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AwuHOTanuga

Mbi paccMaTpuBaeM poJib, KOTOPYIO M€OMETPUYECKUE U TONOJOIHIECKHEe KOHIENIIUN ChIrPa-
JIL B HEJABHEM PA3BUTHH TEOPETHIECKON (PU3MKM, OCOOEHHO B OOJIACTH TEOPUH CYIEPCTPYH U
HeabeIeBbIX KAJUOPOBOYHBIX Teopuil. Mbl TakKe JEMOHCTPUPYEM BAYKHOCTH ITUX KOHIIETIIHI
JIJIs JIy9IIero MOHMMAHUS JUHAMWYECKUX 3aKOHOB du3uku. B manHOit paboTre Mbl TpeaCcTaBIIsa-
€M YHCJIEHHOE MCCIIEeIOBAHNE TUHAMUKY TPEXMEPHOTO HAPYIICHWUS CUMMETPUH s HeaDeIeBbIX
u abeneBbIX Mojenei Xurrca. HerpuBraabHass TOMOMOTHST MHOTO0Opa3us KOH(MUTYPAIIHil BaKy-
YMHOT'O HOJIsl SBJISETCS KCTOYHUKOM TOMOJIOIHYECKUX BO30yKaeHuil B abesieBoit Mojesin Xurrca
U B JIPYTUX TEOPETHUKO-TIOJIEBBIX MOIENSAX, KOTOpbIe OyIyT obCy:KaarThcs majee. B Tpexmep-
HBIX MHOTOKOMIIOHEHTHBIX pernierdarbix abeneBo-xurrcosckux (LAH) mozmesnsax, MUHUMAIBLHO
CBSI3AHHBIX C HEKOMIIAKTHBIM a0€/IEBBIM KAJTUOPOBOYHBIM TTOJIEM, MbI U3Y9aEM TOMOJIOTUIECKIE
dazoBbie M3MEHEHMST, TIPOUCXOISIINE B ITUX MOJIEIISIX.

Karouesnie crosa: abeieBbl MOIEH XUATTCA, TOMOJOTHIECKUE TeKOH(MDUHUTUBHbBIE IIEPEXOIDI,
TOMOTOIIHS.
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Abstract

We examine the role that geometrical and topological concepts have played in the recent
development of theoretical physics, particularly in the areas of superstring theory and non-
Abelian gauge theories. We also demonstrate the importance of these concepts for a better
comprehension of the physics’ dynamical laws. In this paper, we present a numerical study
of the three-dimensional symmetry breaking dynamics for both non-abelian and abelian Higgs
models. The non-trivial topology of the manifold of vacuum field configurations is the source of
the topological excitations in the abelian Higgs model and in the other field theoretic models that
will be discussed. In three-dimensional multicomponent lattice Abelian-Higgs (LAH) models
minimally connected to a noncompact Abelian gauge field, we study the topological phase
changes that occur in these models.
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1. Introduction

The first ten years of the twentieth century saw the development of two of theoretical physics’
most revolutionary theories: general relativity and quantum field theory. The seemingly complete
description of our universe in a simple Euclidean geometrical framework provided by the classical
field theories was drastically altered: Riemannian geometry took the role of Euclidean geometry,
and the classical field theories had to be quantized.

These ideas led to the development of the modern theories of elementary particles and
gravitation, which physicists believe better capture nature than any earlier theory. Although both
theories have an exceptionally high number of accurate predictions, they also have an exceptionally
high number of errors. The standard model of elementary particles is described within the framework
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of quantum field theory. To construct a quantum field theory, we first need to quantize a classical
field theory. Because of divergences in the quantized theory computations, we need to establish
renormalizability and use a regularization procedure before computing the physical properties of
the theory.

It is clear that these actions are not independent of one another and that each one needs to
be done properly. Furthermore, the compatibility of general relativity with the conventional model
of elementary particles remains somewhat unclear. This is a difficult task to address, as both
theories are expressed in very different mathematical languages. Considerable progress has been
made in addressing these issues since the 1970s. Interestingly, several of these contributions involve
topological structures, highlighting topology’s current importance in theoretical physics.

2. Geometrization of theoretical physics: from geometric quantum
theories to Cartan’s theory of gravitation

This expository article aims to analyze some of the most significant mathematical developments
and the conceptual significance of the geometrization of theoretical physics, from the work of Cartan
and Weyl to the more recent non-Abelian gauge theories. Consider, for example, the quantization
of a gauge field theory. To quantize such a theory, one selects a particular gauge so as to exclude
extra degrees of freedom. The gauge invariance’s symmetry property is lost in the process. Since
the words that occur in the renormalized theory must be limited by gauge invariance, this has
disastrous consequences for the renormalizability proof. Algebraic geometry concepts are used by
BRST quantization to tackle this problem. In general, the BRST formalism provides an elegant
foundation to work with constrained systems, like those seen in general relativity or string theories.
We can request the symmetries that the quantum field theory inherits from the classical theory
once the theory has been quantized.Our reflections begin with the question of how to characterize
space’s properties at the quantum level of physics, including group structures, symmetries, algebraic
and topological invariants, and symmetry breaking. Generally speaking, we will attempt to draw
attention to a few noteworthy features of the mathematical advancements spurred by efforts to
resolve one of the main issues in theoretical physics during the 20th century: the integration of
general relativity and quantum field theory into a single, comprehensive theoretical explanation of
the physical universe. How to ascertain the topological (global) structure of the universe and the
physical parameters of its early formation is another point, which is probably closely related to
the previous one. Lastly, we aim to summarize a few theoretical observations that brought up the
current advances in theoretical physics related to the aforementioned queries.

Remarkably, one finds difficulties in formulating quantized gauge theories when gauge fields
couple to the two fermion chiral components differently, the so-called chiral anomalies. The
difficulties in regularizing such chiral gauge theories without violating chiral symmetry are connected
to this puzzle. Anomalies cannot exist in physical theories in terms of local symmetries.This is
crucial because it constrains the couplings and particle composition of the standard model, whose
electroweak sector is a chiral gauge theory. Because exact chiral symmetry could not be realized
on the lattice, anomaly discussions were limited to perturbation theory until recently [1]. One may
have been concerned about problems with anomaly cancelations that extended beyond perturbation
theory.

This issue also precluded a numerical examination of relevant quantum field theories. Recently, it
was discovered that new lattice regularization schemes, known as domain wall, overlap, and perfect
action fermions, or more broadly, Ginsparg-Wilson fermions, are consistent with a generalized form
of chiral symmetry.

In a fragment [2] that was published in 1833, C. F. Gauf} describes a deep topological discovery
that he made while looking into a physical issue. He considers the work W, done by moving a
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magnetic monopole with a magnetic charge of g along a closed channel C1, in the magnetic field B
created by a current I flowing over a closed loop C5. The Biot-Savart law provides W,, as follows:

W, = gintB(a1)dzy = Z21Ik{C1, Ca}......(1)

where [k{C,Ca} = ﬁz’ntint ‘S;;il'% dx1dxo

Gaufl came to the realization that W, is independent of both the closed path C7 and the
geometric details of the current carrying loop Ch.

The value of the Linking Number, (k{C1,C5}, remains constant when these curves are
continuously deformed. This quantity can be described by an invariant of topology. The loop Cy’s
(signed) total number of crossings of each specific (oriented) surface in R3, whose edge is the loop
C5 [3] and [4], is represented by an integer.

Since Leibniz proposed "another analysis, purely geometric or linear which also defines the
position (situs), as algebra defines magnitude"in 1679, Gaufl bemoans the lack of progress made in
topology ("Geometria Situs"). Leibniz also thought of applying this new branch of mathematics to
the field of physics. However, he was unable to win over physicist Christiaan Huygens to his point of
view regarding topology. Topological arguments entered the field of physics with the development
of the Helmholtz laws of vortex motion (1858) and the Kelvin circulation theorem (1869).

P. Tait’s taxonomy of knots and links resulted from these attempts, despite the fact that it
was the first of many subsequent topological attempts to explain the fundamentals of fundamental
physics having to fail [5]. These days, topological methods are widely applied in physics to examine
system properties. Topological foundations underlie the Aharonov-Bohm effect, Berry’s phase,
stability of defects in condensed matter systems, quantum liquids, and cosmology.

Co

Puc.1

By their very nature, topological approaches are insensitive to details of the systems under
study. Because of this, their application frequently reveals unexpected connections between events
that seem remarkably different at first glance.

This common ground in the theoretical description holds true for both more visible topological
phenomena, such as vortices, which are present in physics on almost all sizes, and less tangible
concepts. For instance, the topological charge in gauge theories is closely associated with the
topological invariant inviscid fluids known as "Helicity,"which was discovered in 1969 [6].

Some gauge theory flaws are closely related to defects in necematic liquid crystals. Field theoretic
investigations did not commonly employ topological methods until the development of non-abelian
gauge theories [7], which are replete with non-perturbative phenomena. In 1931, Dirac’s research
on magnetic monopoles made topology relevant to field theory investigations in physics.
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3. Lagrangian Abelian Higgs model

In theoretical physics, a Nielsen-Olesen vortex [8] is a point-like object isolated in two spatial
dimensions, or an equivalent feature found in a classical field theory solution. This solution holds
if the configuration space of scalar fields contains non-contractible circles.

lies. A circle that encircles the vortex at infinity in the configuration space may be "wrapped"
once on another circle. This complex topological property is found in a structure known as the
Nielsen-Olesen vortex, which bears the names of Holger Bech Nielsen and Poul Olesen (1973).
Formally, the solution is equivalent to the superconductor solution’s quantum vortex. Finding
analytical solutions to the classical field theory equations of motion that apply to particular branches
of physics is a topic of great interest.

Among these field theories is the Abelian Higgs model, which is important for cosmology,
condensed matter physics, and particle physics [8, 9]. The full Euler-Lagrange equations of motion
for this model have not yet been successfully solved. This results from the connected and highly
nonlinear nature of these second order partial differential equations. Because the relationships
between these second order partial differential equations are very nonlinear.

The abelian Higgs model is utilized as a gauge theory. It also includes the Higgs field, a self-
interacting scalar field that has a weak relationship to the electromagnetic field. Conceptually
speaking, it is useful to consider this field theory in two plus one dimensions of space-time before
expanding it to three plus one dimensions for practical uses.

The abelian Higgs model Lagrangian is as follows:

L=—3F yF " + (Do) (D) = V(9).n.(2)

The self-interacting scalar matter field ¢ which is complex (charged) is present in the Higgs
entropy model

V(9) = 1A(16* — a®)?......(3)

Along the circle |¢| = a in the complex plane, the Higgs potential is smallest. The parameter
that controls the strength of the Higgs field’s self-interaction is taken to be positive A for stability
reasons.

In the minimal coupling of the Higgs field to the radiation field A, the covariant derivative
takes the place of the partial derivative 0,,.

D, =0, +ieA,.....(4)

Gauge fields is related to field strengths by

Fuo = 0yAy — A, = 2Dy, Dy).....(5)

Puc.2
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4. Equations for Maxwell’s homogeneous and inhomogeneous
systems

The theoretical foundations of classical electromagnetism, classical optics, and electric circuits
are the Lorentz force law and a system of related partial differential equations known as
Maxwell’s equations [10], also referred to as Maxwell-Heaviside equations. The equations provide a
mathematical description for electrical, optical, and radio technologies such as electric motors, power
generation, wireless communication, lenses, radar, etc. They describe how electric and magnetic
fields are created by charges, currents, and field variations. Even in cases when the gauge fields are
not dynamical equations of motion, the field strength can be expressed in terms of them thanks to
the homogeneous Maxwell equations. The homogeneous equations follow from the Jacobi identity
of the covariant derivative.

The (inhomogeneous) Maxwell equations are derived using the principle of least action using
variation of § with respect to the gauge fields as follows:

68 =46 [[ d*zL =0......(6).

Typically, —F 0 = ziéiiﬁAu ...... (7)

Also, — K" = % ...... (8)

where KY = ie(¢*0,¢%) — 2e2¢*p A,

Gauge theories have repeated variables. This redundancy is brought to light by the existence of
local symmetry transformations, or "gauge transformations"

Ulx) = e*®) ..(9)

(9) modifies the matter field’s phase and the gauge field’s value in a location- and time-dependent
manner as the subsequent

¢ — ¢V = U(2)p(x)......(10)

A, — Ag =A,+ U(w)i@MU(m) ...... (11)

Now that the covariant derivative D,, defines D, ¢(x) — U(x)D,¢(x), it transforms like ¢(x).

Together with the invariance of /-, this transformation condition guarantees the invariance of
L and the equations of motion.

It is possible to study classical statistical systems approximately with the help of quantum field
theory, or QFT. As the correlation length in lattice units increases, so does the approximation’s
accuracy. of classical statistical systems. The accuracy of the approximation increases with
the correlation length in lattice units. Changing the statistical model’s temperature equates to
deforming the QFT by a specific operator, often one that takes into account all symmetries.

The easiest way to define a renormalization group theory transformation is using the one-
dimensional Ising model. The key point is that the renormalization theory can be applied to Ising
models in higher dimensions easily, unlike the previously discussed transfer matrix method or other
procedures, which makes it instructive to recover the same conclusion from the perspective of
renormalization group theory. Using the transfer matrix method, we have already shown that the
one-dimensional Ising model does not present a phase transition.

5. Three-dimensional noncompact Lattice Abraham-Higgs (LAH)
models: Theoretical deconfinition of transitions

Many emergent collective phenomena in condensed matter physics are described by effective
three-dimensional (3D) scalar Abelian gauge models, where scalar fields are coupled with an Abelian
gauge field |11, 12]. To ascertain the possible universality classes of the continuous transitions
occurring in generic scalar gauge systems, several lattice scalar gauge models utilizing both compact
and non-compact gauge variables have been considered. They provide examples of topological
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transitions brought about by extended charged excitations with no local order parameter, nonlocal
topological gauge modes, and long-range scalar fluctuations.

The basic variables in the LAH model are complex vectors with (uy,u;) = 1 components
(Azy, € R variables), where = 1,2, 3.

The non-trivial topology of the manifold of vacuum field configurations is the source of the
topological excitations in the abelian Higgs model and the other field theoretic models that will
be discussed later. We follow the same steps as for ground state configurations and consider static
fields [13], adding the possibility of partially disappearing energy densities. One can only generate
finite energy if |z| — oo asymptotically, which is evident from the energy density expression [14].

Depending on (12), the scalar field phase in (13) asymptotically defines the gauge field

Dyzy = (V —ieA(z))p(x) — 0......(12)

A(z) = tVIn(¢(z)) = 1V0(2)......(13)

By design, the vector potential is asymptotically a pure gauge [15], and A(z) is independent of
the strength of the magnetic field.

It can be concluded from the structure of the asymptotic gauge field (13) that the magnetic
flux of field configurations with finite energy is quantized. Applying Stokes’ theorem to a surface T
enclosed by the asymptotic curve C' yields the following result:

n= [[kd’x = § Ads = 1 § VO(z)ds = 2nZ.....(14)

» is a conserved quantity that does not change with time because it is an integer multiple of
the basic unit of magnetic flux. Rather than an underlying symmetry, topological factors are what
give rise to the appearance of this preserved quantity [16]. Moreover, ¢} is regarded as a topological
invariant since it cannot be changed by a continuous deformation of the asymptotic curve. The
topological significance of this finding is highlighted by assuming that the asymptotic curve C is
a circle. Consequently, the scalar field ¢(z) gives a mapping from the asymptotic circle C' to the
Higgs potential’s circle of zeros V(a) = 0.

6. Conclusion

The fundamental group characterizes the topological properties of the space where the loops are
defined by demonstrating the behavior of loops under continuous deformations. Using this approach,
one may find a limited class of non-trivial topological properties. It has already been observed that
loops in dimensions greater than two are unable to detect a point defect, hence the idea of homotopy
groups needs to be extended to higher dimensions. A circle cannot encircle a pointlike defect in R3,
but a 2—sphere can.
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