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AnHoTanus

B crarbe mostyueHHO, UTO JIMHEHAs KOMOUHAIAST TEPUOIUIECKON s3eTa-
GYHKIMN 1 mepuoanveckoil n3era-GyHkimu ['ypeuna u 6ojee obime KoMOu-
HAIMK 9TUX (DYHKIUH UMeT OECKOHETHO MHOTO HYJIei, JIeXKallnX B IIPaBoil
CTOpPOHE KPUTHIECKOH MOJIOCH.

Kaouesvie caosa: Hym aHAJIMTUIECKON (DYHKIINU, TEPUOINYIECKAS JI3€Ta-
dyukIus, nepuoanieckas azera-pyukiusa ['ypBuia, yHIBEpCaaIbHOCTb.

ON THE ZEROS OF SOME FUNCTIONS
RELATED TO PERIODIC ZETA-FUNCTIONS
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Abstract

In the paper, we obtain that a linear combination of the periodic and
periodic Hurwitz zeta-functions, and more general combinations of these func-
tions have infinitely many zeros lying in the right-hand side of the critical
strip.
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1. Introduction

Let s = o + it be a complex variable, and let {(s) and ((s,a) with 0 < a < 1
denote the Riemann and Hurwitz zeta-functions, respectively. In this paper, we deal
with generalizations of the functions ((s) and ((s,«). Let a = {a,, : m € N} and
b= {b,:méeNy=NU{0}} be two periodic sequences of complex numbers with
minimal periods & € N and [ € N, respectively. The periodic zeta-function ((s;a)
and periodic Hurwitz zeta-function ((s, a; b) are defined, for o > 1, by the Dirichlet
series

= m = bm
C(S;C‘):Z% and C(aaa;b):Zm,
m=1 m=0

and, in view of the equalities

Cl550) = 1= D o (s, 2).

(s, a;b) meg mia)

which are valid for ¢ > 1, have analytlc continuation to the whole complex plane,
except for possible simple poles at the point s = 1. Clearly, ((s;a) = ¢(s) for a,, = 1,
and ((s,; b) = ((s,a) for b,, = 1.

The distribution of zeros of the function ((s;a) was considered in [18], see also
[20]. Define

¢o = max(lan,|: 1< m< k), me =min{l <m<k: a, #0},
MgC
A(a) — a Cl’
|a’ma|

k
i 1 Zaj exp {£2mij=}

and

B(a) = max {A(ai)} .

Then in [18], it was obtained that ((s;a) # 0 for ¢ > 1 + A(a). Moreover, for
o < —B(a), the function ((s;a) can only have zeros close to the negative real axis
if my+ = mgy-, and close to the straight line given by the equation

7t

— 1+
g 1

if Mg+ # mg-.
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Denote by p = 41y the zeros of the function ((s; a). The zeros with 8 < —B(a)
are called trivial. The number of trivial zeros p with |p| < R is asymptotically equal
to cR with some ¢ = ¢(a) > 0. Other zeros of ((s;a) are called non-trivial, and, by
the above remarks, they lie in the strip —B(a) < o < 1+ A(a).

Let N(T';a) be the number of non-trivial zeros p of ((s;a) with |y| < 7. Then
[18]

T kT
N(T;a) = =1
(T;0) T 08 2meMgy/Mq- Mgt

Moreover, the non-trivial zeros of {(s; a) are clustered around the critical line 0 = %
In [15], it was obtained that the functions F'({(s;a)) for some classes of operators
F of the space of analytic functions have infinitely many zeros in the strip % <o <1
The paper [2] is devoted to zeros of the function ((s, «;b). From properties of
Dirichlet series, it follows that there exists oy > 0 such that ((s, a; b) # 0 for o > o;.

For simplicity, suppose that by = 1, and

+O(logT).

-1
¢E(m) = Z by exp { £2mim 2}
k=0

Denote by p(s, Z) the distance of s from the line [ on the complex plane, and let, for
e >0,

L.(l) = {3 eC:p(s,]) < 5}.

Then in [2], it is obtained that there exist constants oy < 0 and gy > 0 such that
C(s,a5b) #0 for 0 < 0¢ and

where 1 = min{m € N : ¢"(m) # 0} and ro = min{m € N : ¢~ # 0}. Using the
above result, non-trivial zeros of ((s, «;b) are defined. Namely, the zero p = 8 + iy
of ((s,a;b) is called non-trivial if oy < 5 < 7. The zero p is called trivial if

).

It is known that the function (s, a;b) has infinitely many trivial zeros.
Denote by N (T, «;b) the number of non-trivial zeros p of the function (s, c; b)
with |y| < T according multiplicities. Then in [2], it was proved that

g (r2)

qt(r)

s¢ L, <(a—1)log:—;—7rt:log

q—(r2)

qt(r)

pE L, <(a—1)log:—;—7rt:log

T Tk
N(T,a;b) = — log CY—

+ O(logT).
Moreover,

Z (B=3)=—-Zlogk + L (log|qg"(r1)| +log|qg (r2)|) + O(logT).



124 A. LAURINCIKAS, M. STONCELIS, D. SIAUCIUNA

The latter formula shows that the non-trivial zeros of the function ((s,c;b) are

clustered around the line o = 1

The aim of this paper is %0 show that the function ((s,a;b) with some, for
example,transcendental parameter a;, and some combinations of the functions ((s; a)
and ((s,;b) have infinitely many zeros in the strip D = {s eC: % <o < 1}.
Denote by Ar(o1,09,c) the assertion that, for any oy, o9, % < 01 < 09 < 1, there
exists a constant ¢ = ¢(oy, 09, f) > 0 such that, for sufficiently large T, the function

f(s) has more than ¢T" zeros in the rectangle
o< o<oy 0<t<T.

Let
L(a) = {log(m + o) : m € Ny} .

THEOREM 1. Suppose that the set L(«) is linearly independent over the field of
rational numbers Q. Then, for the function ((s,a;b), the assertion Ar(oy,09,c¢) is
true.

Define the function

C(Sa Qs a, b) = ClC(S; Cl) + CQC(Sa Q; b)7 C1,C2 € C \ {O}

THEOREM 2. Suppose that the number « is transcendental, the sequence a is
multiplicative, and, for each prime p, the inequality

o0

Z |apm\
o

m=1 b=

is satisfied. Then, for the function ((s,a;a,b), the assertion Ar(o1,02,c¢) is true.

<ce<l1 (1)

The next theorem is devoted to zeros of more general composite functions of
((s;a) and (s, o; b). We recall that D = {s € C: 1 < o0 < 1}. Denote by H(D) the
space of analytic on D functions equipped with the topology of uniform convergence
on compacta, and H*(D) = H(D) x H(D). Let 8; > 0 and 3, > 0. We say that
the operator F': H?*(D) — H(D) belongs to the class Lip(f;, £2) if it satisfies the
following hypotheses:
1° For each polynomial p = p(s), and any compact subset K C D with connected
complement, there exists an element (g;, g2) € F~*{p} C H*(D) such that g,(s) # 0
on K;
2° For any compact subset K C D with connected complement, there exist a positive
constant ¢, and compact subsets K7, K5 of D with connected complements such that
|

sup |F(g11(s), g12(8)) — F(g21(5), g22(s))| < ¢ sup sup |g1;(s) — g2;(s)
sek 1<j<2 s€K;

for all (g,1,9,0) € H*(D), r = 1,2.
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THEOREM 3. Suppose that the number « is transcendental, the sequence a is
multiplicative, inequality (1) is satisfied and F' € Lip(By, B2). Then, for the function
F(((s;a),((s,a; b)), the assertion Ar(oy,09,c¢) is true.

We note that the class Lip(/31, f2) is not empty. For example, in [6] it is proved
that the operator F': H*(D) — H(D),
F(g1,92) = C1g§k1) + C2gék2)>

where ¢y, c; € C\ {0}, k1, k; € N and ¢®® denotes the kth derivative of g, belongs to
the class Lip(1,1). To prove this, it suffices to apply the integral Cauchy formula.

2. Lemmas

Proof of Theorems 1 - 3 are based on universality theorems for the correspond-
ing functions, and the classical Rouché theorem. We remind that the universality
of zeta-functions was discovered by S. M. Voronin who proved [21] an universality
theorem for the Riemann zeta-function. For brevity, we denote by K the class of
compact subsets of the strip D with connected complements, by Hyo(K), K € K, the
class of non-vanishing continuous functions on K which are analytic in the interior of
K, and by H(K), K € K, the class of continuous functions on K which are analytic
in the interior of K. Let measA stand for the Lebesgue measure of a measurable set
A C R. Then the latest version of the Voronin theorem is the following assertion,
see, for example, [8].

LEMMA 1. Suppose that K € K, and f(s) € Ho(K). Then, for every e >0,

lim lmeas{T € [0, 7] : sup|C(s+iT) — f(s)] < 5} > 0.
T—oo I’ seK

The majority of other zeta and L-functions, among them the periodic zeta-
function, [14], [5], the Hurwitz zeta-function with transcendental [10]| or rational
parameter [3], [1], the periodic Hurwitz zeta-function with transcendental parameter
[4], zeta-functions of cusp forms [12], [13], L-functions from the Selberg class [19],
[16], and others are universal in the Voronin sense. We state universality theorems
for periodic and periodic Hurwitz zeta-functions.

LEMMA 2. Suppose that the sequence a is multiplicative and inequality (1) is
satisfied. Let K € K, and f(s) € Hy(K). Then, for every e > 0,

lim lmeas {7‘ €[0,7]: sup|C(s+it;a) — f(s)] < 6} > 0.

T—o0 seK

Proof of the lemma is given in [14].
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LEMMA 3. Suppose that the set L(«) is linearly independent over Q. Let K € IC,
and f(s) € H(K). Then, for every e > 0,

lim lmeaus {T € [0,7] : sup|C(s+it,a;b) — f(s)] < 5} > 0.

T—o00 seK

The lemma with transcendental parameter « has been obtained in [4], and, under
hypotheses of the lemma, has been proved in [11].

In universality theory of zeta-functions, an important role is played by joint
universality theorems when a collection of given analytic functions is approximated
simultaneously by shifts of a collection of zeta-functions. The first joint universality
result also was obtained by S. M. Voronin. In [22], investigating the functional
independence of Dirichlet L-functions, he first of all infact obtained their joint
universality. We remind a modern version of the Voronin theorem, see, for example,

19]-

LEMMA 4. Suppose that x1,...,xr be pairwise non-equivalent Dirichlet cha-
racters, and L(s,x1),...,L(s,xr) be the corresponding Dirichlet L-functions. For
j=1,...,r, let K; € K, and f;(s) € Ho(K). Then, for every ¢ > 0,

1
lim —meas {T € [0,7]: sup sup |L(s+ir,x;) — fi(s)] < 5} > 0.

T—0o0 1<j<r s€K;

The joint universality of the periodic zeta-function and the periodic Hurwitz
zeta-function has been considered in [6], and the following assertion has been proved.

LEMMA 5. Suppose that the sequence a is multiplicative, inequality (1) is satis-
fied, and the number « is transcendental. Let Ky, Ky € IC, and fi(s) € Hyo(K;) and
fa(s) € H(Ks). Then, for every e > 0,

1
lim —meas {T €[0,7]: sup |((s+it;a) — fi(s)] < e,

T—o0 seKy
sup [(s + i, ;) — fu(s)] < 5} -0
seKo

Now we state a generalization of Lemma 5 from the paper [7].

LEMMA 6. Suppose that the sequence a is multiplicative, inequality (1) is satis-
fied, the number « is transcendental, and that F € Lip(5y,[2). Let K € K and
f(s) € H(K). Then, for every e >0,

lim lmeas {7’ €[0,T]:sup|F ({(s+it;a),((s+iT,a;b)) — f(s)| < 6} > 0.

T—o0 seK
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For the proof of theorems on the number of zeros of zeta-functions and their
certain combinations, the classical Rouché theorem is useful. For convenience, we
state this theorem as a separate lemma.

LEMMA 7. Let the functions gi(s) and go(s) are analytic in the interior of a
closed contour L and on L, and let on L the inequalities g1(s) # 0 and |ga(s)| <
|g1(s)| be satisfied. Then the functions gi(s) and gi(s)+ g2(s) have the same number
of zeros in the interior of L.

Proof of the lemma can be found, for example, in [17].

3. Proofs of theorems

Proof of Theorem 1. Let

01+ 02 02— 01
0o = 9 ) r= ’

and let the number € > 0 satisfy the inequality

1 r
< — mi — oy = —. 9
© 10 sl |5 = ool 10 (2)
Suppose that 7 € R satisfies the inequality
sup [((s +iT,a;0) — (s — 09)| < &. (3)

|s—oo|<r

Then, in view of (2), we have that the functions ((s+i7, a;b) — (s — 0¢) and s — g
in the disc |s — 0| < r satisfy the hypotheses of Lemma 7. Hence, the function
((s,a;b) has a zero in the disc |s — 09| < r . Since, by Lemma 3, the set of 7
satisfying inequality (3) has a positive lower density, we obtain that there exists a
constant ¢ = ¢(o1,09,,b) > 0 such that for the function ((s,a;b) the assertion
Ar(oy,09,¢) is true. O

Proof of Theorem 2. We preserve the notation for oy and r, and take in Lemma 5

f(s) =& fols) = —(s — o0),

C2

where the positive number ¢ satisfies the inequality

1
(ler] + [eal)e < 0 \SEHLT |s — 00| = % (4)
Suppose that 7 € R satisfies the inequalities
sup [((s+iTsa) — fi(s)] <e (5)

|s—aoo|<r
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and
sup |C(s+iT,a;b) — fa(s)] < e. (6)

|s—oo|<r

Then, for these 7, we have that

sup |(c1€(s +iT;a) + co((s +iT, ;b)) — (c1f1(s) + cafa(s))]

|s—aoo|<r

< 2(|Cl| + |CQ|)€.
Moreover, by the definition of fi(s) and fa(s),

sup |e1fi(s) + cafa(s) — (s — a9)| = |eale.

|s—oo|<r

Therefore,

sup  [(e1((s + i3 a) + e2C(s +iT, ;b)) — (s = 00)| < 3([ea| + |2l e

|s—ool=p

This and (4) show that the functions
ci((s +it;a) + (s + i1, ;b)) — (s — 09)

and s — og on the disc |s — 0¢| < r satisfy the hypotheses of Lemma 7. Therefore,
the function ¢;((s + iT;a) + c2((s + i7, ;b)) has a zero in the disc |s — o] < 7.
However, by Lemma 5, the set of 7 satisfying inequalities (5) and (6) has a positive
lower density. Hence, there exists a constant ¢ = ¢(oy, 09, @, a,b) > 0 such that, for
the function ¢,{(s+1i7; a) + co((s+i7, a; b)), the assertion Ar(oy, 09, ¢) is valid. O

Proof of Theorem 3. We argue similarly as above. Suppose that 7 € R satisfies the
inequality
sup |F({(s+it;a),((s+iT,a;b)) — (s —og)| < e. (7)

|s—aoo|<r

and ¢ satisfies (2). Then the functions
F(((s+ir;a),((s+iT,a;0)) — (s — 09)

and s — op in the disc |s — og| < r satisfy the hypotheses of Lemma 7. Therefore, the
function F(¢(s+i7;a),((s+i7, a;b)) has a zero in the disc |s — og| < r. However, in
view of Lemma 6, the set of 7 satisfying inequality (7) has a positive lower density.
Thus, there exists a constant ¢ = ¢(o7, 09, , a, b, F') > 0 such that, for the function
F(¢(s+it;a),((s + iT,a; b)), the assertion Ar(oy, 09, c¢) is valid. O
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