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AnHOTanusa

Agnropurm CopeHCOHA € JIEBBIM CIBUTOM — OJIWH U3 OBICTPBIX aJTOPUTMOB BBIYUCEHUS HAW-
0oJIbIIIero OOIEro Je/IUTe/Is ABYX HATYyPaJbHBIX unces. B Hadaje ero paborsl (ukcupyercs
HATYpaJbHOE Yucyo k > 2, KoTopoe sBisgercs mapamerpoM. Ha KaxkIoM mare ajiropurMa Bbi-
[OJIHSIETCsT HOUCK JIMHEIHON KOMOMHAIIME BXOHBIX YUCEJ TEKYIIErO Iara, IPUIeM HAUMEHbIIee
U3 HUX TIpeaBapuUTe/JIbHO JJOMHOX>Ka€TCA Ha IapaMeTrp k, TTIOKa HE€ Ha4YHET ITPEBOCXO/JUWTH HAW-
oosbirero. ITocse 3Toro HanbOOJIBINIEE YUCJIO 3aMEIAeTCs aOCOJMIOTHBLIM 3HAUEHHEM JIUHEeHHOI
koMmOuHanuu. Pe3ynbrarom pabOThI aJrOPUTMa, SIBJISETCS HAMOOJBINWIA OOIIW [IEeJIUTEh WC-
XOJIHBIX YHCeJI, YMHOXKEHHBIH HA HEKOTOPOE YUCII0, HA3bIBaeMOe MOOOYHBIM MHOKUTEIeM. s
asropurMa Copencona ObLIa JIOKa3aHa OIEHKA YUCIA [MIAT0B B XY/IIIEM CJIydae, IPUBEJEH TPH-
Mep. Pukcanus HEKOTOPO# HECKOHETHOH MOCTIEI0BATETBHOCTH K HATYPATbHBIX IUCE OOIBIIIX
JIBYX TIO3BOJISIET TIOJYYUTh 0000mmenubrit ajgroputm Copercona. B Hem Ha KayKI0M I1are BMECTO
qucaa k Oymer 3a7eficTBOBAHO ONMpeIe/IeHHOe 3HaYeHue mapamerpa k; € K, coOTBeTCTByOIIee
TEKYIeMy Iary ajropurMma. B oCTajbHOM aJrOpUTMBI MOJHOCTHIO COBITAIAIOT IPYT C APYTOM.

Henubie 1pobu ¢ PAIMOHATBHBIMU HEMOJHBIME YACTHBIME C JIEBBIM CABUIOM BO3HHMKAIOT B
XOJIe MPUMEHEHNS K OTHOIIEHUIO HATYPAJIbHBIX YHCET a, b 0DODIIEHHOrO k-apHOrO aJrOpUTMa
Copencona ¢ jgeBbiM caBurom. C HUME CBSA3aHBI 0COObIe (DOPMBI KOHTHHYAHTOB, TO €CTh MHO-
TOYJIEHOB, TIPY TTOMOIIM KOTOPBIX BBIPAYKAIOTCS YHUCAUTEb U 3HAMEHATEh MOAXOISIIeH TpOOH.
Il TakuX KOHTWHYAHTOB HaiiAeHBI (POPMYJIbI, MO3BOJIAIONINE TIPEICTABUTH KOHTUHYAHT 7-TO
MOpsIIKA B BUJE HEKOTOPOH KOMOWHAIIMKM KOHTHHYAHTOB MEHBINUX TOPSIKOB. DbLTH HaileHbI
YCJIOBHSL [IPU KOTOPBIX MOCJEI0BATEIHHOCTh KOHTUHYAHTOB YBEIHYMBAIOIIEIOC MOPSIKA $B-
Jsercs crporo pozpacraonieil. Takxke Obuin HANAEHDBI YCJIOBUS, [IPU KOTOPBIX IPUOIIHZKEHMS
PAIMOHAIBHBIX YHCEJI, BHITIOJHEHHBIE TPU TOMOIIY IEMHBIX IpO0eil ¢ panuOHATLHBIMYU HEOJI-
HBIMU YACTHBIMY, MOXKHO OHO3HAYHO CPABHUBATD.
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Abstract

The Sorenson left shift k-ary ged algorithm is one of the fastest greatest common divisor
algorithms of two natural numbers. At the beginning a natural number k > 2 is fixed, which is a
parameter of algorithm. At each step we multiply smaller of two input numbers of current step,
until it does not become greater of the second number. Then we calculate linear combination
between this number and the bigger of two input numbers. After that we replace the bigger of
two input numbers by absolute value of the linear combination. At the end of the algorithm we
obtain greatest common divisor of the two original numbers, which has been multiplied by some
natural number. Spurious factor has appeared in the answer. We have proven estimation of the
worst case of steps and obtained example of this case. Fixation of some endless sequence K
of natural numbers (each value is greater than 2) allows us to obtain the generalized Sorenson
left shift k-ary ged algorithm. There at i-th step the value of k; € K is used instead of fixed
parameter k. Both algorithms are completely coincide except this moment.

Continued fractions with rational partial quotients with left shift arise at applying of the
generalized Sorenson left shift k-ary ged algorithm to the ratio of two natural numbers a and
b. We can bind these continued fractions and polynomials of the special form, which called
continuants. Numerator and denominator of such continued fractions can be expressed by
continuants. Formulas have been found that allow us to express continuants of the n-th order
as some combination of continuants of a smaller order. Conditions were found at which a
sequence of continuants of increasing order is strictly increasing. We also found conditions that
allow unambiguous comparison of convergents of rational numbers that had performed by using
continued fractions with rational partial quotients.

Keywords: continued fraction, continuant, greatest common divisor, Diophantine approxi-
mation.
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1. Introduction

The Euclidean algorithm is one of the most famous algorithms for calculating the greatest
common divisor (ged) of two natural numbers ® a, b (here and further a > b > 1). At each step

2This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program
(“PRIORITY-2030").
®Natural numbers are the non-negative integers without zero.
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input number a is replaced by input number b, input number b is replaced by smallest non-negative
remainder r from division of a by b:

a=0bt+r, t=1la/b], 0<r<t.

The algorithm runs until the second argument vanishes. Then first argument is equals to
ged(a, b). The classical Euclidean algorithm corresponds to the expansion of the number a/b into a
(regular) continued fraction

@_, v
b 1
t1 + 71
.+ ™
of the length h = h(a/b), where ty is integer, and the numbers ¢1, - - -, t; are natural, t; > 2, i > 1.
The integers tg, t1, ..., tp are called partial quotients. Note that continued fractions are related to

many other mathematical objects (refer to [1], [2]).

In addition to the Euclidean algorithm, there are other algorithms that calculate gcd of two
natural numbers. Among them, it is worth noting k-ary algorithms first introduced by Sorenson:
the right-shift algorithm and the left-shift algorithm (refer to [3]). They quickly calculate the ged,
which is used in various mathematical algorithms (refer to [4, 5, 6]). Modification of the first
algorithm allows us to increase its performance (refer to |7, 8]), calculate multiplicatively inverse
elements in the ring of integers modulo a number (refer to [9]), and also allows to get rid of spurious
factors that arise during execution of algorithm (refer to [10]).

In what follows we will need the Sorenson k-ary left-shift gcd algorithm. Here is its description.
Let us fix some integer k > 2 and set ag = a, bg = b. At each step of this algorithm a pair of input
numbers (a;, b;) is replaced by new pair (a;+1,b;11) by the next rule. First we find the integer e;
from the following relation:

G La < kci, (1)

where ¢; = b;k%. Further integers x; and y; are selected that satisfy the conditions

ged(zi, yi) = 1,0 <y; <k, (2)
for which the inequality holds
ci T 1
— - — . 3
ai  yi|  vik+1) ®)
After that we select a new pair of numbers
(@it1,bi+1) = (bi, |yici — wiai]) ,if @ > 0, (4)
or
(ait1,bi41) = (bit1, @it1) ,if biv1 > aiq1. (5)

We will assume that the number x; belongs to the interval (0, k] because all other cases of
choosing this number do not satisfy inequality (3). The choice of numbers x;, y; is carried out by
enumerating possible variants and checking the feasibility of this inequality. The existence of such
numbers is guaranteed by Dirichlet’s lemma on Diophantine approximations (refer to [11, chapter
X lemma 2]).

The algorithm terminates when one of the arguments a;, b; vanishes: in this case, the second
argument becomes the answer. However, during algorithm execution at the ¢-th step a “spurious”
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Algorithm 1 Main loop of the left-shift k-ary ged

if a < b then
swap(a, b)
end if
while b # 0 do
compute ¢ = k®b such that ¢ < a < ck
find x,y < k such that ¢/a =~ z/y
a = |yc — zal
if a < b then
swap(a, b)
end if
end while

factor a; = ged(b;, x;) may appear, therefore, the result of the Sorenson algorithm will be a certain
number that differs from the ged(a,b) by the factor [];_; o;. In Sorenson’s paper, this factor was
removed using a special phase of the algorithm, performed after the main loop, called “trivial
division”. It consists of searching through possible divisors of the answer among all prime numbers
from 2 to k and then removing them. This phase was also performed at the beginning of the
algorithm in order to find small common divisors of the input numbers. Subsequently, they were
stored as a product by which each input number ag, by was divided. At the end, the saved product
was added to the answer obtained as a result of running the “trivial division” phase again. This
made it possible to save small common divisors of the input numbers because they could have been
deleted regardless of the presence of a spurious factor. Here, usage of this phase of the algorithm is
omitted, as well as precomputation of some numbers, which is used during the performing algorithm.

Instead of the precomputation phase, you can take the answer a, obtained during the main
loop in n steps and find ged using the following scheme (this idea was proposed in modification of
the Sorenson right shift k-ary ged algorithm (refer to [12])):

ged(ged(ag, an), bo),

besides these two ged calculation are performed using algorithms, in which there are no any spurious
factors. For example, it is Euclidean algorithm or binary algorithm (refer to [13]).

Below is an example of how the algorithm works. Let us fix parameter k£ to 7, input numbers ag
and by equals to 4415 and 60, respectively. At the zero step, first we find the value of egy. It equals
to 2. After that we select the values of the numbers xq, 3o, so that inequality (3) is performed. Let
us set them to 2 and 3, respectively. Further, we calculate a new pair of numbers a;, b; according
to rules (4), (5). It equals to (60, 10). It is easy to see that the ged(ag, by) is equals to 10, although
gcd of the input numbers ag and by is equals to 5. Result does not match, due to the fact that at
this step of the algorithm a spurious factor ged(bg, zp) equals to 2 is appeared. The next step also
begins with searching value of e;. It equals to 0. The numbers z7 = 1, y; = 6 satisfy inequality (3).
At the end of this step search for a new pair of numbers (ag, b2) is performed again. Value of bs is
equals to 0, so the number a9, which equals to 10, will be the answer after division by the spurious
factor, which equals to 2.

Sorenson showed that for pairs of numbers (a,b), that are chosen according to the rules

m

B )

1=0

the number of steps is equal to m + 1, and for the number m the next estimate will be fair
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m = Q(log(ab)/log(k)). (7)

Estimate (7) has been proven only for numbers of type (6). Subsequently, for two numbers
having n binary digits, Sorenson proved the asymptotic of the number of steps in the worst case
equal to ©(n/log(k))v using estimate (7). No worst-case examples of the algorithm work were given.
Also, the question of the constant in the estimate bounded from above remained open until now. In
paragraph 4, we give an example of the worst case of the algorithm, and prove the following result:

THEOREM 1. For arbitrary integers a > b > 1 the main loop of the Sorenson left-shift k-ary
algorithm calculates ged in no more than |log(a)/log(k)| + [log(b)/log(k)| + 1 steps.

Using the Sorenson right-shift k-ary ged algorithm, we can obtain continued fractions with
rational partial quotients with right shift. For brevity, we call such fractions as continued fractions
of the first kind. There are two main types of such fractions: continued fractions of the first type

Y00 ko
+ )
oo y170B071 k1
Yoz151 - kn—1
Yn H ;B H VMt
0<i<n, 0<t<n,
i#n (mod 2) t=n (mod 2)
I =8 I m
0<j<n, o<m<n,
j=n (mod 2) m#n (mod 2)
and continued fractions of the second type
Y070 koo
oo zoBo
yimn k1m
15

kn— 1Yn— 1xn6n
4+ —
Tp— I/Bn— 1YnTn

The numerators and denominators of such fractions can be expressed using polynomials of a
special kind called continuants. Previously, the properties of extreme values of such continuants with
restrictions on the variables were studied, and a construction similar to the triangle of Fibonacci
polynomials was obtained (refer to [14]).

This paper is introduced a generalized Sorenson left-shift k-ary ged algorithm, finite continued
fractions with rational partial quotients with left shift and corresponding continuants. We have
obtained formulas expansion of continuants. We give conditions, under which it is possible to
construct strictly increasing sequences of continuants, convergents of rational numbers. Also in
this paper, we present an accurate estimate of the number of steps of the Sorenson left-shift k-ary
ged algorithm in the worst case.

2. The Generalized Sorenson algorithm

Consider the following generalized Sorenson algorithm. Instead of the number £, some infinite
sequence of numbers K = {k;}7° is fixed, consisting of natural numbers k; > 2. At the next step
of the algorithm, a pair of numbers (a;+1,b;41) is constructed using formulas that are obtained
from (1) — (5) by replacing k to k;. If we multiply each half of inequality (3) by the number y;,
come to the one denominator on the left side, and then flip each parts of the inequality, then we
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get expression a;/|y;c; — x;a;| > (k; + 1). This fact ensures convergence of the generalized Sorenson
algorithm to the solution.

Let k = min(k;), k; € K. Then the number of steps of the generalized Sorenson algorithm does
not exceed the magnitude [log(a)/log(k)] + |log(b)/log(k)] + 1. The author suggests that this
estimate, made by analogy with theorem 1, can be improved.

3. Finite continued fractions with rational partial quotients

The generalized Sorenson algorithm leads to a new expansion of the number a/b into a (regular)
continued fraction with rational partial quotients with a left shift 4, which for brevity we will call
continued fraction of the second kind. Denote by g; the four numbers (y;, z;, ki, ¢;). The number yg
is integer, and xg, x;, y; are non-zero integers when ¢ is greater than one.

There are two main types of expansion of the number a/b into a continued fraction of the
second kind. For brevity, we will call them expansions of the third and fourth types. The third type
continued fraction has the following form

Yo %
ko + = [90;91-+, Gnl3 » (8)
Zo 3303/1k er | o1
- h
Tl ynknen H Xg
<n,
Ly iZn (mod 2)
SN |
j<7’L,
j=n (mod 2)

where the value §; = 6;(a;, ¢;, z;,y;) is defined as

9)

5 — -1, if ¢y — xa; = 0.
! 1, if ¢y — xia; < 0.

THEOREM 2. Let the finite sequences of numbers {z;}7_, {yi}I'_, have been obtained by applying
the generalized Sorenson left-shift k-ary ged algorithm for the input numbers a, b and a pre-fized
infinite sequence K of natural numbers greater than two. If the following inequalities are true for
each 1

a; > bi > |inZ' — ZL‘iai|, (10)
then the number a/b can be represented as a third type continued fraction.

The proof of the theorem and all following results are given in a separate sectiomn.

If continued fractions have been contained a large number of elements, and besides that each
element needs to be shown, then it is not always convenient to represent such fractions with formula
(8). In such cases it is convenient to use an alternative notation of the continued fraction, so that
the sum of the elements will be written in a line:

Yoko° N do 01 92
xo zoyrth1™  wiypks™  wowaysks®™
T T
X T2 3,1

“The left shift in the name is a reference to the Sorenson left-shift k-ary gcd algorithm, which is used when
decomposing the number a/b. If we select k = 2°, then multiplication by k is the same as performing a bitwise left
shift operation by s positions (refer to [15]). This analogy is reflected in the name of the algorithm.
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The fourth type continued fraction has the following form

—+ — = [90;917---79 ] ) (11>
; T ]1;[0 Lj Ynkn " g T; i

where the value §; is defined as in theorem 2.

THEOREM 3. Let the finite sequences of numbers {z;}7_, {yi}1_, have been obtained by applying
the generalized Sorenson left-shift k-ary ged algorithm for the input numbers a, b and a pre-fized
mnfinite sequence K of natural numbers greater than two. If the following inequalities are true for
each j under the condition 0 < j < n—1

bj < ’ijj — a:jaj| < aj, (12)
and for j equal to n, conditions (10) are satisfied, then the number a/b can be represented as a
fourth type continued fraction.

The indices “3” and “4” after the square brackets to the right of the continued fraction in
theorems 2, 3 mean the third and fourth types of expansion into continued fractions of the second
kind. Note that at the last n-th step of the algorithm at expansion into a fourth type continued
fraction formula (10) will be fulfilled instead of conditions (12).

The fourth type continued fraction has another form of notation:

5
90 g0 + 0 . (13)
Zo X0

Ek‘lel + i
x1 x1

Yn—1kem ! N On—1

e
Tn—1 Tp—1Ynkn™

Tn

If we consider a part of this construction, which had obtained at the i-th step excluding the
previous steps of the algorithmn, then we can obtain the following:

Yiki” 0; k™ Gilyic — wiay

(14)

T X; T; z;b;

<|%6i - $iai|>
b;

The right part is obtained by opening the brackets in the left part and writing all the values
in a line. Then, continued fraction (13) can be represented as (11). Here and further we will use
continued fraction (11) as more compact.

We need to make a small remark regarding the last n-th step in theorem 3. Condition (10) is
fulfilled instead of condition (12). If n steps were not enough to expand the number a/b into a
fourth type continued fraction and at least one more step is required, on which condition (10) must
be satisfied, then in this case we will assume that we are dealing with a combination of fractions of
the fourth and third types.

Expansion into continued fractions of the third and fourth types is ambiguous. This is due to
the fact that at each step of the algorithm there can be several pairs of numbers (x,y) that satisfy
inequality (3). For example, the inequality [8/13 — z/y| < 1/(4y) is satisfied by pairs (1,2), (2, 3).
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Example 1. Consider an example of expansion into a third type continued fraction. The following
table shows the calculation results:

Step Ne | qy bi | lyici —xiaq| | ki | e | i | yi | O
0 1117 | 505 107 31011211
1 505 | 107 30 51011115 -1
2 107 30 17 3|1 1 1 1
3 30 17 5 51013151
4 17 5 2 3 1 1 1 1
5 5 2 0 7101215 ]-1

Using this table and formula (8), we can get at a fraction

1117 - 1
505 1

Example 2. Consider an example of expansion into a fourth type continued fraction. The
following table shows the calculation results:

Step Ne | a; | b; | |yici —xiaq| | ki | ei | x| yi | 0
1 291 | 11 54 4 2] 2 3 1
2 54 | 11 12 3 1|1 2 |-1
3 12 | 11 1 11101 1 1
4 11 1 0 1301 |11 ]-1

Using this table and formula (11), we can get at a fraction

2913161 3% 9 1 1
ST ARl E ki ST N A

This expansion ended at the third step, since at the fourth step by = 1 and a4 < k4. In general,
when given a certain sequence K, the expansion into a continued fraction can end much earlier. If
in this example at the second step we take the number 54 as the parameter k;, and define the pair
(4,y;) as (11,54), then expansion into a continued fraction will be finished at the second step. This
means that the ratio of the numbers 54/11 will not actually expand into any continued fraction. In
this case, the last element in formula (11) will disappear and it will take the following form:

n e; 1—
Yiki

"1
J

J

2
Tj

1
=0 =0

Such cases of “stopping” number expansion into a continued fraction are not considered in the

article.

For given integers a, b, a combination of continued fractions of type (8), (11) is observed, when
conditions (10) and (12) alternate subject to condition i # j. Expansion of the number a/b into a
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second kind continued fraction is not the only one, since at the next step of the algorithm there
may be several pairs of numbers x;, y; that satisfy conditions (1) — (3).

The numerator and denominator of a continued fraction of the second kind can be expressed
using continuant. A continuant of the third type is defined as a determinant

voko® & 0 0 0---0
—X1 ylk‘lel 51 0 0---0

<907 g1y ey gn>3 = det 0 —X2 Z/2k262 62 0---0 ) (15)
0---0 0 0 —Zn  Ynkn®"

where x;, y;, k;, e; are elements of corresponding continued fracion, and the value of §; is determined
according to rule (9). In particular, (go)s = yoko®™, (g0, 91)3 = Yoy1ko®k1°* + dpx1. Moreover, by
definition we assume ( )3 = 1.

LEMMA 1. Let [go; g1, 92, ---, Gn)g e the expansion of the number a/b into a third type continued
fraction, with n > 3. Then the following formulas are true:

1. <907 "'7gn>3 = ynkne" <907 "‘7gn—1>3 + 6n—1xn <907 "'7g’n—2>3;
2. <907gla "'agn>3 = yok’oeo <glv "'7gn>3 =+ 601:1 <92> "'7gn>3;'

3. <gOa “'797’L>3 = <907 79])3 <gj+17 -“7gn>3 + 5jxj+1 <907 "'7gj—1>3 <gj+27 -~-7gn>3; where the
number j satisfies the condition 1 < j < n.

Moreover, the following equality is true:

a . <907 91,92, "'7g7L>3

b N o <917927 ---,gn>3 ’

A continuant of the fourth type is defined as a determinant

% 0 0 0 0 0 0 (—1)" g 0
1 & 0 0 0 0 0 (—1)"+ 2w, 0
0 22 6 0 0 0 0 (—1)" 3wy 0
0 0 I3 (53 0 te 0 0 (—1)”+4w3 0
det |-+ -0 o0 o0 ol Lo , (16)
0O 0 0 0 0 6n—z O 1) 2w, 35 0
0 0 0 0 0 - xpo 6o (1> lw, 5 0
0 0 0 0 0 te 0 Tpn—1 Wn—1 571—1
o 0 0 0 0 -+ 0 0 —Ty, wy,

where w; = y;k;%. Again x;, y;, ki, e; are elements of continued fraction, and the function §;
is defined according to rule (9). Continuants of the fourth type are denoted as (go, ..., gn), In
particular, (go)s = Yoko®, (9o, 91)4 = Yoy1ko“ k1" + doz1, ( )a = 1.

LEMMA 2. Let [go; g1, 92, -, gn)4 be the expansion of the number a/b into a fourth type continued
fraction, with n > 3. Then the following formulas are true:

n—1

<907 -~-7gn>4 = 50<g17 '--7gn>4 + <90>4<9n>4 H ‘Ti'

i=1

Moreover, the following equality is true:

a <90a91792a"'9n>4

b <gn>4 H:‘L;()l Zg
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Due to the fact that matrix (16) is not diagonal, a continuant of the fourth type of n-th order can
not be represented as a sum of products of continuants of lower orders by performing an arbitrary
partition of the original continuant following the example of paragraph 3 of lemma 1.

LEMMA 3. If at least one of the conditions is performed

o §; =1 forany 0 <i < mn,
e 0; =—1 and y;ik; —x; > 1 for any 0 <i < n,0 < j <n, (17)
e 0, 1=—1 and y,k,*" — x, > 1, and for other values 6; = 1,0 <i<n —1,

then for an arbitrary n the following inequalities are true:

0 < (g0)3 < (90,91)3 < ---(90, 15 -, Gn)3- (18)

If one of three conditions (17) is performed at expansion into the third type continued fraction,
then the third type continuants, with the help of which the numerators and denominators are
expressed, will strictly increase.

Example 3. Consider an example of an increasing sequence of the third type continuants. The
following table shows the calculation results:

Step Ne a; b; lyici — zia;| | ki | e; | i | yi | 0; | Condition
0 117520 | 1371 173 7121411 7]-1 true
1 1371 173 13 2 131 1 ]-1 true
2 173 13 5) 312 2 -1 true
3 13 5 0 13105 |13]|-1 true

The following values of the continuants are obtained: (go)3 = 73 = 343, (g0, g1)3 = 7> x8—1 =

= 2743, (90, 91, g2)3 = 2743x9%x3—2x343 = 73375, (g0, 91, 92, g3)3 = 73375x13—5x2743 = 940160.
The last column in the table shows the fulfillment of inequality (3), which corresponds to the “true”

value. Hence we get that (go)3 < (g0, 91)3 < (90,91, 92)3 < (g0, g1, g2, g3)3-

Growth the sequence of continuants of the fourth type is equivalent to fulfillment several
inequalities, as indicated by the following

LEMMA 4. If at least one of conditions (17) is satisfied for zero- and first-order continuants, if
(90,91, 92)4 > (90, 91)4, 0—1 = 1, and also for all 2 < i < n the following inequality holds

i—1 i—1
8001 -+ 0i—2({gi-1: 9i» giv1)a — (gi-1,9i)a) > ((gi)a — wilgiv1)a) D -1yik; 9 [[ ==, (19)
=0 2=j+1

then for an arbitrary n the following inequalities are true:
0 < (go)a < (90, 91)4 < (g0, g1, -+, Gn)4- (20)

Example 4. Consider an example of an increasing sequence of the fourth type continuants. The
following table shows the calculation results:

Step Ne | a; | b; | |lyici —xiai| | ki | e; | i | yi | & | Condition
0 518 | 11 221 3 2 1 3 1 false
1 221 | 11 112 6 1 2 5 1 false
2 112 | 11 2 5 1 1 2 1 true
3 11 2 0 1170 2 |11 | -1 true
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Using this table, we will find the corresponding values of the continuants. So, we get the following
values: (go)s = 27, (g0, g1)4 = 3x9Ix5x6+2 = 812, (g0, 91, g2)4 = (5X6x2x5+1)+3x32x2x2x5 =
= 841. Now find the value of the fourth-order continuant. So, we get the following values: (g2, g3)4 =
=2x5x114+2=112, (g1, g2, g3)a =112+5x6x 11 =442, (g0, g1, 92, 93)4 =442+3x 32 x2x 11 = 1036.
We get that (go)s < (g0, 91)4 < (90, 91, g2)a < (g0, 91, G2, g3)4-

In example 4 condition (3) is not always taken into account. This means that a pair of numbers
(x4, ;) may be not the best approximation to the fraction b;k;*/a; in the general case. The last
column “Condition” indicates that this condition is fulfilled (true) or not fulfilled (false). The
question of the existence of an increasing sequence of continuants of arbitrary length (n > 3)
remains open, provided that formula (3) is fulfilled.

Definition 1. The rational numbers

Pi 0,0 Pi (0,1 i,(0,2
200 1401, 20D — 900 g1 =92 — [g6: 1, gl -+
4i,(0,0) 4i,(0,1) 4;,(0,2)

Pi,(0,n)
’ 4di,(0,n)

= (90591, s gnli

are called the convergents of i-th type of the number p/q, expressed using the fraction [go;g1,--- ,

The first numeral in the index of convergent of the number p; (g ;)/g; 0, indicates the
appropriate type of continued fraction. For example, when ¢ = 3, we use third type continued
fraction. If some part of the continued fraction is considered, for example, [g;; gi+1, - » gn)i, then
the corresponding convergents also begin from the I-th element: p; 1)/ 1), Piy1i41)/%,1041)
Pi(11+2)/ i, (1,1+2) et

The following lemma allows us to calculate convergents of the third type without resorting to
calculating the values of the continuants. You just need to perform the product of matrices.

LEMMA 5. Let the number n > 1 and the product of matrices A = [[_, Ai are set, where

0 1
P P
Ai= 160 wyiki |, A= ; 21
= ¢ (@ @) 2y

o T
then

Onlg1s- 5 Gn—-1)3 P (91, ,9n)3

H?:l T H:‘L:1 g

0090, 1 Gn—1)3 -, (90, " 1 9n)3 Hn 0
[Tieo i [Tieo i ) i—o Lt

pP=

Corollary 1.
Q _Pson-n Q' _ P3om)

P gsom-1) P aGon

The proof of corollary 1 follows automatically from lemmas 1, 5.

Consider convergents of rational numbers, which had been obtained using (regular) continued
fractions. Let’s number them in order, adding the corresponding index to them. All convergents
with even indices form a strictly increasing sequence, and all convergents with odd indices form a
strictly decreasing sequence (refer to |16]). But despite this, in the general case nothing similar can
be done for convergents p; (0.0)/i,(0,0)> Pi,0,1)/%,(0,1), ---- Look at example 1 again. We calculate all
convergents of the number 1117/505. Then we get
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43,(0,0) " q3,00,1) 5 57 ¢3,0,2) 5-3—1 14’ 43,(0,3) 5-14+3-5 85’

P3,00) _ 9 P3,01) _ 10+1 11 P32 _3-11-2 31 p3p3 5-314+3-11 188

P304 3-188+31 595 p3os) 5-595+2-188 1117
G304) 85-3+14 269" q305 5-269+2-85 505

Let’s compare all convergents with each other:

P3,(0,0 P3,0,1) P3,(0,3) P3,(0,5) P3,0,4) P3,(0,2)
< < < < < .
d3,(0,0) d3,(0,1) d3,(0,3) d3,(0,5) d3,(0,4) 43,(0,2)

It is possible to identify conditions, under which successive convergents will be strictly greater or
lesser than each other. Comparison of convergents of the third type n and n+1 order p3 (0.n)/43,(0,n)
P3,(0,n+1)/43,(0,n+1) 18 equivalent to comparing magnitudes 6043 (1,n)/P3,(1,n)> 0043,(1,n+1)/P3,(1,n+1)-
Their calculation can be simplified. To do this, you need to perform a certain number of expansions
of the continuants in numerators and denominators, grouping the common parts together. This
idea underlies the following results. Moreover, in some cases it is not even necessary to completely
calculate the value of continuant.

THEOREM 4. If the following inequality is true

<gn—17 gn>3 > <g7’b—17 gn7 gn+1>3

, 22
Tn-1(9n)3 ~ Tn—1(gn, Gn+1)3 (22)
0; =1 for all 0 < j <n and the number n is odd, then

P3,(0,n) S p3,(0,n+1)' (23)

q3,(0,n) q3,(0,n+1)

If condition (22) is performed, 0; =1 for all 0 < j < n and the number n is even, then

P3,(0,n) . P3,(0,n+1)
d3,(0,n) q3,(0,n+1)

THEOREM 5. If inequality (22) is true, §; = —1 for all 0 < j < n, then inequality (23) is true.

THEOREM 6. If for all positive integers t the equalities 6oy = 1, dopr1 = —1 are satisfied,
condition (22) is true, and for a natural number n and a positive integer i, 0 < i < n—1, condition

en—1=0(mod4) orn—1=2 (mod 4) is true, then for i =0 (mod 4) and i = 1 (mod 4)
mequality

P3,(n—1—in) S P3,(n—1—in+1) (24)
43, (n—1—i,n) q3,(n—1—in+1)

is true, and for i = 2 (mod 4) and i = 3 (mod 4) inequality (24) is satisfied with a minus
sign “<”.

en—1=1(mod4) orn—1=3 (mod 4) is true, then for i =0 (mod 4) and i = 2 (mod 4)
inequality (24) is true, and for i =1 (mod 4) and i = 3 (mod 4) inequality (24) is satisfied
with a minus sign “<”.
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Theorem 6 can also be used to compare two convergents. To do this, you only need to know the
remainder of dividing the number n — 1 by 4 and use one of the conditions.

If in condition (22) sign will change to the opposite, then signs of comparisons in inequalities of
theorems 4, 6, 5 will also change.

It is quite difficult to obtain results similar to theorems 4, 6, 5 for convergents of the fourth
type. Nevertheless, this task can be reduced to comparing the following magnitudes.

ProprosITION 1. The task of comparing convergents of the fourth type

P4,(0,n) P4,(0,n+1)

and
d4,(0,n) d4,(0,n+1)

1s equivalent to comparing magnitudes

5 g 60{g1, . gn
091, s 9n)4 and 0{g1 g >4.
<gn>4 :Un<gn+1>4

4. Estimation of the number of steps in the Sorenson algorithm

PROOF OF THEOREM 1.
Proof of this theorem, as in the Sorenson theorem (refer to [3|, lemma 3.2) is based on the

method of mathematical induction. Let s, m are positive integers, s > m, and the numbers a, b are
defined as

a:itiki, b:iqjk‘j, (25)
i=0 Jj=0

where t;,q; € {1,2,--- ,k — 1}. Hence the inequality 0 < b < a < k°T! is true. Let’s prove that
ged(a, b) is calculated at [log(a)/log(k)| + |log(b)/log(k)] + 1 step.

Let the numbers a, b take any values on the interval [1, k£ — 1], then m, s are equal to zero. The
value of e is equal to zero, and as a pair of numbers (z,y), satisfying inequality (3), we can take
(b,a). If they are not coprime (refer to formula (2)), then divide both numbers x, y by their ged.
Thus, it will take 1 step to calculate ged(a,b).

Let the inequalities 0 < m < M, 0 < s < M are true. Suppose that for all pairs of numbers
(a,b) defined using formula (25), the induction assumption is true. Then the number of steps is
2m + 1 in the worst case. We prove the induction hypothesis for pairs of numbers (a’,0’) defined
using the magnitudes m=M +1,s =5, m < s:

S M+1
o =) kLY =) gk 1<t gy <k 2 V. (26)
i=0 §=0

After the value €’ has been calculated and the numbers (2’,y’) has been choosen that satisfy
inequality (3), we obtain

" 17.€ 1 1ot a a’ J / i N /
a —bky—ax<k+1<{kJ—§tH1k,a > b (27)

Further, for the input numbers (a”,b), we calculate €', select the numbers (2/,y’) and find a
linear combination, as in formula (27), where instead of @’ under formula module (27) there will be
a”. This procedure continues for no more than S — M — 1 step, including the one described. After
that the number a” can be represented as the sum of the powers of k, and each of them will be
multiplied by a number from 0 to k, as in formula (26), but the summation will be carried out up
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to M + 1. If a” < V', then swap their values. After that we again calculate €', select the numbers
(2’,y') and find a linear combination of the numbers a”, ¥/, as in formula (27):

a" =Wk y — d"2!|. (28)

The new value of a” is Zﬁo t7k', and the inequality 0 < ¢/ < k is true. If at this step a” < ¥/,

then swap their values again and run another step of the procedure described above.

As a result, we obtain that the numbers a”, b’ are expressed as the sums Zf\io k!, Z;‘Lio t] k7,
moreover the inequality 0 < #;, 7k is true. And for such numbers, according to the assumption of
induction, the number of steps does not exceed 2m + 1.

We have done no more than S — M — 1 linear combinations after that we could perform a total
of 2 exchanges and linear combinations. As a result, the total number of steps does not exceed
S—M—-1+2+2M+1=S5+ (M +1)+ 1. The proof is done. O

Here is an example of how the algorithm works in the worst case. Let the following numbers be
given: a = 1000351, b = 38530, k = 25. The following table shows the calculation results. Columns
named “poly(a)”, “poly(b)”, means representation of the numbers a, b as sum of the powers of k.
The fourth column, named r, contains all the values |ybk® — ax|. Note that the last step, where
one of the numbers is zero, is not included in the total number of steps, since no calculations occur

there. In the end there were 8 steps.

a b T poly(a) poly(b) elx |y
1000351 | 38530 | 37101 | 2k* + 13k> + 25k% + 14k +1 | 2K+ 11k> +16k+5 |1 [ 1 | 1
38530 | 37101 | 1429 2k3 + 11k* + 16k + 5 23+ 9K +9k+1 |0 |11
37101 | 1429 | 1376 2k3 4+ 9k% + 9k + 1 2k* + Tk + 4 111
1429 1376 53 2k% + Tk + 4 2k% + 5z + 1 011
1376 53 51 2k% + 5z + 1 2k + 3 111
53 51 2 2k +3 2k +1 011
51 2 1 2k +1 2 111

2 1 0 2 1 0112

In example, at each step of algorithm, ratio between the numbers a, bk® is approximately equal
to one. The numbers z, y are equal to one (except for the last step of algorithm). All this leads to
the fact that at each step ratio of largest of the numbers and result of the linear combination is
approximately equal to k, which is consistent with inequality (3): |byk® — za| < a/(k + 1).

5. Proofs

All proofs in this article is presented in full without abbreviations.

PROOF OF THEOREM 2. Let ag and by are the input numbers of the generalized Sorenson
left-shift gcd algorithm, and the magnitude s; is equal to |y;c; — x;a;|. Using rules (4), (5) and
determining magnitude (9), you can get the formula dpsg + yoco = xoag. Division both parts by
xobg leads to the expression

ao  Yoko® n do

bo w0 <b0> '
To | —
80

At the first step of the algorithm, we move on to a pair of numbers (a1, b1) = (bo, o), moreover
bp > sg. In view of this, at expansion of the numbers a1, b1 into a continued fraction of the third
type, expression (29) is represented as

(29)
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a0 _ Yoko® d0 (30)
bo xo Y120k 01

+

TG @)
— X -
Zo S1

Further, the process of expansion into a continued fraction of the third type continues similarly
to the previous steps. We will assume that formula (8) is correct at the ¢ steps of algorithm. Using
the principle of mathematical induction, we prove that it is also true at the (¢ 4 1)-th step, where
the value of ¢t + 1 does not exceed n. Consider expansion of the number a;/b; taking into account
all the multipliers x; obtained in the previous steps of the algorithm:

yek I

i<t,

iZt (mod 2 571
Fmed?d | (31)
Ty I = by II =z
J<t, j<t,
j=t (mod 2) j=t (mod 2)
St I T;
i<t,
1#t (mod 2)

Now let’s perform expansion of the number a;41/biy+1 = by/s¢. The denominator of the right term
can be written as

Y1 ki Iz
J<t+1,
jZt+1 (mod 2) 5t (32>
Ti4+1 H T bi+1Ti41 H X;
i<t, 1<t,
i=t+1 (mod 2) i=t+1 (mod 2)

St41 II xj
J<EFL,
j#Zt+1 (mod 2)
Thus, we obtained the necessary product of the elements z; in numerators and denominators of
formula (32). The proof is done. O
PROOF OF THEOREM 3. The zero step of the algorithm completely coincides with its description
in the proof of theorem (2). As a result of this step, we can obtain the expression

ag _ Yoko™ | doso
bo xo zobo

(33)

At the first step of the algorithm, we get a pair of numbers (a1, b1) = (s, bp), moreover sg > bo.
In view of this, at expansion the numbers aj, by into a continued fraction of the fourth type,
expression (33) is represented in the form

bo o xo

(34)

ao _ yoko N do <ylk5161 N 51S1> .
I xlbl

Then the process of expansion into a fourth type continued fraction continues in the same way
as at the previous steps. Let’s assume that formula (11) is correct at ¢ steps of the algorithm. Using
the principle of mathematical induction, we prove that it‘s also true at the (¢ + 1)-th step, where
the value of ¢t + 1 does not exceed n. Consider expansion of the number a;/b; taking into account
all the multipliers x; that had been obtained in the previous steps of the algorithm:
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t—1 e; i—1 ¢
Yiki 1 0; Sty O
[[2+-]]= 35
; TP LT * by -+ T (35)
=0 ]:O =0

Now let’s perform expansion of number a;y1/bsy1 = bt/s¢. Fraction (35) can be written as

= yzk‘ze” Lo ytk‘t 5t8t
I Hxl tan ) (36)

i=0 ]0]10

If ¢t + 1 is the last step of the algorithm, then this means that conditions (10) are performed
instead of conditions (12). Then, the number b;/s; will be represented as y;y1ki+1%+" /2441 and
substituted into formula (36). This proves formula (11). O

T. Muir introduced continuant (refer to [17]), as a determinant of the tridiagonal matrix Ej ,,:

hy &1 0 0 0 0 . 0
mi ho Il 0 O 0 K 0
0 mg hg I3 O 0 T 0
det(Byn)=det| . .~ = 7 . N E (37)
0 e e e 0 Myy—2 hn,1 lnfl
0 v cov oo 0 0 Mp—1  hp

He obtained a formula for the expansion of a continuant of arbitrary order (refer to [17, p. 518]).
We write this formula in terms of the expansion of determinant of the matrix F1 , of n-th order:

det(ELn) = det(ELr) det(Er+1’n) - l,nflmrfl det(ELr,l) det(ErJrQ’n). (38)

The matrix F; ; is defined in the same way as the matrix Fy ,:

h; l; 0 0 0 0 e 0

m; hz‘_;,_l li+1 0 0 0 T 0

0 my; hl ll 0 0 tee 0
det(Ei,j) = det N . +1 X 2 .+2 .

0 ce R . 0 mj_o hjfl ljfl

0 . . c. 0 0 mj_1 hj

PRrROOF OF LEMMA 1. It is easy to see that the formulas of points 1-3 are obtained by simply
substituting the corresponding values of the matrix elements from formula (15) to formula (38).

Since third type continued fractions are connected to the generalized Sorenson left-shift
algorithm, then to prove the last point of the lemma we use integer sequences {a;}?,, {bi}ig
defined using the algorithm and principle of mathematical induction. At the penultimate step of
the algorithm, we can obtain formula (29), in which all indices are equal to n — 1. Expanding the
number b,_1/s,—1 into a continued fraction we obtain the expression

an—1 _ ynflknflen_l + On—1 _ = <gnflagn>3. (39)
bn—1 Tn—1 yn$n—1k7z " xn71<gn>3
T,

Consider the ratio of the magnitudes a;, b; at the (¢ 4+ 1)-th step of algorithm. Let condition
0 <t < n is satisfied and the formula

ﬂ o <gta"'agn>3

bt Te(Git1, s In)3
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is true. Consider the ratio of the magnitudes a;—1, b;—1 at the t-th step of algorithm:

a—1  Y—1k " n b1 y—1ke1®t | 612Gt - On)3
bi—1 Ti—1 (xtlat> Tt—1 xt—1<gt7 ~-7gn>3

be

After several mathematical operations, we obtain the same denominator for both fractions in
formula (40) and obtain expression

(40)

at—1  {Gt—15--9n)3
b1 xt—1<gt7-~-7gn>3'

The lemma is proved. O

PRrROOF OF LEMMA 2. It is easy to see that the formula of continuant expansion is obtained
from the formula of matrix determinant expansion (16) by the first row.

As in the proof of lemma (1), here we again use integer sequences {a;}7, {b;}}_,, which are
determined using algorithm, and also the principle of mathematical induction. At the penultimate
step of the algorithm, expanding the number b,,_1/s,—1 into a fraction, we obtain formula (39). It‘s
equals to (gn—1, gn)a/(Tn-1(gn)4)-

Consider the ratio of the magnitudes a;, by at the (¢ + 1)-th step of algorithm. Let condition
0 < t < n is satisfied and the formula

@ o <gt7 Gt+1,9t4+2, " * 7g7l>4
by (gn)a H?:_tl Ly

is true. Consider the ratio of the magnitudes a;—1, b;—1 at the t-th step of algorithm:

a—1 Ykt Smrar y—kea ™t 6—1(Ges 1 G2, Gn)a

bt—1 L1 zi1by m i 1(gn)a [105" @

<9t71>4<9n>4 H;L:_tl i+ 5t71<9t7 gt+1,9t4+2, " - agn>4 <gt71, s >gn>4

w1 {gn)a [172) =i (gn)a TS0 i

The lemma is proved. O

PROOF OF LEMMA 3. The numbers x;, y; are positive (refer to introduction), and z; < y; (refer
to inequality (3)). It follows that for §; = 1 and for all < i < n continuants of the third and fourth
types are strictly positive and form a strictly increasing sequence. If §; = —1, then the situation is
already ambiguous, and each case needs to be analyzed separately. At the beginning, instead of a
certain comparison sign, we will put a question mark, which will be replaced by a comparison sign
as the proof progresses.

To prove inequalities (18), we use the method of mathematical induction. Obviously, (go)s > 0.
Now let’s compare the zeroth and first order continuants:

Yoy1 ko k1t — 21 7 yoko®

Division by yoko® will allow us to compare y1k1°' — z1/(yoko®) 7 1. If the second condition
from system (17) is satisfied, then instead of the sign “?” you can put a “>”" sign. Further, assume
that for all continuants up to the n-th order, formula (18) is true (here it is possible to fulfill the
conditions 0; =1, 0 < j <mnor k% —a; > 1forall 0 <i<n).

Division by yoko® will allow us to compare y1k1°' — z1/(yoko®) 7 1. If the second condition
from system (17) is satisfied, then instead of the sign “?” you can put a “>” sign. Further, assume
that for all continuants up to the nth order, formula (18) is true (here it is possible to fulfill the
conditions ¢§; = 1, 0 < j < n or Yk —x; > 1 for all 0 < i < n ). We will prove this formula for
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continuants of (n + 1)-th order by comparing a continuant of (n + 1)-th order with a continuant of
n-th order, simultaneously performing an expansion of the first of them (the magnitude d,, is equal
to -1 according to the initial guess):

Yn+1kn+17G0, s On)3 — Tn+1(90s s Gn—1)3 7 (g0, -+ Gn)3-

Since the induction assumption is valid for all previous continuants, then division both sides by
(90s .-y gn)3 > 0, we obtain the expression

(90, - gn-1)3

?71.
<go, --'agn>3

yn+1kn+1en+1_’xn+1
Condition 2 from formula (17) is satisfied. This allows you to replace the “?” sign to the “>”
sign. O
Proor or LEMMA 4. Consider the continuants of ¢ + 1 and ¢ order, compare them with each
other and simultaneously perform an expansion of each of them. As in previous proofs, we will put
a question mark at the beginning when comparing two magnitudes. So,

<gUa "’agi+l>4 ? <gOa "'agi>4

i i1
S0(g1s - gir1)a + (go)algist)a [ 25 7 00(g1, . gi)a + (g0)algi)a [ | 2=
j=1 z=1

Perform another expansion of the continuants, grouping them with each other. We get expression

i—1 i—1
8001 (g2, > Git1)a — (92, -, gi)a) ? {g0)a | [ 2=({gi)a — wi{gira)a) + Sogn)a [ [ #-((gi)a — @i{git1)a)
z=1 z=2

Performing further expansion of continuants, taking into account condition §_; = 1, allows us
to obtain expression

i1 i1
8001.--0i-2((gi—1, i gi1)a — (gi-1,904) 7 D 0-1(gi)a [ 2=((gi)a — zilgis)a)- (41)
i=0 a=j+1

If instead of the sign “?” we put “>”, then the original continuant of the (i + 1)-th order will be
greater than continuant of the i-th order. Execution of formula (41) for all 2 < ¢ < n, together with
the other conditions, which is specified in condition of the lemma, allows us to construct a strictly
increasing sequence of continuants. O

PROOF OF LEMMA 5. At the beginning, we will prove formulas for the magnitudes P, Q, P,
Q'. Product of the matrices Ag, A1 is equal to

01 Y1k

I z1

(42)
Yoko®01  yoy1ko“k1t + dox1

ZoT1 ZoT1

It is easy to verify veracity of the statement for resulting matrix. Now let’s assume that for the
first n matrices, statement of the theorem is true. We prove this for n + 1 products of matrices. We
get, expressions
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5n+1<glv"' ;gn>3 / 5n<glv"' 7g7L—1>3 yn+1kn+1en+1 <gla"' ,gn>3
P= n+1 , = no + no ’
iz @i [Tz i Tn+1 |
(43)
On+1(gos """, 9n)s ., 00 (90, 1 9n-1)3  Ynt1knp1 (g0, gn)3
Q= il , Q' = n ] + n - :
[TiZo = [lizo @i Tn+1 [Tizoxi

Usage of lemma 1 makes it easy to prove formulas for the magnitudes P’, Q'.

Now we can prove the formula for the determinant of the matrix. In the case of matrix (42)
determinant is equal to dp/xo. Let the formula for the determinant obtained by multiplying n
matrices be fulfilled. Let’s find the determinant of matrix (43). It‘ equals to

On1({g1, -+, 9n)3(90,+  Gn+1)3 — (90, » 9n)3{g1, - , Gnt1)3)
(It ) (11355 25)

Performing the expansion of (n + 1)-th order continuants, we obtain the expressions

On+10n ({91, »9n)3(90, -+ s gn—-1)3 — (g0, -+ , Gn)3{g1," -+ s Gn—1)3)
(I 1) (=)

Further, we decompose the nth order continuants and obtain the expressions

On+10n0n-1({g1, "+, gn—2)3(90, "+, gn—1)3 — (90s** , gn—2)3(g1, "~ , gn—1)3)
+1 -1 '
(H?:l 551) (H?:o xj)
Continuing this procedure, we obtain the final formula for the determinant of matrix (43). O
PrROOF OF THEOREM 4. Instead of some comparison sign, for now we will put the sign “7”.

We will define the comparison sign at the end of the proof. Let us decompose numerators and
denominators of convergents. We get inequality

Yoko® N 0071(g2, - gn)3 o Yoko N S071(g2, -+» Gn+1)3
Zo 20{g1, - 9n)s o 20{g1, s Gnt1)3
Subtract yoko® /xo from each part, multiply by x, invert the ratio of continuants and obtain
the inequality

0o 0 do
< (15 Gn)3 ) ' ( (91, Gnt1)3 )
x1<927"'agn>3 .§U1<92,...,gn+1>3
Further we will perform n — 2 decompositions of continuants and n — 2 upheavals. We will get
continued fractions

do
Y1k N o
x1 x1Yy2ko®? N )

(44)

x2 . On—2

.. +
(gnfla gn>3 H Z;
0<i<n—1,

iZn—1 (mod 2)
xn—1<gn>3 H Ty

0<j<n—1,
j=n—1 (mod 2)
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and
6
e - (45)
Y1k 01
+ o
Ty z1Yy2ky 2
+
x2 . 571—2
.
<gn—1agn79n+1>3 l_.[ xi
0<i<n—1,
iZn—1 (mod 2)
Tn—1(Gn, Gn+1)3 I1 Lj
0<j<n—1,
j=n—1 (mod 2)
In the resulting formulas, only the terms differ
<gn—1agn>3 H Ty <gn—179nagn+1>3 H T
0<i<n—1, 0<i<n—1,
i#Zn—1 (mod 2) and iZn—1 (mod 2) . (46)
Tp—1(gn)3 II T Tn—1(Gn, In+1)3 11 T
0<j<n—1, 0<yj<n—1,
j=n—1 (mod 2) j=n—1 (mod 2)

Taking into account condition (22), and the sequence {6;} fixed by condition, and necessity to
flip over the ratio of continuants, we can conclude that

P3,(n—2,n) < P3,(n—2,n+1)

43,(n—2,n) q3,(n—2,n41)

Further comparing the convergents p37(n_37n)/q;37(n_37n) and pgv(n_&n_i_l)/q;g,(n_g,n_;'_l), we get that
they will change the sign of comparison:

P3,(n—3,n) S P3,(n—3,n+1)

43,(n—3,n) 43,(n—3,n+1) .

After a few steps, in a similar way the ratio of continuants will be considered, in which the first
element will be g;. We perform their comparison, after which we change its sign to the opposite
one due to the necessity reverse the ratio of continuants. This ratio is multiplied by ¢ (refer to
formulas (44), (45)). Therefore, the comparison sign will depend only on the parity or oddness of
n under conditions specified above. O

PROOF OF THEOREM 5. The proof is similar to the proof of theorem 4. After (n — 1) expansion
of continuant and upheaval of the ratio of continuants, formulas (44), (45) will be obtained. The
only different terms will be elements of formula (46).

Taking into account condition (22), and fixed sequence {0;} by condition, as well as the need to
reverse the ratio of continuants, we can conclude that

P3,(n—2,n) > P3,(n—2,n+1)

q3,(n—2,n) q3,(n—2,n+1)

Further, comparing the convergents ps (,—3.n)/43,(n—3,n) a0d D3 (n—3,n+1)/43,(n—3,n+1), We obtain
that they have the same comparison sign again:

P3 (n—3,n) > P3 (n—3,n+1)

q3,(n—3,n) q3,(n—3,n+1)

Following this procedure, the desired result is obtained. O
PROOF OF THEOREM 6. Let n — 1 = 0 (mod 4). Condition (22) is satisfied. Let us denote by
fs,t result of the following expression:
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<gsa Tt 7gt>3 H X Ys H X

0<i<s, 0<i<s,

i#s (mod 2 iZs (mod 2 s
Zo(mod2) _ ismedn) 0 )
To(gstr1, 59003 11z xs Il = ferie
0<i<s, 0<i<s,
i=s (mod 2) i=s (mod 2)

We can compare the elements of the sequences of magnitudes {fs;}, {fs+1} with each other.
Taking into account the results of lemma 1, the following inequalities are true:

fnfl,n > fnfl,nJrla fn72,n > fn72,n+17 fn73,n+1 < fn73,n+1a
fn—4,n < fn—4,n+17 fn—B,n > fn—5,n+1-

Let the following inequalities are true for natural v, 1 < v < (n —4)/4:

fn—4v—1,n > fn—4v—1,n+1a fn—4v—2,n > fn—4v—2,n+17
fn—4v—3,n+1 < fn—4v—3,n+17 fn—4v—4,n < fn—4v—4,n+1u

Consider the following 4 values of the elements of each of the sequences { fs+}, { fs1+1} separately.
According to the definition of magnitude f,;, it can be expressed in terms of magnitude fsy1;.
Inasmuch as n — 1 = 0 (mod 4), then n — 1 = 0 (mod 2). Hence, n — 4v — 5 is even number, so
Op—av—5 = 1. Therefore, comparing magnitudes f,_4y—5, and fr,—4y—5n+1, we obtain inequality

Yn—4v—-5 H Xy Yn—4v—>5 H Z;
0<t<n—4v—5, 0<i<n—4v—>5,n,
iZn—4v—>5 (mod 2) 1 iZn—4v—>5 (mod 2) 1
+ .
Tp—4v—5 H T 5 fn—4v—4,n Tn—4v—5,n H Zj fn—4v—47n+1
0<j<n—4v—5, 0<j<n—4v—5,
j=n—4v—5 (mod 2) j=n—4v—5 (mod 2)

The number n —4v — 6 is odd, so therefore, expanding the value of magnitudes f,_4p—6n,
Jn—4v—6,n+1, We get inequality

Yn—4v—6 H X Yn—4v—6 H X
0<i<n—4v—6, 0<i<n—4v—6,n,
iZn—4v—6 (mod 2) 1 iZn—4v—6 (mod 2) 1
Tn—4v—6 H Zj fn—4v—5,n Tn—4v—6,n H Zj fn—4v—5,n+1
0<j<n—4v—6, 0<j<n—4v—6,
j=n—4v—6 (mod 2) j=n—4v—6 (mod 2)

The following inequality can also be proven by comparison magnitudes 1/fn_4y—6, and
1/ fn—av—6n+1. Hence, the inequality fn—4v—7n < frn—4v—7,n+1 is obtained. Comparing expressions
with each other —1/f,,—4p—7,n and —1/ fr—ay—7n41, we get inequality fr—av—8n < frn—av—8n+1. This
proves the first point of the theorem. The remaining points can be proved in the same way. O

PROOF OF PROPOSITION 1. Let us write down fourth type continued fractions corresponding
to the convergents under consideration, and also perform an expansion of continuants. We get

expressions

S0(g1, s gn)a + (g0)algn)a [T/ @ nd 60(g1, - > gn+1)a + (90)al{gns1)a [T i

(gn)a H?z_ol T (Gn+1)4 H?:() T

Multiply both parts by H?:_()l x;, then we get expression
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50(917"' 7gn>4 + < > 771:[1 d 50<gl7"' 7g’rL+1>4 + < > nl:[l
- go)4 T; al go)4 xZ;.
<gn>4 i1 ' xn<gn+1>4 P} ‘

Reducing common parts, we obtain the required values. O

6. Conclusion

In this paper, the generalized Sorenson left-shift ged algorithm was introduced. It coincides
with the original Sorenson algorithm, except that instead of the parameter k, an infinite sequence
of natural numbers K is fixed, each element of which is greater than two. For the original Sorenson
algorithm, an estimate of the number of steps in the worst case is obtained, an example is given.
An evaluation of the generalized algorithm is also given. However, the author believes that it can
be improved.

Also in this article, continued fractions with rational partial quotients with a left shift were
introduced, and continuants, with the help of which one can express the numerator and denominator
of such fractions. The question of search conditions, under which the sequence of continuants with
increasing order is strictly increasing was investigated. Conditions have been found, under which
convergents of rational numbers made using continued fractions with rational partial quotients can
be unambiguously compared. Applying these conditions to all obtained convergents allows us to
determine whether such sequence will be strictly increasing or not.
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