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Аннотация

В теории чисел группы классов форм были введены Гауссом для бинарных квадра-
тичных форм. Гаусс ввел понятия эквивалентности и композиции и определил групповую
структуру во множестве классов эквивалентности в семействе квадратичных форм с дис-
криминантами, не делящимися на квадрат целого числа. Дальнейшие исследования были
развиты в разных направлениях. Одним из них является обобщение теории на квадра-
тичные формы от большего числа переменных, где широко изучены вопросы, связанные с
представлением целых чисел различными квадратичными формами. Другое направление
относится к понятию композиции. Однако с ростом количества переменных становится все
труднее введение понятия композиции форм. В 1898 г. А. Гурвиц показал, что для квад-
ратичных форм с числом переменных больше 8 очень сложно ввести удовлетворительное
понятие композиции. Этот феномен впоследствии был разъяснен Ю. В. Линником с точки
зрения теории некоммутативных алгебр с делением. Установлено, что понятие «дискри-
минанта» не имеет столь существенного значения для форм высших степеней, чем для
квадратичных форм. Хорошо известна строгая разница между свойствами форм степени
выше 2 с одинаковыми дискриминантами. Для устранения этих трудностей удобно рас-
смотреть формы, связанные с данным расширением.
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Abstract

Groups of form classes were introduced in Number Theory by Gauss, for binary quadratic
forms. He defined the notions of equivalence and composition and introduced a group structure
in classes of equivalence for the family of quadratic forms with discriminants not divisible by a
square of integral number. Further investigations of Gauss were developed in various directions.
One of them is a generalization of the theory to multivariate quadratic forms, in which widely
studied questions on representation of integral numbers by various quadratic forms. Other
direction concerns the notion of composition. But with the growth of the number of variables
the question stands very difficult. In 1898, A. Hurwits showed that for quadratic forms with
the number of variables greater than 8, it is hard to introduce suitable notion of composition.
This result of A. Hurwits was explaned by Y. V. Linnik from non-associative algebras’ point
of a view. It is established that the notion of discriminant for forms of high degree is not so
substantive as for quadratic forms. Sometimes, strict difference between forms having one and
the same discriminant, is well known. To overcome these difficulties, it is convenient to consider
forms connected with given extension of the field.
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1. Introduction

Groups of form classes were introduced in Number Theory by Gauss, for binary quadratic forms.
He defined the notions of equivalence and composition and introduced a group structure in classes
of equivalence for the family of quadratic forms with discriminants not divisible by a square of
integral number. Further investigations of Gauss were developed in various directions.

One of them is a generalization of the theory to multivariate quadratic forms, in which widely
studied questions on representation of integral numbers by various quadratic forms. Other direction
concerns the notion of composition. But with the growth of the number of variables the question
stands very difficult. In 1898, A. Hurwitz ([6]) showed that for quadratic forms the number of
variables greater than 8, it is hard to introduce suitable notion of composition (see also [8-9]). This
result of A. Hurwitz was explained by y. V. Linnik from non-associative algebras’ point of a view
([7]).

It is established that the notion of discriminant for forms of high degree is not so substantive
as for quadratic forms. Sometimes, strict difference between forms having one and the same
discriminant, is well known ([5]). To overcome these difficulties, it is convenient to consider forms
connected with given extension of the field.

One of mostly studied questions of Number Theory is a question on representation of natural
numbers by quadratic forms. Simplest problem of such category serves the Pell equation [1-2, 5]:

𝑥2 − 2𝑦2 = 1.

The form 𝐹 (𝑥, 𝑦) = 𝑥2− 2𝑦2 in the left hand side can not be represented as a product of two linear
forms over the field of rational numbers. Easily this may be proved supposing contrary. Really, let
we have, for some rationlal numbers a and b:

𝑥2 − 2𝑦2 = (𝑥− 𝑎𝑦)(𝑥− 𝑏𝑦) = 𝑥2 − (𝑎+ 𝑏)𝑥𝑦 + 𝑎𝑏𝑦2; 𝑎, 𝑏 ∈ Q.

It is obvious that 𝑎 = −𝑏 and 𝑎𝑏 = −𝑎2 = −2 ⇒ 𝑎2 = 2. But this is impossible. The obtained
contradiction gives the result.
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Despite that, the fact on decomposability of this form into two linear forms over the field of real
numbers plays important role:

𝐹 (𝑥, 𝑦) = (𝑥−
√
2𝑦)(𝑥+

√
2𝑦).

Definition. The form 𝐹 (𝑥1, ..., 𝑥𝑛) in 𝑛 variables is called a decomposable form if it can be
factorized into linear forms in some extension of the field of rational numbers 𝐸/Q.

As an example of decomposable forms in two variables it can be taken any form of a view

𝐹 (𝑥, 𝑦) = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1𝑦 + · · ·+ 𝑎𝑛𝑦
𝑛

with rational coefficients. It is obvious that if the polynomial

𝐹 (𝑥) = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1 + · · ·+ 𝑎𝑛

have roots 𝛼1, ..., 𝛼𝑛, then the considered form can be written as follows:

𝐹 (𝑥, 𝑦) = 𝑎0(𝑥− 𝛼1𝑦) · · · (𝑥− 𝛼𝑛𝑦).

2. Normal form (principle form)

Let a polynomial 𝐹 (𝑥) be irreducible over a field K . Then the extension K (𝛼) of the field by
joining of some its root is an simple extension of degree n. Since the polynomial 𝐹 (𝑥) is irreducible,
then it has not repeated roots. From the theory of matrices [3, 10-15] it is known that in some
extension E/K of the field K the matrix

𝐴 =

⎛⎜⎜⎜⎜⎝
0 0 · · · −𝑎𝑛
1 0 · · · −𝑎𝑛−1

0 0 · · · −𝑎𝑛−2

· · · · · · · · · · · ·
0 0 · · · 1− 𝑎1

⎞⎟⎟⎟⎟⎠
is similar to diagonal matrix, that is

𝐴 = 𝐿Λ𝐿−1,

and the matrix Λ is a diagonal matrix with diagonal entries 𝛼1, . . . , 𝛼𝑛 . Then we have:

Φ(𝑐0, 𝑐1, ..., 𝑐𝑛−1) = det𝐶0 + 𝐶1𝐴+ · · ·+ 𝐶𝑛−1𝐴
𝑛−1) =

= det(𝐿𝐿−1) det(𝐶0𝐼 + 𝐶1𝐴+ · · ·+ 𝐶𝑛−1𝐴
𝑛−1); 𝐶𝑖 = 𝑑𝑖𝑎𝑔{𝑐𝑖, ..., 𝑐𝑖}.

It is clear that using properties of determinants, we can write:

Φ(𝑐0, 𝑐1, ..., 𝑐𝑛−1) = det(𝐶0𝐼 + 𝐶1𝐴+ · · ·+ 𝐶𝑛−1𝐴
𝑛−1) =

=

𝑛∏︁
𝑖=1

(︀
𝑐0 + 𝑐1𝛼𝑖 + ...+ 𝑐𝑛−1𝛼

𝑛−1
𝑖

)︀
.

The expression in the last right hand side is called a norm of the element 𝛼. As it is obvious, the
equality

Φ(𝑐0, 𝑐1, ..., 𝑐𝑛−1) = 0

is possibly then and only then when for some root 𝛼𝑖 of the polynomial 𝐹 (𝑥) we have

𝑐0 + 𝑐1𝛼𝑖 + ...+ 𝑐𝑛−1𝛼
𝑛−1
𝑖 = 0.
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From here one derives:
𝑐0 = 𝑐1 = ... = 𝑐𝑛−1 = 0.

So,
𝑐0 = 𝑐1 = ... = 𝑐𝑛−1 = 0 ⇔ 𝑁(𝜉) = 0;

here 𝜉 = 𝑐0 + 𝑐1𝛼+ ...+ 𝑐𝑛−1𝛼
𝑛−1 and 𝑁(𝜉) denotes the norm of the element 𝜉. Since

𝑁(𝜉) = det(𝐶0𝐼 + 𝐶1𝐴+ · · ·+ 𝐶𝑛−1𝐴
𝑛−1),

then the equality 𝑁(𝜉) = 0 is equivalent to the equality

det(𝐶0𝐼 + 𝐶1𝐴+ · · ·+ 𝐶𝑛−1𝐴
𝑛−1) = 0.

Isomorphism 𝐹 (𝛼) ∼= 𝐹 (𝐴) shows that we again must have 𝑐0 = 𝑐1 = ... = 𝑐𝑛−1 = 0.
Suppose now the equation

Φ(𝑐0, 𝑐1, ..., 𝑐𝑛−1) = 0

has trivial zero solutions only. To show that the polynomial 𝐹 (𝑥) is irreducible, suppose the contrary.
Let there exist polynomials 𝑔(𝑥) and ℎ(𝑥) such that 𝐹 (𝑥) = 𝑔(𝑥)ℎ(𝑥), with 𝑑𝑒𝑔𝑔(𝑥) ≥ 1 and
𝑑𝑒𝑔ℎ ≥ 1. Then, 𝑔(𝛼) = 0 and the isomorphism 𝐹 (𝛼) ∼= 𝐹 (𝐴) shows that 𝑔(𝐴) = 0. Therefore, if
the numbers 𝑔0, . . . , 𝑔𝑘, 𝑘 < 𝑛 are coefficients of the polynomial 𝑔(𝑥), then taking

𝑐0 = 𝑔0, . . . , 𝑐𝑘 = 𝑔𝑘, 𝑐𝑘+1 = 0, . . . , 𝑐𝑛−1 = 0,

we get: Φ(𝑐0, 𝑐1, ..., 𝑐𝑛−1) = 𝑁(𝑔(𝐴)) = 0. That means that the equation Φ(𝑐0, 𝑐1, ..., 𝑐𝑛−1) = 0 has
non-trivial solution. But this contradicts the isomorphism 𝐹 (𝛼) ∼= 𝐹 (𝐴) , because in consent with
this isomorphism we must have

𝑔(𝛼𝑖) = 𝑐0 + 𝑐1𝛼𝑖 + ...+ 𝑐𝑘−1𝛼
𝑘−1
𝑖 = 0,

for some index 𝑖. Therefore, denoting by 𝜙(𝑥) a minimal polynomial of this element we see that

𝑔(𝑥)
...𝜙(𝑥) which shows that the polynomial 𝐹 (𝑥) is decomposable.
So, we have established the statement.
Theorem 1. For decomposability of a polynomial 𝐹 (𝑥) = 𝑎0𝑥

𝑛 + 𝑎1𝑥
𝑛−1 + · · ·+ 𝑎𝑛 ∈ 𝐾[𝑥] it

is necessary and sufficient that the homogeneous polynomial in n variables 𝑐0, 𝑐1, ..., 𝑐𝑛−1

Φ(𝑐0, 𝑐1, ..., 𝑐𝑛−1) = det(𝐶0 + 𝐶1𝐴+ · · ·+ 𝐶𝑛−1𝐴
𝑛−1)

has in the field K non-trivial roots.
The form defined in Theorem 1 is called a normal form. We shall call it as a principle form also.

The normal form is a decomposable form.

3. Criteria for divisibility by a prime ideal

Definition 1. Let K be some algebraically closed field, and 𝛼1, ..., 𝛼𝑛 be some its elements.
The set of all linear combinations with coefficients in K is called a module in the field K. The
numbers 𝛼1, ..., 𝛼𝑛 are called the generators of the module.

One and same module can be defined by different generators. The module is denoted as
𝑀 = {𝛼1, ..., 𝛼𝑛}, using generators.

Definition 2. Two modules M and𝑀1 are called similar, if for some element 𝛼 ∈ K the equaity
𝑀1 = 𝛼𝑀 is satisfied.
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The norm 𝑁(𝑐1𝛼1 + ... + 𝑐𝑛𝛼𝑛) of the element 𝑐1𝛼1 + ... + 𝑐𝑛𝛼𝑛 is a form which we call to be
form connected to the module M.

Definition 3. If the module M given in algebraic extension K of the field of rational numbers
degree n contains n elements linearly independent over the field of rational numbers, is called to
be full module, otherwise this module is called non-full module.

The form connected to full module is called full form, otherwise it is called non-full form. For
example, the numbers 1, 3

√
2, 3

√
4 form a basis of the field Q( 3

√
2) . By this reason the form below is

a full form:
𝑁(𝑥+ 𝑦

3
√
2 + 𝑧

3
√
4) = 𝑥3 + 2𝑦3 + 4𝑧3 − 6𝑥𝑦𝑧.

But the form 𝐹 (𝑥, 𝑦, 𝑧) = 𝑥3 + 2𝑦3 is non-full, which can be derived from the full form by taking
z=0.

Studying of ideals and their properties are exclusively valuable for applications to the theory
of Diophantine equations. This is caused by the uniqueness of decomposition of ideals in the ring
of integral elements of the number field into the product of prime ideals. However, in applications
it arises a problem of extracting necessary consequences concerning integral elements of the field,
often. This is a difficult question the decision of which depends on properties of the group of ideals’
classes. This idea which for the first time has been found by Kummer E. E. (in the terms of ideal
complex numbers), was further developed by efforts of the subsequent generations of researchers,
and has led to the creation of the modern theory of algebraic numbers. The questions related to the
history of the problem is possible be found in [1-2]. We will adhere basically everywhere throughout
the paper the notions and designations from [4]. Some properties of the ideals connected with the
divisibility is possible to interpret in the language of congruencies for the elements of the basic field,
and often this stands useful in a concrete case.

Let we are given with some Dedekind fieldK with a ring of integral elements𝐾. 𝜅 is an algebraic
extension of the field K: 𝜅 = K(𝜃), where 𝜃 ∈ 𝜅 is a primitive element with a minimal polynomial

𝑓(𝑥) = 𝑥𝑛 + 𝑎1𝑥
𝑛−1 + · · ·+ 𝑎𝑛, 𝑎𝑖 ∈ 𝐾.

Let’s assume that the natural basis generated by the powers of this element is fundamental, that
is, the module generated by this basis coincides with K. Then, each element of a kind

𝛼 = 𝑐𝑛−1𝜃
𝑛−1 + · · ·+ 𝑐1𝜃 + 𝑐0, 𝑐𝑖 ∈ 𝐾

is an integral element of the field 𝜅, and on the contrary, each integral element has the specified
representation. We shall designate the set of all integral elements of the field 𝜅 by 𝐾 ′. Kummer had
proved the following theorem.

Theorem 2. The decomposition of the prime ideal 𝜌 of the ring 𝐾 runs in 𝜅 parallel in every
respect to the decomposition of 𝑓(𝑥) in 𝐾𝜌.

The theorem 1 means that if over the field 𝐾𝜌 the polynomial 𝑓(𝑥) has a factorization

𝑓 = 𝜙𝑒11 · · ·𝜙𝑒𝑔𝑔 ,

or in congruencies
𝑓(𝑥) ≡ 𝜙𝑒11 · · ·𝜙𝑒𝑔𝑔 (𝑚𝑜𝑑𝜌), (1)

where the polynomials 𝜙1, ..., 𝜙𝑔 are irreducible (𝑚𝑜𝑑𝜌), then the ideal 𝜌 is decomposable over the
𝜅 into the product of prime ideals

𝜋𝑖 = (𝜌, 𝜙𝑖(𝜃)) , 𝑖 = 1, ..., 𝑔

as follows:
𝜌 = 𝜋𝑒11 · · ·𝜋𝑒𝑔𝑔 ,
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and degree of an ideal 𝜋𝑖 is equal to the degree of corresponding polynomial 𝜙𝑖(𝑥) (see [4, p. 83,]
or [5, p. 267]). From here we receive a criterion for divisibility of an element by the prime ideal 𝜋𝑖:

Consequence 1. For divisibility of an element

𝛼 = 𝑐0 + 𝑐1𝜃 + · · ·+ 𝑐𝑛−1𝜃
𝑛−1

by the prime ideal 𝜋𝑖 it is necessarily and sufficient that the polynomial

𝛼(𝑥) = 𝑐0 + 𝑐1𝑥+ · · ·+ 𝑐𝑛−1𝑥
𝑛−1

was divisible by 𝜙𝑖(𝑥) over the field 𝐾𝜌.
It is possible to give a "numerical analogue"of this statement useful in concrete applications.

For the formulation of this analogue we shall write down 𝜙(𝑥) = 𝜙𝑖(𝑥) as

𝜙(𝑥) = 𝑥𝑟 + 𝑏1𝑥
𝑟−1 + · · ·+ 𝑏𝑟; 𝑏1, ..., 𝑏𝑟 ∈ 𝐾

and form on a companion matrix

𝐵 =

⎛⎜⎜⎜⎝
0 0 · · · 0 −𝑏1
1 0 · · · 0 −𝑏2
...

...
. . .

...
...

0 0 · · · 1 −𝑏𝑟

⎞⎟⎟⎟⎠
of order 𝑟. Under the theorem of Keyley and Hamilton we have 𝜙 (𝐵) = 0. Since the polynomial 𝜙
is indecomposable then it will be a minimal polynomial for 𝐵 over the field 𝐾𝜌. By the property of
the minimal polynomial and the theorem of Kummer the following relation is satisfied.

Consequence 2. Following relation is true:

𝛼
...𝜋𝑖 ⇔ 𝑐(𝐵) ≡ 0(𝑚𝑜𝑑𝜌).

Let 𝛼 be an algebraic number with minimal polynomial

𝑓(𝑥) = 𝑥𝑛 + 𝑏1𝑥
𝑛−1 + · · ·+ 𝑏𝑛.

Every element of the ring 𝑍[𝛼] can be written as an expression

𝑐0 + 𝑐1𝛼+ · · ·+ 𝑐𝑛−1𝛼
𝑛−1

with integral coefficients. Suppose that 𝜋 is a prime ideal of degree 1: 𝑁(𝜋) = 𝑝. From the theory
of algebraic numbers it is best known that the number 𝑐0 + 𝑐1𝛼+ · · ·+ 𝑐𝑛−1𝛼

𝑛−1 is divisible by 𝜋
iff

𝑐0 + 𝑐1𝑎+ 𝑐2𝑎
2 + · · ·+ 𝑐𝑛−1𝑎

𝑛−1 ≡ 0(𝑚𝑜𝑑𝑝);

here the number 𝑎 is a solution of the congruence 𝑓(𝑎) ≡ 0(𝑚𝑜𝑑𝑝) .

4. Group of units

Two integral algebraic numbers of Dedekind fields with equal norms differ each from other by
multipliers with the norm 1. Elements of the norm 1 set up a group which is called a group of units.
The structure of this group is settled by the theorem of Dirichlet. To introduce the Dirichlet’s
theorem, let us consider some auxiliary geometric constructions.

Consider some algebraic extension K of degree n of the field of rational numbers. Then, by
Fundamental Theorem of Algebra, this extension has n various isomorphisms in the field of complex
numbers.
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Definition 1. If image of an isomorphism 𝜎 : K → C is a subset of real numbers then it called
real isomorphism, otherwise it called complex isomorphism.

For example, if K = 𝑄( 3
√
5) then an isomorphism 𝜃 ↦→ 3

√
5 is real (here 𝜃3 = 5). But the

isomorphism 𝜃 ↦→ 3
√
5(cos 2𝜋/3 + 𝑖 sin 2𝜋/3) is complex. Suppose that the isomorphism 𝜎 : K → C

is real. Then the isomorphism 𝜎̄ : K → C defined as

𝜎̄(𝛼) = 𝜎(𝛼), 𝛼 ∈ K

also is complex, which is called conjugate to 𝜎.
Suppose that there is s real isomorphisms and 2𝑡 pairwisely conjugate complex ones. Construct

some 𝑠+ 2𝑡 dimensional linear space with elements

(𝑥1, ..., 𝑥𝑠;𝑥𝑠+1, ..., 𝑥𝑠+𝑡),

where first s components are real, and others are complex numbers. This linear space will be a
linear space of dimension s+2t over the field of real numbers.

Definition 2. Let 𝑒1, . . . , 𝑒𝑚, 𝑚 ⩽ 𝑛, be linearly independent elements of 𝑅𝑛. All of linear
combinations of a view 𝑎1𝑒1 + · · · + 𝑎𝑚𝑒𝑚 , with rational coefficients 𝑎1, . . . 𝑎𝑚, called a lattice in
𝑅𝑛. If 𝑚 = 𝑛 then the lattice is called to be full, otherwise it called non-full.

The set of all linear combinations 𝑎1𝑒1 + · · ·+ 𝑎𝑚𝑒𝑚, with coefficients 𝑎1, . . . 𝑎𝑚, 0 ⩽ 𝑎𝑖 < 1, is
called to be fundamental parallelepiped of the lattice.

Lemma 1. In D there are units 𝜀1, ..., 𝜀𝑟, 𝑟 ⩽ 𝑠+ 𝑡− 1 such that every unit 𝜀 of D is uniquely
represented in the form

𝜀 = 𝜁𝜀𝛼1
1 · · · 𝜀𝛼𝑟

𝑟 ,

where 𝛼1, ..., 𝛼𝑟 are rational numbers, and 𝜁 is some root from 1 in D.
Lemma 2. Elements of full module 𝑀 of the field K extension’s degree of which is 𝑛 = 𝑠+ 2𝑡,

is represented as a lattice in the space 𝑅𝑛, the volume of fundamental parallelepiped of which is
2−𝑡

√
𝐷 (here 𝐷 is a discriminant of the module M).

The basic result of the geometric theory is a theorem of Minkowski.
Lemma 3. Suppose that in n-dimensional space 𝑅𝑛 is given some full lattice with the

fundamental parallelepiped Δ. Then every central symmetric convex set X with the volume
𝑣(𝑋) ⩾ 2𝑛Δ contains at least one point of the lattice different from the origin.

From this theorem, as a consequence we get the following statement.
Lemma 4. (Dirichlet’s theorem). In every algebraic field K of degree n=s+2t, with module U of

integral elements, there are 𝑟 = 𝑠 + 𝑡 − 1 number of such units 𝜀1, ..., 𝜀𝑟 that for every unit 𝜀 ∈ 𝑈
uniquely can be represented in the view

𝜀 = 𝜁𝜀𝛼1
1 · · · 𝜀𝛼𝑟

𝑟 ,

in which 𝛼1, ..., 𝛼𝑟 are rational numbers, and 𝜁 is a root from 1 in 𝑈 .

5. Group of form classes

The basic result of the Gauss’ theory of quadratic forms is that that the group of binary quadratic
forms’ classes is isomorphic to the ideal classes’ group of quadratic ring. This fact can be taken
as a principle argument in the issue on seeking of suitable generalization of the Gauss’ theory. We
put the following question. Let we are given with some Dedekind field 𝑘 with a ring of integral
elements 𝐾. Is it possible define a family of forms of degree being equal to the degree of field’s
extension, in which is possible introduce a group of form classes being isomorphic to the group of
ideal classes of the given field? We establish that the answer to this question is positive. Main tool
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in our investigations is the criteria of divisibility by a prime ideal given in Consequence 2. This
criteria shows that in such sort of questions, as in the case of quadratic forms, essential role plays
the fact on representability of prime ideals’ norms by forms. Here, naturally it arises the family
of forms closely connected with considered extension. The question, put above, is solvable in this
family. The group of ideal classes seems very useful in the process of construction of the group of
form classes. We suffice with consideration of the field of rational numbers as a basic field.

Let 𝐾 = 𝑄(𝛼) be an algebraic extension of the field of rational numbers by joining of integral
algebraic element 𝛼. A minimal polynomial of the element 𝛼 denote as

𝑓(𝑥) = 𝑥𝑛 + 𝑎1𝑥
𝑛−1 + · · ·+ 𝑎𝑛.

This polynomial is irreducible over the field of rational numbers. Suppose that the numbers 1, 𝛼,
𝛼2, ..., 𝛼𝑛−1 set up the fundamental basis, that is the maximal order is generated by natural basis.
We have 𝐾 ∼= 𝑄(𝐴).

Take some prime number p. Decomposition of prime number p in the field K, in consent with
Kummer’s theorem, runs in 𝑍𝑝 parallel in all respects to the decomposition

𝑓(𝑥) ≡ 𝑓1(𝑥) · · · 𝑓𝑘(𝑥)(𝑚𝑜𝑑𝑝). (2)

Moreover, if the polynomial 𝑓𝑖 has a degree 𝑘𝑖, then the expansion of the number 𝑝 will be of form
𝑝 = 𝜋1 · · ·𝜋𝑘, where 𝜋𝑖 is a prime ideal of degree 𝑘𝑖. The norm of the prime ideal 𝜋𝑖 equals to 𝑝𝑘𝑖 .

Theorem 3. The number of ideal classes of field K is equal to 1, iff the norm of every prime
ideal can be represented by Principle Form.

Proof. Suppose that the field K has only one class of ideals, that is, the maximal order D is
a ring of principle ideals. Suppose that 𝜋 is some prime ideal and its norm is equal to 𝑝𝑘. Then,
there is an element 𝑐(𝛼) ∈ 𝐷 such that 𝜋 = (𝑐(𝛼)). So, we must have 𝜋∖𝑐(𝛼) and 𝑐(𝛼)∖𝜋. It means
that 𝑁(𝑐(𝛼)) = 𝑝𝑘. Therefore, 𝑝𝑘 is representable by Principle Form.

Suppose now that the norm of every prime ideal can be represented by Principle Form. Taking
arbitrary prime number p consider its decomposition into the product of prime ideals:

𝑝 = 𝜋1 · · ·𝜋𝑘,

with 𝑁(𝜋𝑖) = 𝑝𝑘𝑖 . Then for each 𝑖, 𝑖 = 1, ..., 𝑘 there is an element 𝑐𝑖(𝛼) ∈ 𝐷 such that
𝑁(𝑐𝑖(𝛼)) = 𝑝𝑘𝑖 . Therefore, taking an element 𝑐(𝛼) = 𝑐1(𝛼) · · · 𝑐𝑘(𝛼) we have 𝑁(𝑐(𝛼)) = 𝑝𝑛. By
this reason, one has 𝑝∖𝑐(𝛼). Then 𝑐(𝛼) = 𝑝𝑒(𝛼) and 𝑒(𝛼) is a unit. From unique decomposition of
non-zero ideal by the product of prime ideals it follows that every prime ideal is defined by some
element 𝑐𝑖(𝛼). So, D is a ring of principle ideals. Theorem 3 is proved.

From multiplicatives of the norm it follows that if the field has more than 1 classes of ideals,
then there exists such a prime ideal that its norm cannot be represented by Principle Form. Now
the question is arising: is there a form which presents the norm of that ideal? Following theorem
answers this question positively.

Theorem 4.The norm of every prime ideal can be represented by a form of degree 𝑛 which is
reduced from the Principle Form using some parameterization (linear transformation) of variables.

Proof.It is best known the fact that for every ideal 𝜋 there is such an ideal 𝜏 that their product
𝜋𝜏 is a principle ideal, that is, there exists an element 𝑐(𝛼) = 𝑐0 + · · ·+ 𝑐𝑛−1𝛼

𝑛−1 ∈ 𝐷 for which

𝜋𝜏 = (𝑐(𝛼)).

Suppose at first that 𝜏 is a prime ideal and its norm is 𝑞𝑘 (q is a prime number). Assume also that
in the decomposition (1) for the prime number q to the ideal 𝜏 corresponds the polynomial 𝑔(𝑥) of
degree deg 𝑔 = 𝑘 and 𝑔(𝑥) = 𝑏0 + · · · + 𝑏𝑘𝑥

𝑘, 𝑏𝑘 = 1. In this case, by the criteria of divisibility by
prime ideal, we must have

𝑐(𝐵) ≡ 0(𝑚𝑜𝑑𝑞), (3)
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where 𝐵 is a companion matrix of the polynomial 𝑔(𝑥), that is

𝐵 =

⎛⎜⎜⎜⎝
0 0 · · · −𝑏0
1 0 · · · −𝑏1
...

...
. . .

...
0 0 · · · 𝑏𝑘−1

⎞⎟⎟⎟⎠ .

Consider the congruence (3) as a system of linear equations over the field Z𝑞 with respect to the
coefficients 𝑐0, ..., 𝑐𝑛−1. This is a homogeneous system and their solutions set up a subspace in the
space (𝑍𝑞)

𝑛. Suppose that the basis minor of the system’s matrix is placed at first k rows and
columns (note that the case when the systems’ matrix has a rank 0 over the field Z𝑞 is trivial, in
which 𝑞 is not decomposable). Then the variables 𝑐𝑘, ..., 𝑐𝑛−1 (0 ⩽ 𝑘 ⩽ 𝑛 − 1) are free and can
take arbitrary values. Basic variables are 𝑐0, ..., 𝑐𝑘−1. So, the general solution to the system (3) is
as follows:

𝑐𝑖 ≡
𝑛−1∑︁
𝑗=𝑘

𝑏𝑖𝑗𝑐𝑗(𝑚𝑜𝑑𝑞); 𝑖 = 0, ..., 𝑘 − 1.

Replace this system of congruences by a system of equalities, adding the multipliers of modulus as
below:

𝑐𝑖 =

𝑛−1∑︁
𝑗=𝑘

𝑏𝑖𝑗𝑐𝑗 + 𝑞𝑡𝑖; 𝑡𝑖 ∈ 𝑍, 𝑖 = 0, ..., 𝑘 − 1.

Substituting the values of the coefficients in the expression for 𝑐(𝐴) and taking the determinant,
we get some form of variables 𝑡0, ..., 𝑡𝑘−1, 𝑐𝑘, ..., 𝑐𝑛−1.

As it is known ([3]), the matrix A is possible to reduce to natural normal form over the field Z𝑞
and in diagonal will stay blocks of a view B. Since in the diaconal stays the block 𝐵 then det 𝑐(𝐴)
is divisible by 𝑞𝑘. As it seen from the said above, this relation is satisfied for all possible values of
variables 𝑡0, ..., 𝑡𝑘−1, 𝑐𝑘, ..., 𝑐𝑛−1. It means that the coefficients of the last form are divisible by 𝑞𝑘.
After of division the form by 𝑞𝑘 we get a new form. Taking specified values of coefficients, we have

𝑁(𝜋𝜏) = 𝑁(𝜋)𝑞𝑘 = 𝑁(𝑐(𝛼)).

So, the equality
𝑁(𝜋) = 𝑞−𝑘𝑁(𝑐(𝛼))

is satisfied for some non-zero values of variables 𝑡0, ..., 𝑡𝑘−1, 𝑐𝑘, ..., 𝑐𝑛−1. It means that the theorem
4 is established for the case of prime ideal 𝜏 .

Consider now the case when 𝜏 is a square of prime ideal, that is

𝜋𝜏2 = (𝑐(𝛼)),

fore some 𝑐(𝛼) = 𝑐0 + · · ·+ 𝑐𝑛−1𝛼
𝑛−1 ∈ 𝐷. Taking the congruence (3) with respect to the modulus

𝑞2, let us investigate the congruence

𝑐(𝐵) ≡ 0(𝑚𝑜𝑑𝑞2).

We will seek the solutions among the solutions of the congruence (3). We have found the general
its solution

𝑐𝑖 =
𝑛−1∑︁
𝑗=𝑘

𝑏𝑖𝑗𝑐𝑗 + 𝑞𝑡𝑖; 𝑡𝑖 ∈ 𝑍, 𝑖 = 0, ..., 𝑘 − 1. (4)

Rewrite the congruence as below

𝐵1𝑐1 + 𝑞𝐵2𝑐2 ≡ 0(𝑚𝑜𝑑𝑞2), (5)
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where the block matrix (𝐵1|𝐵2) is an initial matrix of the congruence (3), 𝑐1 = (𝑐0, · · · , 𝑐𝑘−1), 𝑐2 =
= (𝑐𝑘, · · · , 𝑐𝑛−1). Since the vector 𝑐 = (𝑐1, 𝑐2) found in (4) is a solution of the system (3), then the
solution of the system (5) we shall seek in the form

𝑐2 = 𝑡1 + 𝑞𝑡2.

Substituting into (5) and reducing we find:

𝐵1𝑐1 + 𝑞𝐵2𝑡+ 𝑞2𝐵2𝑡2 ≡ 0(𝑚𝑜𝑑𝑞2).

We have 𝐵1𝑐1 ≡ 0(mod𝑞) and note that the matrix 𝐵1 has a block-view(︂
𝑀
𝑁

)︂
,

where M is a basic minor above. By this reason all of its elements are not divisible by q, so,

𝑐1 ≡𝑀−1𝐵2𝑐2(mod𝑞).

But elements of the block N are divisible by q and N=qN 1. So, after of reducing we find a new
system:

𝐵̃1𝑥̄1 +𝐵2𝑡+ 𝑞𝐵2𝑡2 ≡ 0(𝑚𝑜𝑑𝑞),

or
𝐵̃1𝑥̄1 +𝐵2𝑡 ≡ 0(𝑚𝑜𝑑𝑞).

We again arrived at the congruence (3) but with different main matrix and basic minor. The solution
of this system can be found as above. Note that

𝐵̃1 =

(︂
𝑀
𝑁1

)︂
,

and 𝑥̄1 = 𝑐1. Using the method of bordering, we can find a basic minor of the matrix (𝐵̃1, 𝐵2)
over the field Z𝑞, and continue solving of the the last congruence. The vector 𝑥̄1 of basic variables
can increase the number of its components. So, linear parameterization is more complicated in this
case, but we have find a new paramterization, and substituting found values of the coeffients in the
expression for 𝑐(𝐴) and taking the determinant, we get new form which represents the norm of the
ideal 𝜋:

𝑁(𝜋) = 𝑞−2𝑘𝑁(𝑐(𝛼)),

becaus in the relation 𝜋𝜏2 = (𝑐(𝛼)) both sides are divisible by 𝜏2. Theorem 4 is proved in the case
of 𝜏2. Analogical reasonings allows the complete proof in the case of arbitrary degree of the ideal 𝜏 .

Completion of Theorem based on the Chines theorem on reminders. Let 𝜏 = 𝜏𝑘11 · · · 𝜏𝑘𝑚𝑚 is a
decomposition into the product of prime ideals. Then the congruence (3) is equivalent to the system
of congruences

𝑐(𝐵) ≡ 0(𝑚𝑜𝑑𝑞
𝑠𝑗
𝑗 ), 𝑗 = 1, ...,𝑚.

Applying Chines theorem on reminders we find general solution of the congruence

𝑐(𝐵) ≡ 0(𝑚𝑜𝑑𝑞𝑠11 · · · 𝑞𝑠𝑚𝑚 ),

which delivers a needed parameterizations also. The representation of the norm of the ideal 𝜋 we
find now from the relation

𝑁(𝜋) = (𝑁(𝜏))−1𝑁(𝑐(𝛼)).

Theorem 4 is completely proved.
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Consequence. The norm of every ideal is representable by some form, got from the Principle
Form by some parametrization.

As it is seen the forms which reduced from the Principle Form by parameterizations plays an
important role. For every prime ideal 𝜏 , as above, we can construct the form

Ψ(𝑡0, ..., 𝑡𝑛−1) = 𝑞−𝑘𝑠 det 𝑐(𝐴), (6)

where k is a degree of prime ideal 𝜏 and s is its multiplicity. Denote by F𝑛(𝛼) the set of all forms
got by this way. Let introduce in F𝑛(𝛼) an equivalence relation.

Suppose that 𝑎(𝛼) ∈ 𝐷 is an element of maximal order D. Consider transformation of
Principle Form by this element as follows. At first define usual product 𝑎(𝐴)𝑡(𝐴). We find a sum
𝑢0+𝑢1𝐴+ · · ·+𝑢𝑛−1𝐴

𝑛−1 in which every variable 𝑢𝑖 is a linear combination of variables 𝑡0, ..., 𝑡𝑛−1.
Therefore, det(𝑎(𝐴)𝑡(𝐴) will be some form. Denote this form as 𝑎 * 𝐹 .

Definition. Two forms 𝐹1 and 𝐹2 we call to be equivalent and denote as 𝐹1∼𝐹2 if for some
elements 𝑎(𝛼) and 𝑏(𝛼) the equality 𝑎 * 𝐹1 = 𝑏 * 𝐹2 is satisfied, that is

det(𝑎(𝐴)𝑡1(𝐴)) = det(𝑏(𝐴)𝑡2(𝐴)).

Lemma 5. The relation 𝐹1 ∼ 𝐹2 is an equivalence relation.
Proof. It is clear that 𝐹1 ∼ 𝐹1. Also, if 𝐹1 ∼ 𝐹2, then 𝐹2 ∼ 𝐹1. Suppose 𝐹1 ∼ 𝐹2 and 𝐹2 ∼ 𝐹3.

Prove that 𝐹1 ∼ 𝐹3. We have

det(𝑎(𝐴)𝑡1(𝐴)) = det(𝑏(𝐴)𝑡2(𝐴))

and
det(𝑐(𝐴)𝑡2(𝐴)) = det(𝑑(𝐴)𝑡3(𝐴)).

Then
det(𝑏(𝐴)𝑐(𝐴)𝑡2(𝐴)) = det(𝑏(𝐴)𝑑(𝐴)𝑡3(𝐴)) = det(𝑐(𝐴)𝑎(𝐴)𝑡1(𝐴)).

This relation shows that 𝐹1 ∼ 𝐹3. Lemma 5 is proved.
Theorem 5.If the form 𝐹1 represents the norm of the prime ideal 𝜋 then this form represents

the norm of every ideal equivalent to 𝜋.
Proof. Let the norm of the ideal 𝜋 is representable by the form 𝐹1. Then there exists an ideal

𝜏 and element 𝑐(𝛼) such that 𝜋𝜏 = (𝑐(𝛼)). Denote by 𝜋′ some ideal equivalent to 𝜋. We can find
such two elements 𝑎(𝛼) and 𝑏(𝛼) that

𝑎(𝛼)𝜋 = 𝑏(𝛼)𝜋′. (7)

Then,
𝑎(𝛼)𝑐(𝛼) = 𝑎(𝛼)𝜋𝜏 = 𝑏(𝛼)𝜋′𝜏.

Left hand side is divisible by 𝑏(𝛼), and reducing we get the relation

𝜋′𝜏 = (ℎ(𝛼))

Repeating the conclusions of Theorem 2 we find, in some values of variables:

𝑁𝑚𝜋′ = 𝑞−𝑘 det(𝑡(𝐴)).

Theorem 5 is proved.
Theorem 6.If the form 𝐹1 defined as (6) represents some natural number m then every form

𝐹2 ∼ 𝐹1 also represents the number m.
Proof of this theorem easily follows from definition and the relation (7).
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Obtained above results is applicable to various questions of Number Theory. We have seen that
the representability of the norm of ideal is substantive for the theory of form developed here. As
we observed above, representability the norm of the prime ideal is a fact closely connected with the
structure of the field. The norm of the ideal is representable by forms of a class simultaneously. In
other hand, by Theorem 3, one and the same form represents the norm of every ideal equivalent
to given one. So, there is a natural correspondence between classes of forms and ideals. This
correspondence is possible to extend to the group structure. It is natural to take as a product
of two forms as a form which represents the norm of the product of taken ideals. Let us show that
the notion of the product defined by such way is defined correctly and the set of form classes defined
above sets up a group.

Suppose that we are given with two forms: 𝐹1 and 𝐹2. There are such classes of ideals that
the norms of their elements are representable respectively by forms 𝐹1 and 𝐹2. Denote them by 𝜋1
and 𝜋2. As we have established above, there exists a form 𝐹 such that it represents the norm of
the product 𝜋1𝜋2. In the set F𝑛(𝛼) of forms, introduce the product 𝐹1 * 𝐹2 of forms by equality
𝐹 = 𝐹1 *𝐹2. By Theorems 5 and 6, from 𝐹2 ∼ 𝐹3 it follows that 𝐹1 *𝐹2 ∼ 𝐹1 *𝐹3. So, the operation
of multiplication is defined correctly. Namely, the product of form classes includes all of products
of equivalent forms of corresponding classes. So, the factor group F𝑛(𝛼)/ ∼ is correctly defined and
includes the classes of forms reduced from Principle Form.

Resuming the all of said above we can formulate our basic result.
Theorem 7. The group F𝑛(𝛼)/ ∼ of form classes is isomorphic to the group of ideal classes.

6. Conclusion

In the section 5 we have introduced the group structure in the family of form classes. All of forms
are reduced from the principle form by linear parametrization. The constructed group is isomorphic
to the group of ideal classes.
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