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Abstract

Groups of form classes were introduced in Number Theory by Gauss, for binary quadratic
forms. He defined the notions of equivalence and composition and introduced a group structure
in classes of equivalence for the family of quadratic forms with discriminants not divisible by a
square of integral number. Further investigations of Gauss were developed in various directions.
One of them is a generalization of the theory to multivariate quadratic forms, in which widely
studied questions on representation of integral numbers by various quadratic forms. Other
direction concerns the notion of composition. But with the growth of the number of variables
the question stands very difficult. In 1898, A. Hurwits showed that for quadratic forms with
the number of variables greater than 8, it is hard to introduce suitable notion of composition.
This result of A. Hurwits was explaned by Y. V. Linnik from non-associative algebras’ point
of a view. It is established that the notion of discriminant for forms of high degree is not so
substantive as for quadratic forms. Sometimes, strict difference between forms having one and
the same discriminant, is well known. To overcome these difficulties, it is convenient to consider
forms connected with given extension of the field.
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1. Introduction

Groups of form classes were introduced in Number Theory by Gauss, for binary quadratic forms.
He defined the notions of equivalence and composition and introduced a group structure in classes
of equivalence for the family of quadratic forms with discriminants not divisible by a square of
integral number. Further investigations of Gauss were developed in various directions.

One of them is a generalization of the theory to multivariate quadratic forms, in which widely
studied questions on representation of integral numbers by various quadratic forms. Other direction
concerns the notion of composition. But with the growth of the number of variables the question
stands very difficult. In 1898, A. Hurwitz ([6]) showed that for quadratic forms the number of
variables greater than 8, it is hard to introduce suitable notion of composition (see also [8-9]). This
result of A. Hurwitz was explained by y. V. Linnik from non-associative algebras’ point of a view
(I7))-

It is established that the notion of discriminant for forms of high degree is not so substantive
as for quadratic forms. Sometimes, strict difference between forms having one and the same
discriminant, is well known ([5]). To overcome these difficulties, it is convenient to consider forms
connected with given extension of the field.

One of mostly studied questions of Number Theory is a question on representation of natural
numbers by quadratic forms. Simplest problem of such category serves the Pell equation [1-2, 5]:

22— 22 =1

The form F(z,y) = ? — 2y? in the left hand side can not be represented as a product of two linear
forms over the field of rational numbers. Easily this may be proved supposing contrary. Really, let
we have, for some rationlal numbers ¢ and b:

22— 2 = (z — ay)(x — by) = 2% — (a + b)zy + aby?; a,b € Q.

It is obvious that a = —b and ab = —a? = —2 = a® = 2. But this is impossible. The obtained
contradiction gives the result.
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Despite that, the fact on decomposability of this form into two linear forms over the field of real
numbers plays important role:

F(z,y) = (z — V2y)(z + V2y).

DEFINITION. The form F(z1,...,x,) in n variables is called a decomposable form if it can be
factorized into linear forms in some extension of the field of rational numbers E/Q.
As an example of decomposable forms in two variables it can be taken any form of a view

F(z,y) = apz" + a1z Yy + - + apy”
with rational coefficients. It is obvious that if the polynomial
F(z) = apz" + a1z 1+ - +a,
have roots aq, ..., oy, then the considered form can be written as follows:

F(z,y) = ao(x — a1y) - (z — any).

2. Normal form (principle form)

Let a polynomial F(z) be irreducible over a field K. Then the extension K («) of the field by
joining of some its root is an simple extension of degree n. Since the polynomial F'(x) is irreducible,

then it has not repeated roots. From the theory of matrices [3, 10-15] it is known that in some
extension E /K of the field K the matrix

o
o
|
o
S

1 0 —Qp—1
A= 0 0 —Qp—9
0 0 1—a
is similar to diagonal matrix, that is
A=LAL!,
and the matrix A is a diagonal matrix with diagonal entries aq,...,a, . Then we have:

(I)(Co,cl, ey Cn_1) =detCo+C1A+---+ Cn_lAnil) =

=det(LL™ 1) det(Col + CLA+ - 4+ Cp_1 A"Y); € = diag{ci, ..., ¢ }.

It is clear that using properties of determinants, we can write:

(I)(Co, Clyeeny Cn—l) = det(C[)I +C1A+ -+ Cn_1An71) =

n
= H (co +crog + ...+ cn_laglfl) .
i=1
The expression in the last right hand side is called a norm of the element «. As it is obvious, the
equality
(I)(CQ, Cly .oy Cnfl) =0

is possibly then and only then when for some root «; of the polynomial F'(z) we have

-1
co+cioy+ ...+ cpe) =0.
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From here one derives:
cg=c1=..=cp1=0.

So,
co =1 :...:cn,1:0<:>N(§):0;

here £ = ¢o + cra + ... + ¢,_10" ! and N(€) denotes the norm of the element ¢. Since
N (&) = det(Col + C1A+ -+ Cp_1 A",
then the equality N(£) = 0 is equivalent to the equality

~

Isomorphism F(«) = F(A) shows that we again must have ¢g =c¢; = ... = ¢,—1 = 0.
Suppose now the equation
<I>(co, Cly.eeny Cnfl) =0

has trivial zero solutions only. To show that the polynomial F'(z) is irreducible, suppose the contrary.
Let there exist polynomials g(z) and h(z) such that F(x) = g(x)h(x), with degg(x) > 1 and
degh > 1. Then, g(a) = 0 and the isomorphism F(«a) = F(A) shows that g(A) = 0. Therefore, if
the numbers go, . .., gk, k < n are coefficients of the polynomial g(x), then taking

€0 =gos-+>Ck = gk, Ck+1 = 0,...,¢cp—1 =0,

we get: ®(cp, c1,...,cn—1) = N(g(A)) = 0. That means that the equation ®(co,c1,...,cn—1) = 0 has

non-trivial solution. But this contradicts the isomorphism F'(«) = F(A) , because in consent with
this isomorphism we must have

glai) = co+ cr0 + .. + cp10f 1 =0,

for some index i. Therefore, denoting by ¢(z) a minimal polynomial of this element we see that

g(z):¢(z) which shows that the polynomial F(z) is decomposable.

So, we have established the statement.

THrOREM 1. For decomposability of a polynomial F(z) = apz™ + a1z + -+ + a, € K|[z] it
is necessary and sufficient that the homogeneous polynomial in n variables cg, c1, ..., Ch—1

(I)(Co, Clyeney cn_l) = det(CQ +C1A+ -+ Cn_lAn—l)

has in the field K non-trivial roots.
The form defined in Theorem 1 is called a normal form. We shall call it as a principle form also.
The normal form is a decomposable form.

3. Criteria for divisibility by a prime ideal

DEFINITION 1. Let K be some algebraically closed field, and «q, ..., a;, be some its elements.
The set of all linear combinations with coefficients in K is called a module in the field K. The
numbers ay, ..., ay, are called the generators of the module.

One and same module can be defined by different generators. The module is denoted as
M ={ay,...,an}, using generators.

DEFINITION 2. Two modules M and M are called similar, if for some element o € K the equaity
My = oM is satisfied.
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The norm N(ciaq + ... + cpay,) of the element ciaq + ... + ¢pay, is a form which we call to be
form connected to the module M.

DEFINITION 3. If the module M given in algebraic extension K of the field of rational numbers
degree n contains n elements linearly independent over the field of rational numbers, is called to
be full module, otherwise this module is called non-full module.

The form connected to full module is called full form, otherwise it is called non-full form. For
example, the numbers 1, /2, v/4 form a basis of the field Q(3/2) . By this reason the form below is
a full form:

N(z+yV2+2V4) =23 + 2% + 42° — 6xy2.

But the form F(z,y,z) = 23 + 2y is non-full, which can be derived from the full form by taking
z=0.

Studying of ideals and their properties are exclusively valuable for applications to the theory
of Diophantine equations. This is caused by the uniqueness of decomposition of ideals in the ring
of integral elements of the number field into the product of prime ideals. However, in applications
it arises a problem of extracting necessary consequences concerning integral elements of the field,
often. This is a difficult question the decision of which depends on properties of the group of ideals’
classes. This idea which for the first time has been found by Kummer E. E. (in the terms of ideal
complex numbers), was further developed by efforts of the subsequent generations of researchers,
and has led to the creation of the modern theory of algebraic numbers. The questions related to the
history of the problem is possible be found in [1-2]. We will adhere basically everywhere throughout
the paper the notions and designations from [4]. Some properties of the ideals connected with the
divisibility is possible to interpret in the language of congruencies for the elements of the basic field,
and often this stands useful in a concrete case.

Let we are given with some Dedekind field K with a ring of integral elements K. k is an algebraic
extension of the field K: k = K(0), where 0 € k is a primitive element with a minimal polynomial

fl@)=a"+a 2" '+ +ay, a; € K.

Let’s assume that the natural basis generated by the powers of this element is fundamental, that
is, the module generated by this basis coincides with K. Then, each element of a kind

a=cp 10" '+ d 0+, €K

is an integral element of the field x, and on the contrary, each integral element has the specified
representation. We shall designate the set of all integral elements of the field x by K’. Kummer had
proved the following theorem.

THEOREM 2. The decomposition of the prime ideal p of the ring K runs in s parallel in every
respect to the decomposition of f(x) in K.

The theorem 1 means that if over the field K, the polynomial f(z) has a factorization

f=e 0,

or in congruencies
f(a) = 1"+ o’ (modp), (1)

where the polynomials ¢, ..., ¢4 are irreducible (modp), then the ideal p is decomposable over the
k into the product of prime ideals

T, = (P7 801(0)) 7i = 17 e g

as follows:

| €g
piﬂ'l...ﬂ'g’
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and degree of an ideal 7; is equal to the degree of corresponding polynomial p;(x) (see [4, p. 83,
or [5, p. 267]). From here we receive a criterion for divisibility of an element by the prime ideal 7;:
CoONSEQUENCE 1. For divisibility of an element

a=cotcif+-+cp10"!
by the prime ideal 7; it is necessarily and sufficient that the polynomial
1

alz)=co+caz+-+cpgz™

was divisible by ¢;(x) over the field K.
It is possible to give a "numerical analogue"of this statement useful in concrete applications.
For the formulation of this analogue we shall write down ¢(z) = @;(x) as

o) =a" +bz" 44 by by, b €K

and form on a companion matrix

0 0 0 —b

10 0 —by
B = o

00 -~ 1 =b

of order r. Under the theorem of Keyley and Hamilton we have ¢ (B) = 0. Since the polynomial ¢

is indecomposable then it will be a minimal polynomial for B over the field K,. By the property of

the minimal polynomial and the theorem of Kummer the following relation is satisfied.
CONSEQUENCE 2. Following relation is true:

aim; & ¢(B) = 0(modp).
Let a be an algebraic number with minimal polynomial
flx)=2"+ biz" L+ -+ by,

Every element of the ring Z[a] can be written as an expression

co+cia+-+ep_1a™l

with integral coefficients. Suppose that 7 is a prime ideal of degree 1: N(mw) = p. From the theory
of algebraic numbers it is best known that the number ¢y + cipa + -+ - + cn—1a™ 1 is divisible by
iff

n—1 _

co+ c1a+ cea’ + -+ cp1a (modp);

here the number a is a solution of the congruence f(a) = 0(modp) .

4. Group of units

Two integral algebraic numbers of Dedekind fields with equal norms differ each from other by
multipliers with the norm 1. Elements of the norm 1 set up a group which is called a group of units.
The structure of this group is settled by the theorem of Dirichlet. To introduce the Dirichlet’s
theorem, let us consider some auxiliary geometric constructions.

Consider some algebraic extension K of degree n of the field of rational numbers. Then, by
Fundamental Theorem of Algebra, this extension has n various isomorphisms in the field of complex
numbers.
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DEFINITION 1. If image of an isomorphism ¢ : K — C is a subset of real numbers then it called
real isomorphism, otherwise it called complex isomorphism.

For example, if K = Q(¥/5) then an isomorphism 6 + /5 is real (here #3 = 5). But the
isomorphism 6 — /5(cos 27/3 + isin 27 /3) is complex. Suppose that the isomorphism o : K — C
is real. Then the isomorphism & : K — C defined as

gla)=0(a),a e K

also is complex, which is called conjugate to o.
Suppose that there is s real isomorphisms and 2t pairwisely conjugate complex ones. Construct
some s + 2t dimensional linear space with elements

(xla vy Lgy g1y oeey x8+t)>

where first s components are real, and others are complex numbers. This linear space will be a
linear space of dimension s+2¢ over the field of real numbers.

DEFINITION 2. Let e1,...,em, m < n, be linearly independent elements of R™. All of linear
combinations of a view aje1 + - -+ + amen, , with rational coefficients aq, ... a,,, called a lattice in
R™. If m = n then the lattice is called to be full, otherwise it called non-full.

The set of all linear combinations aje; + - - - + amenm, with coefficients a1, ...a;,,0 < a; < 1, is
called to be fundamental parallelepiped of the lattice.

LEMMA 1. In D there are units €1, ...,&,, 7 < s+t — 1 such that every unit € of D is uniquely
represented in the form

=G,

where aq, ..., a, are rational numbers, and ( is some root from 1 in D.

LeEMMA 2. Elements of full module M of the field K extension’s degree of which is n = s + 2t,
is represented as a lattice in the space R™, the volume of fundamental parallelepiped of which is
27'/D (here D is a discriminant of the module M).

The basic result of the geometric theory is a theorem of Minkowski.

LeEMMA 3. Suppose that in n-dimensional space R™ is given some full lattice with the
fundamental parallelepiped A. Then every central symmetric convex set X with the volume
v(X) > 2" A contains at least one point of the lattice different from the origin.

From this theorem, as a consequence we get the following statement.

LEMMA 4. (Dirichlet’s theorem). In every algebraic field K of degree n=s+2t, with module U of
integral elements, there are r = s + ¢t — 1 number of such units €1, ..., &, that for every unit ¢ € U
uniquely can be represented in the view

ar

EZCE?I'..ET‘ ,

in which aj, ..., a, are rational numbers, and ( is a root from 1 in U.

5. Group of form classes

The basic result of the Gauss’ theory of quadratic forms is that that the group of binary quadratic
forms’ classes is isomorphic to the ideal classes’ group of quadratic ring. This fact can be taken
as a principle argument in the issue on seeking of suitable generalization of the Gauss’ theory. We
put the following question. Let we are given with some Dedekind field k with a ring of integral
elements K. Is it possible define a family of forms of degree being equal to the degree of field’s
extension, in which is possible introduce a group of form classes being isomorphic to the group of
ideal classes of the given field? We establish that the answer to this question is positive. Main tool
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in our investigations is the criteria of divisibility by a prime ideal given in Consequence 2. This
criteria shows that in such sort of questions, as in the case of quadratic forms, essential role plays
the fact on representability of prime ideals’ norms by forms. Here, naturally it arises the family
of forms closely connected with considered extension. The question, put above, is solvable in this
family. The group of ideal classes seems very useful in the process of construction of the group of
form classes. We suffice with consideration of the field of rational numbers as a basic field.

Let K = Q(«) be an algebraic extension of the field of rational numbers by joining of integral
algebraic element «. A minimal polynomial of the element a denote as

flx)=z"+az" '+ +a,.

This polynomial is irreducible over the field of rational numbers. Suppose that the numbers 1, «,
a?,...,a™ ! set up the fundamental basis, that is the maximal order is generated by natural basis.
We have K = Q(A).

Take some prime number p. Decomposition of prime number p in the field K, in consent with

Kummer’s theorem, runs in Z, parallel in all respects to the decomposition

f(@) = fi(@) - fr(x)(modp). (2)

Moreover, if the polynomial f; has a degree k;, then the expansion of the number p will be of form
p = ---m, where 7; is a prime ideal of degree k;. The norm of the prime ideal 7; equals to p*i.

THEOREM 3. The number of ideal classes of field K is equal to 1, iff the norm of every prime
ideal can be represented by Principle Form.

PROOF. Suppose that the field K has only one class of ideals, that is, the maximal order D is
a ring of principle ideals. Suppose that 7 is some prime ideal and its norm is equal to p*. Then,
there is an element c¢(a) € D such that 7 = (¢(«)). So, we must have 7\c(a) and ¢(a)\7. It means
that N(c(a)) = p*. Therefore, p* is representable by Principle Form.

Suppose now that the norm of every prime ideal can be represented by Principle Form. Taking
arbitrary prime number p consider its decomposition into the product of prime ideals:

p=m1 T,

with N(m;) = pF. Then for each i,5 = 1,...,k there is an element c;(a) € D such that
N(ci(a)) = pFi. Therefore, taking an element c(a) = ci(a)---cp(a) we have N(c(a)) = p". By
this reason, one has p\c(a). Then c¢(a) = pe(a) and e(«) is a unit. From unique decomposition of
non-zero ideal by the product of prime ideals it follows that every prime ideal is defined by some
element ¢;(«). So, D is a ring of principle ideals. Theorem 3 is proved.

From multiplicatives of the norm it follows that if the field has more than 1 classes of ideals,
then there exists such a prime ideal that its norm cannot be represented by Principle Form. Now
the question is arising: is there a form which presents the norm of that ideal? Following theorem
answers this question positively.

THEOREM 4.The norm of every prime ideal can be represented by a form of degree n which is
reduced from the Principle Form using some parameterization (linear transformation) of variables.

PROOF.It is best known the fact that for every ideal 7 there is such an ideal 7 that their product
7T is a principle ideal, that is, there exists an element c(a) = cg + -+ + ¢,_1a" 1 € D for which

77 = (c(a)).

Suppose at first that 7 is a prime ideal and its norm is ¢¥ (g is a prime number). Assume also that
in the decomposition (1) for the prime number ¢ to the ideal 7 corresponds the polynomial g(z) of
degree degg = k and g(x) = by + - - - + brz¥, by, = 1. In this case, by the criteria of divisibility by
prime ideal, we must have

¢(B) = 0(modq), (3)
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where B is a companion matrix of the polynomial g(z), that is

00 —bo

10 —by
B= .

00 -+ by

Consider the congruence (3) as a system of linear equations over the field Z, with respect to the
coefficients ¢y, ..., cp—1. This is a homogeneous system and their solutions set up a subspace in the
space (Z,)". Suppose that the basis minor of the system’s matrix is placed at first k& rows and
columns (note that the case when the systems’ matrix has a rank 0 over the field Z, is trivial, in
which ¢ is not decomposable). Then the variables cg,...,chn—1 (0 < k < n — 1) are free and can
take arbitrary values. Basic variables are cy, ..., cx—1. So, the general solution to the system (3) is

as follows:
n—1

ci = Zbijcj(modq);i =0,..,k—1
j=k
Replace this system of congruences by a system of equalities, adding the multipliers of modulus as

below:
n—1

c;p = Zbijcj‘ +qtisti e Z,0=0,...,k—1.
j=k
Substituting the values of the coefficients in the expression for ¢(A) and taking the determinant,
we get some form of variables tg, ..., tg_1, Cky vy Cn—1-

As it is known ([3]), the matrix A is possible to reduce to natural normal form over the field Z,
and in diagonal will stay blocks of a view B. Since in the diaconal stays the block B then det c(A)
is divisible by ¢¥. As it seen from the said above, this relation is satisfied for all possible values of
variables tg, ..., tk_1, C, ..., Cn—1. It means that the coefficients of the last form are divisible by ¢*.
After of division the form by ¢* we get a new form. Taking specified values of coefficients, we have

N(r7) = N(m)¢" = N(c(a)).
So, the equality
N(m) = ¢ "N(c(o)

is satisfied for some non-zero values of variables tgy, ..., tg_1,Ck, ..., cn—1. It means that the theorem
4 is established for the case of prime ideal 7.
Consider now the case when 7 is a square of prime ideal, that is

mr? = (c(a)),

fore some c(a) = g+ -+ + ¢,—1a" " € D. Taking the congruence (3) with respect to the modulus
q?, let us investigate the congruence

¢(B) = 0(modg?).

We will seek the solutions among the solutions of the congruence (3). We have found the general

its solution
n—1

j=k

Rewrite the congruence as below

Bic1 + qBocy = O(modqz), (5)
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where the block matrix (B1|Bz2) is an initial matrix of the congruence (3), ¢1 = (co, -+ ,Cr—_1),C2 =
= (Cky- -+ ,Cn—1). Since the vector ¢ = (¢1, ¢2) found in (4) is a solution of the system (3), then the
solution of the system (5) we shall seek in the form

Co = t1 + qta.
Substituting into (5) and reducing we find:
Blél + quf—l— QQBQEQ = 0(m0dq2).

We have B¢, = 0(modg) and note that the matrix B; has a block-view

(%)

where M is a basic minor above. By this reason all of its elements are not divisible by ¢, so,
c1 = M713262<m0dq).

But elements of the block N are divisible by ¢ and N=¢N;. So, after of reducing we find a new
system: .
B1Z1 + Bat + qBaty = 0(modg),

or
B17 + Bol = 0(modq).

We again arrived at the congruence (3) but with different main matrix and basic minor. The solution
of this system can be found as above. Note that

N M

and Z; = ¢,. Using the method of bordering, we can find a basic minor of the matrix (Bi, By)
over the field Z,, and continue solving of the the last congruence. The vector Z; of basic variables
can increase the number of its components. So, linear parameterization is more complicated in this
case, but we have find a new paramterization, and substituting found values of the coeflients in the
expression for ¢(A) and taking the determinant, we get new form which represents the norm of the
ideal 7r:

N(r) = 2 N(c(a)),

becaus in the relation 772 = (c¢(a)) both sides are divisible by 72. Theorem 4 is proved in the case
of 72. Analogical reasonings allows the complete proof in the case of arbitrary degree of the ideal 7.
Completion of Theorem based on the Chines theorem on reminders. Let 7 = 7F1 ... 7hm i5 a
decomposition into the product of prime ideals. Then the congruence (3) is equivalent to the system
of congruences
¢(B) = O(modq;j), j=1,..,m.

Applying Chines theorem on reminders we find general solution of the congruence
c(B) = 0(modgy" -+ - qu),

which delivers a needed parameterizations also. The representation of the norm of the ideal © we
find now from the relation

N(m) = (N(7))"'N(c(a)).

Theorem 4 is completely proved.



O rpynie kaaccoB (poOpM BBICOKUX CTEITeHE 123

CONSEQUENCE. The norm of every ideal is representable by some form, got from the Principle
Form by some parametrization.

As it is seen the forms which reduced from the Principle Form by parameterizations plays an
important role. For every prime ideal 7, as above, we can construct the form

U (tg, .oy tn1) = ¢ ¥ det ¢(A), (6)

where k is a degree of prime ideal 7 and s is its multiplicity. Denote by F,,(«) the set of all forms
got by this way. Let introduce in F, () an equivalence relation.

Suppose that a(a) € D is an element of maximal order D. Consider transformation of
Principle Form by this element as follows. At first define usual product a(A)t(A). We find a sum
ug+ur A+ +up_1 A" 1 in which every variable u; is a linear combination of variables tg, ..., t,_1.
Therefore, det(a(A)t(A) will be some form. Denote this form as a x F.

DEFINITION. Two forms F; and Fy we call to be equivalent and denote as Fi~F5 if for some
elements a(«) and b(«) the equality a x F} = b = Fy is satisfied, that is

det(a(A)t (A)) = det(b(A)t(A)).

LEMMA 5. The relation F} ~ F5 is an equivalence relation.
PROOF. It is clear that Fy ~ Fy. Also, if I} ~ Fy, then Fy ~ Fy. Suppose F} ~ Fy and Fy ~ F3.
Prove that F} ~ F3. We have

det(a(A)t1(A)) = det(b(A)t2(A))
and
det(c(A)ta(A)) = det(d(A)tsz(A)).

Then
det(b(A)c(A)ta(A)) = det(b(A)d(A)ts(A)) = det(c(A)a(A)ti(A)).

This relation shows that F; ~ F5. Lemma 5 is proved.

THEOREM 5.If the form Fj represents the norm of the prime ideal 7 then this form represents
the norm of every ideal equivalent to .

PROOF. Let the norm of the ideal 7 is representable by the form Fj. Then there exists an ideal
7 and element c(«) such that 77 = (c¢(a)). Denote by 7’ some ideal equivalent to 7. We can find
such two elements a(a) and b(«) that

a(a)m = b(a)n’. (7)

Then,
a(a)c(a) = a(a)nT = bla)n'T.

Left hand side is divisible by b(«), and reducing we get the relation
w7 = (h(a))
Repeating the conclusions of Theorem 2 we find, in some values of variables:
Nmz' = ¢ F det(t(A)).

Theorem 5 is proved.

THEOREM 6.1f the form F) defined as (6) represents some natural number m then every form
F> ~ I also represents the number m.

Proof of this theorem easily follows from definition and the relation (7).
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Obtained above results is applicable to various questions of Number Theory. We have seen that
the representability of the norm of ideal is substantive for the theory of form developed here. As
we observed above, representability the norm of the prime ideal is a fact closely connected with the
structure of the field. The norm of the ideal is representable by forms of a class simultaneously. In
other hand, by Theorem 3, one and the same form represents the norm of every ideal equivalent
to given one. So, there is a natural correspondence between classes of forms and ideals. This
correspondence is possible to extend to the group structure. It is natural to take as a product
of two forms as a form which represents the norm of the product of taken ideals. Let us show that
the notion of the product defined by such way is defined correctly and the set of form classes defined
above sets up a group.

Suppose that we are given with two forms: F; and F5. There are such classes of ideals that
the norms of their elements are representable respectively by forms F; and Fb. Denote them by m;
and my. As we have established above, there exists a form F such that it represents the norm of
the product m7me. In the set Fy(a) of forms, introduce the product Fy * Fy of forms by equality
F = Fy % F5. By Theorems 5 and 6, from Fb ~ Fj it follows that Fy % Fb ~ F} % F3. So, the operation
of multiplication is defined correctly. Namely, the product of form classes includes all of products
of equivalent forms of corresponding classes. So, the factor group F,,(«)/ ~ is correctly defined and
includes the classes of forms reduced from Principle Form.

Resuming the all of said above we can formulate our basic result.

THEOREM 7. The group F,(a)/ ~ of form classes is isomorphic to the group of ideal classes.

6. Conclusion

In the section 5 we have introduced the group structure in the family of form classes. All of forms
are reduced from the principle form by linear parametrization. The constructed group is isomorphic
to the group of ideal classes.
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