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AnBOTan s

Coemunenue nynesoro rpada Oy, u nomuoro rpada K,, O,, + K, = S(m,n), nassisaercs
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Abstract

The join of null graph O,,, and complete graph K,,, O,,, + K,, = S(m,n), is called a complete
split graph. In this paper, we characterize chromatically unique, determine list-chromatic
number and characterize unique list colorability of the complete split graph G = S(m,n).
We shall prove that G is chromatically unique if and only if 1 < m < 2, ch(G) =n+1, G is
uniquely 3-list colorable graph if and only if m > 4, n > 4 and m+n > 10, m(G) < 4 for every
1 <m <5 and n > 6. Some the property of the graph G = S(m,n) when it is k-list colorable
graph also proved.
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1. Introduction

All graphs considered in this paper are finite undirected graphs without loops or multiple edges.
If G is a graph, then V(G), E(G) (or V, E in short) and G will denote its vertex-set, its edge-set and
its complementary graph, respectively. The set of all neighbours of a subset S C V(G) is denoted
by Ng(S) (or N(S) in short). Further, for W C V(G) the set W N N¢(S) is denoted by Ny (S).
If S = {v}, then N(S) and Ny (S) are denoted shortly by N(v) and Ny (v), respectively. For a
vertex v € V(G), the degree of v (resp., the degree of v with respect to W), denoted by deg(v)
(resp., degy, (v)), is |[Ng(v)| (resp., |[Nw (v)]). The subgraph of G induced by W C V(G) is denoted
by G[W]. The null graphs and complete graphs of order n are denoted by O,, and K, respectively.
Unless otherwise indicated, our graph-theoretic terminology will follow [2].

An acyclic graph, one not containing any cycles, is called forest. A connected forest is called a
tree, a tree of order n is denoted by T5,.

Let Gy = (V4, Eq), Go = (Va, E3) be two graphs such that V1NV, = ). Their union G = G1UG»
has, as expected, V(G) = V1 UV, and E(G) = Ey U Ej. Their join defined is denoted G + G2 and
consists of G; U G2 and all edges joining V; with V.

A graph G = (V, E) is called a split graph if there exists a partition V = I U K such that G[I]
and G[K] are null and complete graphs, respectively. We will denote such a graph by S(IU K, E).
The join of null graph O,, and complete graph K,, O,, + K,, = S(m,n), is called a complete
split graph.The notion of split graphs was introduced in 1977 by Féldes and Hammer [14]. A role
that split graphs play in graph theory is clarified in [14] and in [7], [9], [27], [30], [34], [35], [36].
These graphs have been paid attention also because they have connection with packing and knapsack
problems [11], with the matroid theory [15], with Boolean functions [31], with the analysis of parallel
processes in computer programming [18| and with the task allocation in distributed systems [19].
Many generalizations of split graphs have been made. The newest one is the notion of bisplit graphs
introduced by Brandstidt et al. [6].

Let G = (V, E) be a graph and \ is a positive integer.

A A-coloring of G is a bijection f : V(G) — {1,2,..., A} such that f(u) # f(v) for any adjacent
vertices u,v € V(G). The smallest positive integer A such that G has a A-coloring is called the
chromatic number of G and is denoted by x(G). We say that a graph G is n-chromatic if n = x(G).

Let V(G) = {v1,v2,...,v,}, two A-colorings f and ¢ are considered different if and only if
f(vg) # g(vg) for some k = 1,2,...,n. Let P(G,\) (or simply P(G) if there is no danger of
confusion) denote the number of distinct A-colorings of G. It is well-known that for any graph
G, P(G,)\) is a polynomial in A, called the chromatic polynomial of G. The notion of chromatic
polynomials was first introduced by Birkhoff [4] in 1912 as a quantitative approach to tackle the
four-color problem. Two graphs G and H are called chromatically equivalent or in short x-equivalent,
and we write in notation G ~ H, if P(G,\) = P(H,\). A graph G is called chromatically unique
or in short y-unique if G’ 2 G (i.e., G’ is isomorphic to G) for any graph G’ such that G’ ~ G.
For examples, all cycles are y-unique [25]. The notion of y-unique graphs was first introduced and
studied by Chao and Whitehead [10] in 1978. The readers can see the surveys [22], [25], [26] and
[36] for more informations about x-unique graphs.

Let (Ly)yey be a family of sets. We call a coloring f of G with f(v) € L, for all v € V is a
list coloring from the lists L,. We will refer to such a coloring as an L-coloring. The graph G is
called \-list-colorable, or A-choosable, if for every family (L, )yecy with |L,| = X for all v, there is
a coloring of G from the lists L,. The smallest positive integer A\ such that G has a A-choosable is
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called the list-chromatic number, or choice number of G and is denoted by ch(G).

Let G be a graph with n vertices and suppose that for each vertex v in G, there exists a list
of k colors Ly, such that there exists a unique L-coloring for G, then G is called a uniquely k-list
colorable graph or a UKLC graph for short. The idea of uniquely colorable graph was introduced
independently by Dinitz and Martin [13] and by Mahmoodian and Mahdian [29] (Mahmoodian and
Mahdian have obtained some results on the uniquely k-list colorable complete multipartite graphs).
There have been many interesting and insightful research results on these issues for different graph
classes (see [16], [20], [21], [23], [24], [29]). However, these are still issues that have not been resolved
thoroughly, so much more attention is needed.

In this paper, we shall characterize chromatically unique, determine list-chromatic number and
characterize unique list colorability of the complete split graph G = S(m,n). Namely, we shall
prove that G is chromatically unique if and only if 1 < m < 2 (Section 2), ch(G) = n + 1 (Section
3), G is uniquely 3-list colorable graph if and only if m > 4, n > 4 and m +n > 10, m(G) < 4
for every 1 < m < 5 and n > 6 (Section 5), some the property of the graph G when it is k-list
colorable graph also proved (Section 4).

2. Chromatically unique

For a graph G and a positive integer k, a partition {41, Ag,..., Ax} of V(G) is called a
k-independent partition in G if each A; is a non-empty independent set of G. Let «a(G,k)
denote the number of k-independent partitions in G. Hence, P(G,\) = Z a(G, k)(N) where

1<k<n
MNeg=AXA=1)...(A=k+1).
The polynomial o(G,z) = Z a(G, k)a* is called the o-polynomial of G. For convenience,
1<k<n
simply denote o(G,x) by 0(G) and G = H by G = H. The following lemmas will be used to prove
our main results.

LEMMA 7 ([25]). If K,, is a complete graph on n vertices then x(K,) =n and G is x-unique.
LeMMA 8 ([32]). Let G and H be two x-equivalent graphs. Then

(i) IV(G)| = [V (H)|
(i) |E(G)| = |E(H)
(1) x(G) = x(H);
(iv) G is connected if and only if H is connected;
(v) G is 2-connected if and only if H is 2-connected.

)

7

LemMMA 9 ([32]). (i) All trees of the same order are x-equivalent;
(ii) A tree T, is x-unique if and only if 1 <n < 3.

LeMMA 10 ([8]). Let G and H be two disjoint graphs. Then
o(G+ H,z) =0(G,z)o(H,x).

LEMMA 11 (|28]). Let G and H be two graphs. Then P(G,\) = P(H,\) if and only if
o(G,x) =0(H,x).

LEMMA 12 ([36]). Let G=S(IUK, E) be a split graph with | K|=n and k=max{deg(u) | u € I}.
Then

(i) G is n-chromatic if and only if k < n;

(i1) G is (n + 1)-chromatic if and only if k = n.

LeMMA 13 ([21]). The graph G = K§* + K, is x-unique.
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Now we characterize x-unique complete split graphs.
THEOREM 1. G = S(m,n) is chromatically unique if and only if 1 < m < 2.

Proor. Let V(G) = I U K is a partition of V(G) such that G[I] = O,,, GIK] = K,,
G =G+ G[K], I = {ui,uz,...,un} and K = {vy,va,...,05}.

Firrst we prove the necessity. Suppose that G = S(m, n) is x-unique. For suppose on the contrary
that m > 3. If n = 1 then G = T};,41, where T,,,11 is a tree of order m + 1. By (ii) of Lemma 9, G
is not x-unique because m + 1 > 4, a contradiction. So n > 2. Set G’ = (I' U K', E’) with

I' = {uy,ug, ..., un}, K' = {v1,v0,...,0,}

and B/ = B4 U Ey U FE3 with

Ei = {viur,ugus, ..., Um—1Um },
EQZ{Uﬂ)j ’ i:1,2,...,m,j:2,...,n},

Es ={vv; | i#j;i,j=1,2,...,n}.
It is not difficult to see that
G = G[{’Ug,vg, R ,’UnH + G[{Ul,ul,UQ, R ,um}} =Kn1+ Ty,

G = G'[{va,vs,...,vn}] + G'[{v1,ur,u2, .. . um}] = Kno1 + T'n_,_l,

where Ty, 11 and T}, are trees of order m + 1. By (i) of Lemma 9, P(Ty,41,A) = P(T},,,,A). By
Lemma 10 and Lemma 11, it follows that P(G,\) = P(G', \) , ie., G ~ G'. It is clear that

Hu € V(G) | degn(u) =A(G) =m+n—1}| = {vi,v2,..., 00} =n,

Hu € V(G') | dege(u) = A(G") =m+n—1} = [{ve,vs,...,v.} =n— 1.

So, G 2 G’ and G is not y-unique, a contradiction. Thus, 1 < m < 2.
Now we prove the sufficiency. Suppose that 1 < m < 2. If m = 1 then G is a complete graph
K, 11. By Lemma 7, G is x-unique. If m = 2 then G = K1 + K,,. By Lemma 13, G is x-unique. O

3. List-chromatic number

We need the following Lemmas 14, 15 to prove our results.

LemMA 14 ([12]). For a graph G, ch(G) = x(G).

We determine list-chromatic number for complete graphs.
LEMMA 15. If K, is a complete graph on n vertices then ch(K,) = n.

PrROOF. By Lemma 7 and Lemma 14, ch(K,,) > n. Set V(K,,) = {v1,v2,...,v,} and L,, is a list
of colors of V; such that |L,,| = n for every i = 1,2,...,n. Let f be a coloring of K, such that

f(v1) € Ly, f(v2) € Loy \ {f(v1)}, -, f(vn) € Lo, \ {f(v1), f(v2),. .., f(vn-1}.
Then f is n-choosable for K, i.e., ch(K,) < n. Thus, ch(K,) =n. O

Now we determine list-chromatic number for complete split graphs.
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THEOREM 2. List-chromatic number of G = S(m,n) is

ch(G) =n+1.

Proor. By (ii) of Lemma 12 and Lemma 14, ch(G) > n+ 1. Let V(G) = I U K is a partition of
V(G) such that G[I] = Oy, G[K] = Ky, I = {u1,u2,...,un} and K = {vy,ve,...,v,}. Let

Luleuzv"‘7Lum7L’U1aLv27"'7Lvn

be the lists of colors of
U, U2,y ..., Um,V1,V2,...,Un,

respectively, such that
|Luy | = |Lug| = ... = [Luy, | = Loy | = |[Lup| = ... = [Lo, | =n+ 1.

By Lemma 15, there exists (n + 1)-choosable g of G[K U {u1}] = K,41 with the lists of colors
Ly, Lyy, ..., Ly, , Ly, . Let f be the coloring of G such that

f(v;) = g(v;) for every i = 1,2,...,n,

f(u1) = g(ur),

f(ui) € Ly, \ g(N(u;)) for every i =2,3,...,m.
Then f is (n + 1)-choosable for G, i.e., ch(G) < n+ 1. Thus ch(G) =n+1. O

4. Property of S(m,n) when it is k-list colorable

If a graph G is not uniquely k-list colorable, we also say that G has property M (k). So G has
the property M (k) if and only if for any collection of lists assigned to its vertices, each of size k,
either there is no list coloring for G or there exist at least two list colorings. The least integer k such
that G has the property M (k) is called the m-number of G, denoted by m(G). This conception
was originally introduced by Mahmoodian and Mahdian in [29].

LEMMA 16 (|29]). Each UKLC graph is also a U(k — 1)LC graph.
LEMMA 17 (|29]). The graph G is UKLC if and only if k < m(G).

LEMMA 18 (]|29]). A connected graph G has the property M(2) if and only if every block of G
15 either a cycle, a complete graph, or a complete bipartite graph.

LEMMA 19 ([29]). For every graph G we have m(G) < |E(G)| + 2.
LeMMA 20 ([29]). Every UkLC graph has at least 3k — 2 wvertices.

For example, one can easily see that the graph S(2,2) has the property M(3) and it is U2LC,
so m(5(2,2)) = 3.

PROPOSITION 1. Let G = S(m,n) be a UkLC graph with k > 2. Then
(i) m > 2;
¥ 2—m+4 .
() k< S
(ii) k < [2HpE2].
ProoOF. (i) If m = 1 then G is a complete graph K,,;1. Lemma 18, G has the property M(2), a

contradiction.
(ii) It is not difficult to see that |E(GQ)| = w By Lemma 19, we have

m2—m+4

m(G) < |E(G)|+2 = 5
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m2—m+4

g

(iii) Assertion (iii) follows immediately from Lemma 20. O

Let G=S(m,n) bea UkLC graph with V(G)=IUK, G[I|=0,,,G[K|=K,,m > 2,n > 1,k > 3.
Set

By Lemma 17, we have k <

I ={uj,ug,...,upnt, K ={vi,ve,...,0n}.

Suppose that, for the given k-list assignment L:
Ly, ={ai1,ai2,...,a,;} for every i =1,...,m,
Ly, ={bi1,bi2,...,bip} foreveryi=1,...,n,

there is a unique k-list color f:

f(u;) = a;q for every i =1,...,m,
f(vi) =bi1 forevery i =1,...,n.

THEOREM 3. (i) b;1 # bjl, where 1 <i,j <n and i # j;
(1) a;1 # bj1, where 1 <i<m,1<j<n
(i) a;1 & {aj2,a;53,.. a]k} where i,j =1,2,...,m.

7

PrOOF. (i) Since G[K| = K,, it is not difficult to see that b;; = f(v;) # f(v;) = b;1, where
1<4,5<nandi#j.
(ii) Since G[K U {u;}] = Kp41 for every i = 1,...,m, it is not difficult to see that

a;n = f(u;) # f(”j) = 05,1,

where 1 <1< m,1 <j<n.

(iii) If 4 = 7, then it is obvious that the conclusion is true. If ¢ # j, then we suppose that there
exists ig, jo such that ip,jo = 1,...,m;ip # jo and a;y1 € {ajy2,@j0,3,-- -, k) It is clear that
@i # ajy.1. Let f' be the coloring of G such that

(a) f/(ujo) = Qip,15

(b) f'(u;) = a; 1 for every i € {1,...,m},i # jo;

(¢) f'(vi) = b1 forevery i =1,...,n.

Then f’ is a k-list coloring for G and [’ # f, a contradiction. O

Set f(v) = L, \ {f(v)} for every v € V(G) =TUK.

THEOREM 4. (i) 2 < |f(I)];

(i) |f(I)] < m—2, where m > 4;

(iii) Uper f(v) € f(K);

(i) Upev(ayf(v) C f(V(G));

(v) There exists i € {1,...,n} such that f(v;) C f(I).

ProOOF. (i) For suppose on the contrary that |f(I)| = 1, then a11 = ag1 = ... = am,1 = a. Set
H = G — 1, it is not difficult to see that H is a complete graph K,. We assign the following lists
L] for the vertices v of H:

If a € L, then L) = L, \ {a},

If a ¢ L, then L) = L, \ {b}, where b € L, and b # f(v).
It is clear that |L)| = k — 1 > 2 for every v € V(H). By Lemma 18, H has the property M (2). So
by Lemma 16, H has the property M(k — 1). It follows that with lists L/, there exist at least two
list colorings for the vertices v of H. So it is not difficult to see that with lists L,, there exist at
least two list colorings for the vertices v of G, a contradiction.

(i) For suppose on the contrary that |f(I)| > m — 1. We consider separately two cases.

Case 1: |f(I)]=m — 1.
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Without loss of generality, we may assume that a1 = a21 and a;1 # aj;; for every
i,j €{2,...,m},i # j. Set graph G’ = (V', E’), with

V' =ITUK,E' = (E(G)U{wujli,j =1,2,...,m;i # j}) \ {uiuz}.
It is clear that G’ is complete split graph S(2,m 4+ n — 2) with V(G') = I' U K', where
I/ == {Ul,UQ},K/ = {u37u47 ey Um, V1,02, .. ,'Un}

Since a1 = ag 1, it is not difficult we have got a contradiction.
Case 2: |f(I)| = m.
In this case, a;1 # aj1 for every i,j € {1,2,...,m},i # j. Set graph G = (V", E"), with

V" =TUK,E" = BE(G)U{uujli,j =1,2,...,m;i # j}.

It is clear that G” is a complete graph K, 1,. By Lemma 18, G” has the property M (2), so with
lists L,, there exist at least two list colorings for the vertices v of G”. Since V(G) = V(G"), it is
not difficult to see that with lists L,, there exist at least two list colorings for the vertices v of G,
a contradiction.

(iii) For suppose on the contrary that U,e;f(v) € f(K). Then there exists ig,jo such that
@i jo ¢ fK) with 1 < ip < m,2 < jo < k. Let f be the coloring of G such that

(a) f'(uiy) = Gig,jo >

(b) f'(u;) = a; 1 for every i € {1,...,m},i # io;

(¢) f'(vi) = b1 forevery i =1,...,n.
Then f’ is a k-list coloring for G' and f’ # f, a contradiction.

(iv) For suppose on the contrary that Uyerux f(v) € f(V(G). We consider separately two cases.

Case 1: There exists ig, jo such that a;, j, ¢ f(V(G)) with 1 <ig < m,2 < jo < k.

Let f’ be the coloring of G such that

(a) F/(tig) = i

(b) f'(u;) = a;1 for every i € {1,...,m},i # io;

(c) f'(vi) = by foreveryi=1,...,n.
Then f’ is a k-list coloring for G' and f’ # f, a contradiction.

Case 2: There exists ig, jo such that by, j, ¢ f(V(G)) with 1 <ig <n,2 < jo < k.

Let f” be the coloring of G such that

(a) f"(u;i) = aj for every i € {1,...,m};

(b) f"(vig) = bigjo;

(c) f"(vi) = b1 for every i € {1,...,n},i # i.
Then f” is a k-list coloring for G and f” # f, a contradiction.

(v) For suppose on the contrary that f(v;) ¢ f(I) for every i € {1,...,n}, then |f(v)\f(I)| > 1
for every i € {1,...,n}. So |Ly, \ f(I)| = 2 for every i € {1,...,n}. Set graph

H=G-1=GlK|=K,.

Let L;, C Ly, \ f(I) such that |L;, | = 2 for every i € {1,...,n}. By Lemma 18, H has the property
M (2), it follows that with lists L;, , there exist at least two list colorings for the vertices v; for every
i € {1,...,n}. So it is not difficult to see that with lists L,, there exist at least two list colorings
for the vertices v of GG, a contradiction. O
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5. Uniquely 3-list colorable complete split graphs

We need the following Lemmas 21-29 to prove our results.

LEMMA 21. (i) m(S(1,n)) =2 for everyn > 1;
(i) m(S(r,1)) =2 for every r > 1;
(i1i) m(S(2,n)) = 3 for every n > 2.

ProOOF. (i) It is clear that S(1,n) is a complete graph for every n > 1, by Lemma 18, m(S(1,n)) = 2
for every n > 1.

(ii) Tt is clear that S(r,1) is a complete bipartite graph for every r > 1, by Lemma 18,
m(S(r,1)) =2 for every r > 1.

(iii) By Lemma 18, G = S(2,n) is U2LC for every n > 2.

It is not difficult to see that |F(G)| = 1. By Lemma 19, m(S(2,n)) < 3 for every n > 2.

Thus, m(S(2,n)) = 3 for every n > 2. O

LeEMMA 23 ([16]). For every r > 2, m(S(r,3)) = 3.

LEMMA 24

LEMMA 22 ([16]). m(S(3,n)) =3 for every n > 2;
(

(
LEMMA 25 (

)-
[17]). Graphs S(5,4) and S(4,4) have property M (3).
)-

[33]). The graph S(4,5) has property M (3).

LEMMA 26. G = S(4,n) has the property M(4) for every n > 2;

PRrROOF. Let G = S(4,n) is a complete split graph with V(G) = UK, G[I] = O4,GIK] = K,,,n > 2.
Set
I ={uy,ug,us,us}, K = {v1,v9,...,0,}.

For suppose on the contrary that graph G = S(4,n) is U4LC. So there exists a list of 4 colors
L, for each vertex v € V(G), such that there exists a unique L-coloring f for G. By (i) and (ii) of
Theorem 4, |f(I)| = 2.

Let f(I) = {a,b}. Set graph H = G — I, it is not difficult to see that H is a complete graph
K,,. We assign the following lists L/ for the vertices v of H:

(a) If a,b € L, then L} = L, \ {a, b},

(b) If a € Ly,,b ¢ L, then L, = L, \ {a, c}, where ¢ € L, and ¢ # f(v),

(¢)Ifa¢ L, be L, then L, = L, \ {b,c}, where ¢ € L, and ¢ # f(v),

(d) If a,b ¢ L, then L) = L, \ {¢,d}, where ¢,d € L,,c # d and ¢,d # f(v).
It is clear that |L)| = 2 for every v € V(H). By Lemma 18, H has the property M (2). It follows
that with lists L, there exist at least two list colorings for the vertices v of H. So it is not difficult

to see that with lists L,, there exist at least two list colorings for the vertices v of G, a contradiction.
O

LEMMA 27 ([39]). (i) For every n > 2, S(5,n) has the property M(4);
(i1) If n = 5 then m(S(5,n)) = 4.

LemMMA 28 ([38]). For every m > 1,k > 2, S(m,2k — 3) has the property M (k).
LEMMA 29 (|38]). For everyn > 1,k > 2, S(2k — 3,n) has the property M (k).
Now we prove our results.

THEOREM 5. The graph G = S(m,n) is uniquely 3-list colorable graph if and only if m > 4
>4 and m+n > 10.

2
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PROOF. Firrst we prove the necessity. Suppose that G = S(m,n) is USLC. If m < 4 or n < 4 then
by Lemma 28 and Lemma 29, it is not difficult to see that G has the property M(3), a contradiction.
Therefore, m > 4 and n > 4. It follows that m +n > 8. If m +n = 8 then m = 4 and n = 4, by
Lemma 24, G has property M(3), a contradiction. If m +n = 9 then (m,n) € {(4,5),(5,4)}, by
Lemma 24 and Lemma 25, G has property M (3), a contradiction. Thus, m + n > 10.

Now we prove the sufficiency. Suppose that m > 4, n > 4 and m + n > 10. Let
V(G) = IUK,G[I] = On,GIK] = Ky, I = {u1,u2,...,um}, K = {v1,v2,...,v,}. We prove
G is U3LC by induction on m + n. If m +n = 10, then we consider separately three cases.

(i) m =4 and n = 6.

We assign the following lists for the vertices of G:

Ly, = {17 3, 4}> Ly, = {1) 7, 8}v Ly, = {27 9, 6}7 Ly, = {27 7, 8};

Ly, = {1,2,3}, Ly, = {1,2,4}, Ly, = {1,2,5}, Ly, = {1,2,6}, Ly, = {1,2,7}, Ly, = {1,2,8}.

A unique coloring f of G exists from the assigned lists:

flur) =1, f(uz) =1, f(ug) =2, f(us) = 2;

f(v1) =3, f(v2) =4, f(vs) =5, f(va) =6, f(vs) =7, f(ve) = 8.

(i) m =5 and n = 5.

We assign the following lists for the vertices of G:

Ly, = {1,4,5}, Ly, = {1,3,6}, Ly, = {2,3,7}, Lu, = {2,4,5}, Ly, = {2,6,7};

L, ={1,2,3},L,, ={1,2,4}, L,, = {1,2,5}, L, = {1,2,6}, L,, = {1,2,7}.

A unique coloring f of G exists from the assigned lists:

flur) =1, flug) =1, f(uz) = 2, f(us) =2, fus) = 2;

f(Ul) =3, f(UQ) =4, f(Ug) =9, f(’U4) =0, f(’U5) =T.

(i) m = 6 and n = 4.

We assign the following lists for the vertices of G:

Lu, = {1,3,5}, Lu, = {1,4,5}, Ly, = {2,3,6}, Ly, = {2,3,4}, Ly, = {2,4,6}, Ly, = {2,5,6};

Ly, = {1,2,3}, Ly, = {1,2,4}, L, = {1,2,5}, Ly, = {1,2,6}.

A unique coloring f of G exists from the assigned lists:

fu) =1, f(u2) =1, f(us) =1, f(ua) =2, f(us) = 2, f(us) = 2;

f(v1) =3, f(v2) =4, f(v3) =5, f(va) = 6.

Now let m+n > 10 and assume the assertion for smaller values of m+n. We consider separately
two cases.

Case 1: m > 5.

Set G’ = G — uy, = S(m — 1,n). By the induction hypothesis, for each vertex v in G’, there
exists a list of 3 colors L], such that there exists a unique f’ for G'. We assign the following lists
for the vertices of G:

Ly, =L, ,L,=L,ifve V().

A unique coloring f of G exists from the assigned lists:

Fltm) = (1), f(0) = F/(v) if v € V(G).

Case 2: n > 5.

Set G' = G — v, = S(m,n — 1). By the induction hypothesis, for each vertex v in G’, there
exists a list of 3 colors L], such that there exists a unique f’ for G'. We assign the following lists
for the vertices of G:

L, ={f (vn-1), f'(vn—2),t} with t ¢ f'(G'), L, = L if v € V(G").

A unique coloring f of G exists from the assigned lists:

flon) =t, f(v) = f'(v) ifveV(G). O
COROLLARY 1. m(S(4,n)) =4 for every n > 6.
Proor. It follows from Theorem 5 and Lemma 26. O

THEOREM 6. m(S(r,n)) <4 for every 1 <r <5 and n > 6.
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Proor. It follows from Lemma 21 to Lemma 27. O

6. Conclusion

The coloring problem and the list coloring problem are interesting topics in graph theory.
Coloring graphs found application in many practical problems, for example, coding theory or
security. Clearly, to estimate the chromatic as well as the chromatic uniqueness is very important.
So far there have been many research results on this topic for different graph layers. However, the
problem has not been generally solved, and further research is needed. This article contributes to
enriching the research results on the problem of listing colors.

The main results of the paper have identified the characterized chromatically unique (Theorem
1), list-chromatic number (Theorem 2) and characterized unique list colorability (Theorem 5 and
Theorem 6) of complete split graph G = S(m,n). Some the property of the graph G = S(m,n)
when it is k-list colorable graph also proved (Theorem 3 and Theorem 4).The desire in the future
will achieve deeper results on the issues raised in this article.
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