ρ(s, l̂) < ε

}
.

Then in [2], it is obtained that there exist constants σ0 < 0 and ε0 > 0 such that
ζ(s, α; b) 6= 0 for σ < σ0 and

s 6∈ Lε0

(
(σ − 1) log r1

r2
− πt = log

∣∣∣ q−(r2)
q+(r1)

∣∣∣
)
,

where r1 = min{m ∈ N : q+(m) 6= 0} and r2 = min{m ∈ N : q− 6= 0}. Using the
above result, non-trivial zeros of ζ(s, α; b) are defined. Namely, the zero ρ = β + iγ
of ζ(s, α; b) is called non-trivial if σ0 6 β 6 σ1. The zero ρ̂ is called trivial if

ρ̂ ∈ Lε0

(
(σ − 1) log r1

r2
− πt = log

∣∣∣ q−(r2)
q+(r1)

∣∣∣
)
,

It is known that the function ζ(s, α; b) has infinitely many trivial zeros.
Denote by N(T, α; b) the number of non-trivial zeros ρ of the function ζ(s, α; b)

with |γ| 6 T according multiplicities. Then in [2], it was proved that

N(T, α; b) =
T

π
log

Tk

2πeα
+O(logT ).

Moreover,
∑

|γ|<T

(
β − 1

2

)
= − T

2π
log k

α
+ T

2π

(
log
∣∣q+(r1)

∣∣+ log
∣∣q−(r2)

∣∣)+O(log T ).
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The latter formula shows that the non-trivial zeros of the function ζ(s, α; b) are
clustered around the line σ = 1

2
.

The aim of this paper is to show that the function ζ(s, α; b) with some, for
example,transcendental parameter α, and some combinations of the functions ζ(s; a)
and ζ(s, α; b) have infinitely many zeros in the strip D =

{
s ∈ C : 1

2
< σ < 1

}
.

Denote by AT (σ1, σ2, c) the assertion that, for any σ1, σ2, 1
2
< σ1 < σ2 < 1, there

exists a constant c = c(σ1, σ2, f) > 0 such that, for sufficiently large T , the function
f(s) has more than cT zeros in the rectangle

σ1 < σ < σ2, 0 < t < T.

Let
L(α) = {log(m + α) : m ∈ N0} .

Theorem 1. Suppose that the set L(α) is linearly independent over the field of
rational numbers Q. Then, for the function ζ(s, α; b), the assertion AT (σ1, σ2, c) is
true.

Define the function

ζ(s, α; a, b) = c1ζ(s; a) + c2ζ(s, α; b), c1, c2 ∈ C \ {0}.

Theorem 2. Suppose that the number α is transcendental, the sequence a is
multiplicative, and, for each prime p, the inequality

∞∑

m=1

|apm|
p

σ
2

6 c < 1 (1)

is satisfied. Then, for the function ζ(s, α; a, b), the assertion AT (σ1, σ2, c) is true.

The next theorem is devoted to zeros of more general composite functions of
ζ(s; a) and ζ(s, α; b). We recall that D =

{
s ∈ C : 1

2
< σ < 1

}
. Denote by H(D) the

space of analytic on D functions equipped with the topology of uniform convergence
on compacta, and H2(D) = H(D) × H(D). Let β1 > 0 and β2 > 0. We say that
the operator F : H2(D) → H(D) belongs to the class Lip(β1, β2) if it satisfies the
following hypotheses:
1◦ For each polynomial p = p(s), and any compact subset K ⊂ D with connected
complement, there exists an element (g1, g2) ∈ F−1{p} ⊂ H2(D) such that g1(s) 6= 0
on K;
2◦ For any compact subset K ⊂ D with connected complement, there exist a positive
constant c, and compact subsets K1, K2 of D with connected complements such that

sup
s∈K

|F (g11(s), g12(s)) − F (g21(s), g22(s))| 6 c sup
16j62

sup
s∈Kj

|g1j(s) − g2j(s)|βj

for all (gr1, gr2) ∈ H2(D), r = 1, 2.



ON THE ZEROS OF SOME FUNCTION. . . 125

Theorem 3. Suppose that the number α is transcendental, the sequence a is
multiplicative, inequality (1) is satisfied and F ∈ Lip(β1, β2). Then, for the function
F (ζ(s; a), ζ(s, α; b)), the assertion AT (σ1, σ2, c) is true.

We note that the class Lip(β1, β2) is not empty. For example, in [6] it is proved
that the operator F : H2(D) → H(D),

F (g1, g2) = c1g
(k1)
1 + c2g

(k2)
2 ,

where c1, c2 ∈ C\{0}, k1, k2 ∈ N and g(k) denotes the kth derivative of g, belongs to
the class Lip(1, 1). To prove this, it suffices to apply the integral Cauchy formula.

2. Lemmas

Proof of Theorems 1 - 3 are based on universality theorems for the correspond-
ing functions, and the classical Rouché theorem. We remind that the universality
of zeta-functions was discovered by S. M. Voronin who proved [21] an universality
theorem for the Riemann zeta-function. For brevity, we denote by K the class of
compact subsets of the strip D with connected complements, by H0(K), K ∈ K, the
class of non-vanishing continuous functions on K which are analytic in the interior of
K, and by H(K), K ∈ K, the class of continuous functions on K which are analytic
in the interior of K. Let measA stand for the Lebesgue measure of a measurable set
A ⊂ R. Then the latest version of the Voronin theorem is the following assertion,
see, for example, [8].

Lemma 1. Suppose that K ∈ K, and f(s) ∈ H0(K). Then, for every ε > 0,

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ) − f(s)| < ε

}
> 0.

The majority of other zeta and L-functions, among them the periodic zeta-
function, [14], [5], the Hurwitz zeta-function with transcendental [10] or rational
parameter [3], [1], the periodic Hurwitz zeta-function with transcendental parameter
[4], zeta-functions of cusp forms [12], [13], L-functions from the Selberg class [19],
[16], and others are universal in the Voronin sense. We state universality theorems
for periodic and periodic Hurwitz zeta-functions.

Lemma 2. Suppose that the sequence a is multiplicative and inequality (1) is
satisfied. Let K ∈ K, and f(s) ∈ H0(K). Then, for every ε > 0,

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ ; a) − f(s)| < ε

}
> 0.

Proof of the lemma is given in [14].



126 A. LAURINČIKAS, M. STONCELIS, D. ŠIAUČIŪNA

Lemma 3. Suppose that the set L(α) is linearly independent over Q. Let K ∈ K,
and f(s) ∈ H(K). Then, for every ε > 0,

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, α; b) − f(s)| < ε

}
> 0.

The lemma with transcendental parameter α has been obtained in [4], and, under
hypotheses of the lemma, has been proved in [11].

In universality theory of zeta-functions, an important role is played by joint
universality theorems when a collection of given analytic functions is approximated
simultaneously by shifts of a collection of zeta-functions. The first joint universality
result also was obtained by S. M. Voronin. In [22], investigating the functional
independence of Dirichlet L-functions, he first of all infact obtained their joint
universality. We remind a modern version of the Voronin theorem, see, for example,
[9].

Lemma 4. Suppose that χ1, . . . , χr be pairwise non-equivalent Dirichlet cha-
racters, and L(s, χ1), . . . , L(s, χr) be the corresponding Dirichlet L-functions. For
j = 1, . . . , r, let Kj ∈ K, and fj(s) ∈ H0(K). Then, for every ε > 0,

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

16j6r
sup
s∈Kj

|L(s+ iτ, χj) − fj(s)| < ε

}
> 0.

The joint universality of the periodic zeta-function and the periodic Hurwitz
zeta-function has been considered in [6], and the following assertion has been proved.

Lemma 5. Suppose that the sequence a is multiplicative, inequality (1) is satis-
fied, and the number α is transcendental. Let K1, K2 ∈ K, and f1(s) ∈ H0(K1) and
f2(s) ∈ H(K2). Then, for every ε > 0,

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K1

|ζ(s+ iτ ; a) − f1(s)| < ε ,

sup
s∈K2

|ζ(s+ iτ, α; b) − f2(s)| < ε

}
> 0.

Now we state a generalization of Lemma 5 from the paper [7].

Lemma 6. Suppose that the sequence a is multiplicative, inequality (1) is satis-
fied, the number α is transcendental, and that F ∈ Lip(β1, β2). Let K ∈ K and
f(s) ∈ H(K). Then, for every ε > 0,

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|F (ζ(s+ iτ ; a), ζ(s+ iτ, α; b)) − f(s)| < ε

}
> 0.
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For the proof of theorems on the number of zeros of zeta-functions and their
certain combinations, the classical Rouché theorem is useful. For convenience, we
state this theorem as a separate lemma.

Lemma 7. Let the functions g1(s) and g2(s) are analytic in the interior of a
closed contour L and on L, and let on L the inequalities g1(s) 6= 0 and |g2(s)| <
|g1(s)| be satisfied. Then the functions g1(s) and g1(s)+g2(s) have the same number
of zeros in the interior of L.

Proof of the lemma can be found, for example, in [17].

3. Proofs of theorems

Proof of Theorem 1. Let

σ0 =
σ1 + σ2

2
, r =

σ2 − σ1
2

,

and let the number ε > 0 satisfy the inequality

ε <
1

10
min

|s−σ0|=r
|s− σ0| =

r

10
. (2)

Suppose that τ ∈ R satisfies the inequality

sup
|s−σ0|6r

|ζ(s+ iτ, α; b) − (s− σ0)| < ε. (3)

Then, in view of (2), we have that the functions ζ(s+ iτ, α; b)− (s− σ0) and s−σ0
in the disc |s − σ0| 6 r satisfy the hypotheses of Lemma 7. Hence, the function
ζ(s, α; b) has a zero in the disc |s − σ0| 6 r . Since, by Lemma 3, the set of τ
satisfying inequality (3) has a positive lower density, we obtain that there exists a
constant c = c(σ1, σ2, α, b) > 0 such that for the function ζ(s, α; b) the assertion
AT (σ1, σ2, c) is true.

Proof of Theorem 2. We preserve the notation for σ0 and r, and take in Lemma 5

f1(s) = ε, f2(s) =
1

c2
(s− σ0),

where the positive number ε satisfies the inequality

(|c1| + |c2|)ε <
1

10
min

|s−σ0|=r
|s− σ0| =

r

10
. (4)

Suppose that τ ∈ R satisfies the inequalities

sup
|s−σ0|6r

|ζ(s+ iτ ; a) − f1(s)| < ε (5)
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and

sup
|s−σ0|6r

|ζ(s+ iτ, α; b) − f2(s)| < ε. (6)

Then, for these τ , we have that

sup
|s−σ0|6r

|(c1ζ(s+ iτ ; a) + c2ζ(s+ iτ, α; b)) − (c1f1(s) + c2f2(s))|

< 2(|c1| + |c2|)ε.

Moreover, by the definition of f1(s) and f2(s),

sup
|s−σ0|6r

|c1f1(s) + c2f2(s) − (s− σ0)| = |c1|ε.

Therefore,

sup
|s−σ0|=ρ

|(c1ζ(s+ iτ ; a) + c2ζ(s+ iτ, α; b)) − (s− σ0)| < 3(|c1| + |c2|)ε.

This and (4) show that the functions

c1ζ(s+ iτ ; a) + c2ζ(s+ iτ, α; b)) − (s− σ0)

and s − σ0 on the disc |s − σ0| 6 r satisfy the hypotheses of Lemma 7. Therefore,
the function c1ζ(s + iτ ; a) + c2ζ(s + iτ, α; b)) has a zero in the disc |s − σ0| 6 r.
However, by Lemma 5, the set of τ satisfying inequalities (5) and (6) has a positive
lower density. Hence, there exists a constant c = c(σ1, σ2, α, a, b) > 0 such that, for
the function c1ζ(s+ iτ ; a) + c2ζ(s+ iτ, α; b)), the assertion AT (σ1, σ2, c) is valid.

Proof of Theorem 3. We argue similarly as above. Suppose that τ ∈ R satisfies the
inequality

sup
|s−σ0|6r

|F (ζ(s+ iτ ; a), ζ(s+ iτ, α; b)) − (s− σ0)| < ε. (7)

and ε satisfies (2). Then the functions

F (ζ(s+ iτ ; a), ζ(s+ iτ, α; b)) − (s− σ0)

and s−σ0 in the disc |s−σ0| 6 r satisfy the hypotheses of Lemma 7. Therefore, the
function F (ζ(s+ iτ ; a), ζ(s+ iτ, α; b)) has a zero in the disc |s−σ0| 6 r. However, in
view of Lemma 6, the set of τ satisfying inequality (7) has a positive lower density.
Thus, there exists a constant c = c(σ1, σ2, α, a, b, F ) > 0 such that, for the function
F (ζ(s+ iτ ; a), ζ(s+ iτ, α; b)), the assertion AT (σ1, σ2, c) is valid.
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2. Garunkštis R., Tamošiūnas R. Zeros of the periodic Hurwitz zeta-function//
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13. Laurinčikas A., Matsumoto K., Steuding J. The universality of L-functions
associated with newforms// Izv. Math. 2003. V. 67, No. 1. P. 77–90.
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130 A. LAURINČIKAS, M. STONCELIS, D. ŠIAUČIŪNA
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