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AnHOTanus

Iycrs B C R*. O6osmauum gepes @4 (Q, B) uucio jexkamux B B yio-
PSAJIOUEHHBIX HAOOPOB U3 Kk Pa3JIMYHBIX BENIECTBEHHBIX COIPSKEHHDBIX aJire-
Opamveckux umcesn cremedn < n u BbICOTHI < Q. CnpaBesiuBo Ciemyoniee
COOTHOIIICHNUE:

n+1
24(Q: B) W/m(x) [ Ioi—wildx+0@), @,

2(n+1 B 1<i<j<k

rie dyHKIms Y, HernpepbisHa B RF 1 Gymer siBro Bhimcana. Ecom n = 2, B
OCTATOYHOM HUJICHE MOSIBJIAETCS JIONOJHUTEIBHBIN MHOXKUTEb log (. Hammoe
COOTHOIIIEHNE MOKET OBITh MCTOJKOBAHO KaK ‘OTTaJKnBaHNe’ BeIeCTBEHHBIX
COTIPSI?KEHHBIX aJIFeOPANIECKUX YUCeJT JIPYT OT JPYTa.

OyuKIns

pr(x) = xe(x) [[ 2 -y

1<i<j<k

COBITQJIAET C k-TOYEIHON KOPPEJIANUOHHON PYHKITUEH CIIyIaiiHOro MHOTOYIeHA
CTeIeHU N C He3aBUCUMBIMU KO3 PUITMEHTAMY, PABHOMEPHO PACIIPEICICHHbI-
Mu Ha orpeske [—1,1].

Knouesvie caosa: CONpsizKEHHBIE ajrebpamvdecKrue 9UHCIa, KOPPEJIAIn
MEXKJy aJiredparmvdecKuMu 9uCJIaMU, pacipeescHne aaredpanieckux 4ducell,
[E€JI0YMCJICHHBI MHOT'OYJIeH, CJIyYaliHbld MHOI'OYJIEH.
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Abstract

For B C R* denote by ®;(Q, B) the number of ordered k-tuples in B of
real conjugate algebraic numbers of degree < m and naive height < Q. We
show that

(2@)”+1

®(Q:B) = 55 s [l I lr=alixr0@), @
B SISUS

where the function y is continuous in R* and will be given explicitly. If n = 2,
then an additional factor log ) appears in the reminder term. This relation
may be regarded as a "repulsion” of real algebraic conjugates from each other.
The function
pe(x) = xk(x) [ 2 — =l
1<i<j<k
coincides with a k-point correlation function of real zeros of a random polyno-
mial of degree n with independent coefficients uniformly distributed on [—1, 1].

Keywords: conjugate algebraic numbers, correlations between algebraic
numbers, distribution of algebraic numbers, integral polynomial, random poly-
nomial.

Bibliography: 18 titles.

1. Introdution

Baker and Schmidt [2] proved that the set of algebraic numbers of degree at most
n forms a reqular system: there exists a constant ¢, depending on n only such that
for any interval I C R! and for all sufficiently large @@ € N there exist at least

Cn’I‘ Qn-l—l/(log Q)Bn(n-l-l)

algebraic numbers oy, ..., a; of degree at most n and height at most () satisfying
la; — aj| > (log Q)*" ™/t 1<i<j<l

Later Beresnevich [4] showed that the logarithmic factors can be omitted.
Beresnevich, Bernik, and Gotze [5] obtained the following result about the

distribution of distances between conjugate algebraic numbers. Let n > 2 and

0<w< ”TH Then for all sufficiently large () and any interval I C [—%, %] there exist
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at least %Q”“_lel | real algebraic numbers « of degree n and height H(a) =, @
having a real conjugate o* such that |o — o*| =<, Q7.

The simplest example of algebraic numbers are the rational numbers. Appropri-
ately ordered, they form the Farey sequences. It is well-known that they are equidi-
stributed in [0, 1], see [15] for an elementary proof and [8] for a deeper discussion of
the subject. For the history of the problem we refer the reader to [7].

In 1971 Brown and Mahler [6] introduced a natural generalization of the Farey
sequences: the Farey sequence of degree n and order () is the set of all real roots
of integral polynomials of degree n and height at most (). The distribution of the
generalized Farey sequences has been investigated in [12] (see also [11], [13] for the
case n = 2).

Namely, fix n > 2 and consider an arbitrary interval I C R. Denote by ®(Q;I)
a number of algebraic numbers a € I of degree at most n and height at most Q.
Then we have that

(2Q>n+1

Q1) = 3o [@dr 0 (@0 Q). @ ()

where ((-) denotes the the Riemann zeta function and I(n) is defined by

) n:27

w={g 123 >

The limit density p is given by the formula

plx) = 2_"_1/ thja:j_l
D,

j=1
where the domain of integration D, is defined by

dt, ... dt,, (3)

Dx:{(tl,...,tn)GR" »max |ty <1, [tha”™ + -+ ta §1}.
1<k<n

If v € [~1+1/v2,1—1/y/2], then (3) can be simplified as follows:

p(x) = 1—12 <3+

The function p coincides with the density of the real zeros of the random polyno-
mial

n

1(1{: + 1)2x2k> :

k=1

Glz) =& + a4+ G + &, (4)

where &y, &,...,&, are independent random variables uniformly distributed on
[—1,1] (see, e.g., [18]). It means that for any Borel subset B C R!,

EN(G,B):/p(x)dx,

B
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where N (G, B) denotes the number of zeros of G lying in B. The real zeros of
G can be considered as a random point process. Its distribution can be described
by its k-point correlation functions py(x1,...,2%),k = 1,2,...,n (also known as
joint intensities; see Section 2 for definition). The one-point correlation function p;
coincides with the density p. The explicit formula for p; has been obtained in [9]
(see Section 2 for details).

The aim of this paper is to show that, like in the case k£ = 1, the correlation
functions pj, are closely related with the joint distribution of real conjugate algebraic
numbers.

Note that for & = n we obtain the joint distribution of totally real algebraic
numbers. These numbers (in particular, fields formed by them) are of great interest
and possess some interesting properties. For example, lattices built by them are very
well distributed in parallelepipeds, see [16].

We also mention that there are a number of papers where total number of k-
vectors whose coordinates form a field extension of degree n over some base number
field is considered. See e.g. [14] or [3] for some interesting results and references. In
this area the multiplicative Weil height is usually used to measure such vectors.

2. Notations and main result

Let us start with some notation. Fix some positive integer n > 2 and k£ < n.
Denote
x = (21,...,2;) € R".

We use the following notation for the elementary symmetric polynomials:

1, if =0,
O"(X) — Z Lj1Ljy v Ty if 1 S 1 < k?,
’ 1< < <ji<k
0, otherwise.

Denote by P(Q) the class of all integral polynomials of degree at most n and
height at most . The cardinality of this class is (2Q + 1)"*L.

Recall that an integral polynomial is called prime, if it is irreducible over Q,
primitive (the greatest common divisor of its coefficients equals 1), and its leading
coefficient is positive. Let P*(Q) be the class of all prime polynomials from P(Q).

The minimal polynomial of an algebraic number « is a prime polynomial such
that « is a root of this polynomial.

For a Borel subset B C R* denote by ®,(Q; B) the number of ordered k-tuples
(o, 0, ..., ) € B of distinct real numbers such that for some p € P*(Q) it holds

plan) =+ = pla) = 0.

Essentially ®4(Q; B) denotes the number of ordered k-tuples in B of conjugate
algebraic numbers of degree at most n and height at most Q.
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Given a function g : R! — R! and a Borel subset B C R¥ denote by Ni(g, B)
the number of ordered k-tuples (x1,za,...,x;) € B of distinct real numbers such
that

g(n) =+ = glag) = 0.

For any algebraic number its minimal polynomial is prime, and any prime polynomial
is a minimal polynomial for some algebraic number. Therefore we have that

O(Q;B)= > Nilp,B). (5)

PEP*(Q)

Applying Fubini’s theorem to the right hand side we obtain
O1(Q;B) = m-#{p € P*(Q) : Ni(p, B) =m}. (6)
m=0

Since Ni(p, B) < n!/(n — k)!, the sum in the right hand side is finite.
Now we are ready to state our main result.

THEOREM 1. Let B be a region in RF with boundary consisting of a finite number
of algebraic surfaces. Then

(2@ / pr(x) dx + O <Qn log'™ Q) ;@ — oo (7)

Du(Q; B) = SRCEA

Here the function py is given by the formula

pe(x) = 271 _— / 0

1<1,<]<k3 =1

dto . ..dt,_p, (8)

<if.

The implicit big-O-constant in (7) depends on n, the number of the algebraic
surfaces and their maximal degree only. The proof of Theorem 1 is given in Section 3.

COROLLARY 1. The case k =1 implies (1).

COROLLARY 2. If k =n, then (8) can be simplified as follows:

9 1 ntl
pnX) = 3D <ma><o<i<n|a@»<x>\) IL Joe =l

1<i<j<n

Ztm

7=0

where the domain of integration Dy is defined by

n—k

Z(—l)i_jai—j (x)t;

J=0

Dx = {(tm Ce 7tn—k) € Rn_k+1 . Imax

0<i<n
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It has been shown in [9, Section 3| that the function p; defined in (8) is a k-
point correlation function of real zeros of the random polynomial G defined in (4).
It means that for any Borel subset B C R¥,

EN,(G. B) = /B pr(x) dx. (9)

Let us derive several properties of py.

PROPOSITION 5. a) For any permutation s of length n,

Pr(Ts(1)s Ts2)s - - Tsy) = Pr(X).

b) For all x € R¥,
pr(—%) = pi(x).

¢) For all x € R with non-zero coordinates,

k
pe(ert oyt ) = pe(x) [ 27

i=1

PROOF. The first and the second properties are trivial. To prove the last one,
note that for any integral irreducible polynomial g(z) of degree n, the polynomial
2"g(z~1) is also irreducible and has the same degree and height. Therefore for any
Borel set B C R¥ which does not contain points with zero coordinates we have

®(Q; B™) = ©4(Q; B),
where B! is defined as
B~ = {(a7 2yt ) s (w2, .., 1y) € B}

Letting @ tend to infinity, we obtain from (7) that

/B o (x) dx = /B el dx

Making the substitution (x1,...,25) — (z7,...,2,"), we obtain

[ niax= [ (Hx ) (@it

Since the class of sets B is large enough, the third property follows. O
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3. Proof of Theorem 1

For a Borel set A C R™ denote by A\*(A) the number of points in A with coprime
integer coordinates.
Consider a set A,, C [—1,1]"™! consisting of all points (tg,...,t,) € [—1,1]""!
such that
Nk(tnx" + -+ tll‘ + t(], B) =m.

Then the number of primitive polynomials p € P(Q) such that Ny(p, B) = m is
equal to A*(QA,,). Hence it follows from the definition of a prime polynomial that

#p e P Q) : Nelp, B) = m} — LX'(QA,)

< Ry, (10)

where R denotes the number of reducible polynomials (over Q) from Pg. Note that
the factor 1/2 arises because prime polynomials have positive leading coefficient.
It is known (see [17]) that

Ro=0 (Q” log!™ Q) . O — 0. (11)

Combining (10) and (11) with (6), we obtain
©,(Q; B) = %mzzom*(QAm) +0 (Q” log'™ Q) , Q— oo (12)

To estimate A*(QA,,), we need the following lemma.

LEMMA 1. Consider a region A C R%, d > 2, with boundary consisting of a
finite number of algebraic surfaces. Then

Vol(A)
¢(n)

where the implicit constant in the big-O-notation depends on d, the number of the
algebraic surfaces and their maximal degree only.

N(QA) = ~22Q+0 (@7 0g' Q) Q= o0, (13)

PROOF. The results of this type are well-known, see, e.g., the classical monograph
by Bachmann [1, pp. 436-444] (in particular, formulas (83a) and (83b) on pages 441—
442). For the proof of Lemma 1, see [10]. O
Since the boundary of B consists of a finite number of algebraic surfaces, the
same 1s true for A,,. Hence it follows from Lemma 1 that
~ Vol(A,)

N (QA,) = anH +0(Q"), Q— oo,

which together with (12) implies

QnJrl e

= RO Z mVol(A,,) + O (Q” log!™ Q) , @ — 0. (14)

m=0

D (Q;92)
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To calculate >~ °_, m Vol(A,,), note that

Vol(4,,) = 2" P(N,(G, B) = m),

where G is the random polynomial defined in (4). Hence

> mVol(A4,,) = 2" ENy(G, B). (15)
m=0

Applying (9) finishes the proof.
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