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Аннотация

Алгоритм Соренсона с левым сдвигом – один из быстрых алгоритмов вычисения наи-
большего общего делителя двух натуральных чисел. В начале его работы фиксируется
натуральное число 𝑘 > 2, которое является параметром. На каждом шаге алгоритма вы-
полняется поиск линейной комбинации входных чисел текущего шага, причем наименьшее
из них предварительно домножается на параметр 𝑘, пока не начнет превосходить наи-
большего. После этого наибольшее число замещается абсолютным значением линейной
комбинации. Результатом работы алгоритма является наибольший общий делитель ис-
ходных чисел, умноженный на некоторое число, называемое побочным множителем. Для
алгоритма Соренсона была доказана оценка числа шагов в худшем случае, приведен при-
мер. Фиксация некоторой бесконечной последовательности 𝐾 натуральных чисел больших
двух позволяет получить обобщенный алгоритм Соренсона. В нем на каждом шаге вместо
числа 𝑘 будет задействовано определенное значение параметра 𝑘𝑖 ∈ 𝐾, соответствующее
текущему шагу алгоритма. В остальном алгоритмы полностью совпадают друг с другом.

Цепные дроби с рациональными неполными частными c левым сдвигом возникают в
ходе применения к отношению натуральных чисел 𝑎, 𝑏 обобщенного 𝑘-арного алгоритма
Соренсона с левым сдвигом. С ними связаны особые формы континуантов, то есть мно-
гочленов, при помощи которых выражаются числитель и знаменатель подходящей дроби.
Для таких континуантов найдены формулы, позволяющие представить континуант 𝑛-го
порядка в виде некоторой комбинации континуантов меньших порядков. Были найдены
условия при которых последовательность континуантов увеличивающегося порядка яв-
ляется строго возрастающей. Также были найдены условия, при которых приближения
рациональных чисел, выполненные при помощи цепных дробей с рациональными непол-
ными частными, можно однозначно сравнивать.

Ключевые слова: цепные дроби, континуант, наибольший общий делитель, Диофантовы
приближения.
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Abstract

The Sorenson left shift 𝑘-ary gcd algorithm is one of the fastest greatest common divisor
algorithms of two natural numbers. At the beginning a natural number 𝑘 > 2 is fixed, which is a
parameter of algorithm. At each step we multiply smaller of two input numbers of current step,
until it does not become greater of the second number. Then we calculate linear combination
between this number and the bigger of two input numbers. After that we replace the bigger of
two input numbers by absolute value of the linear combination. At the end of the algorithm we
obtain greatest common divisor of the two original numbers, which has been multiplied by some
natural number. Spurious factor has appeared in the answer. We have proven estimation of the
worst case of steps and obtained example of this case. Fixation of some endless sequence 𝐾
of natural numbers (each value is greater than 2) allows us to obtain the generalized Sorenson
left shift 𝑘-ary gcd algorithm. There at 𝑖-th step the value of 𝑘𝑖 ∈ 𝐾 is used instead of fixed
parameter 𝑘. Both algorithms are completely coincide except this moment.

Continued fractions with rational partial quotients with left shift arise at applying of the
generalized Sorenson left shift 𝑘-ary gcd algorithm to the ratio of two natural numbers 𝑎 and
𝑏. We can bind these continued fractions and polynomials of the special form, which called
continuants. Numerator and denominator of such continued fractions can be expressed by
continuants. Formulas have been found that allow us to express continuants of the 𝑛-th order
as some combination of continuants of a smaller order. Conditions were found at which a
sequence of continuants of increasing order is strictly increasing. We also found conditions that
allow unambiguous comparison of convergents of rational numbers that had performed by using
continued fractions with rational partial quotients.

Keywords: continued fraction, continuant, greatest common divisor, Diophantine approxi-
mation.

Bibliography: 17 titles.

For citation:

D. A. Dolgov, 2024. “On the continued fraction with rational partial quotients” , Chebyshevskii
sbornik, vol. 25, no. 2, pp. 43–66.

1. Introduction

The Euclidean algorithm is one of the most famous algorithms for calculating the greatest
common divisor (gcd) of two natural numbers 3 𝑎, 𝑏 (here and further 𝑎 > 𝑏 > 1). At each step

2This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program
(“PRIORITY-2030”).

3Natural numbers are the non-negative integers without zero.
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input number 𝑎 is replaced by input number 𝑏, input number 𝑏 is replaced by smallest non-negative
remainder 𝑟 from division of 𝑎 by 𝑏:

𝑎 = 𝑏𝑡+ 𝑟, 𝑡 = ⌊𝑎/𝑏⌋, 0 ⩽ 𝑟 < 𝑡.

The algorithm runs until the second argument vanishes. Then first argument is equals to
gcd(𝑎, 𝑏). The classical Euclidean algorithm corresponds to the expansion of the number 𝑎/𝑏 into a
(regular) continued fraction

𝑎

𝑏
= 𝑡0 +

1

𝑡1 +
1

. . . +
1

𝑡ℎ

of the length ℎ = ℎ(𝑎/𝑏), where 𝑡0 is integer, and the numbers 𝑡1, · · · , 𝑡ℎ are natural, 𝑡𝑖 ⩾ 2, 𝑖 ⩾ 1.
The integers 𝑡0, 𝑡1, ..., 𝑡ℎ are called partial quotients. Note that continued fractions are related to
many other mathematical objects (refer to [1], [2]).

In addition to the Euclidean algorithm, there are other algorithms that calculate gcd of two
natural numbers. Among them, it is worth noting 𝑘-ary algorithms first introduced by Sorenson:
the right-shift algorithm and the left-shift algorithm (refer to [3]). They quickly calculate the gcd,
which is used in various mathematical algorithms (refer to [4, 5, 6]). Modification of the first
algorithm allows us to increase its performance (refer to [7, 8]), calculate multiplicatively inverse
elements in the ring of integers modulo a number (refer to [9]), and also allows to get rid of spurious
factors that arise during execution of algorithm (refer to [10]).

In what follows we will need the Sorenson 𝑘-ary left-shift gcd algorithm. Here is its description.
Let us fix some integer 𝑘 > 2 and set 𝑎0 = 𝑎, 𝑏0 = 𝑏. At each step of this algorithm a pair of input
numbers (𝑎𝑖, 𝑏𝑖) is replaced by new pair (𝑎𝑖+1, 𝑏𝑖+1) by the next rule. First we find the integer 𝑒𝑖
from the following relation:

𝑐𝑖 ⩽ 𝑎𝑖 < 𝑘𝑐𝑖, (1)

where 𝑐𝑖 = 𝑏𝑖𝑘
𝑒𝑖 . Further integers 𝑥𝑖 and 𝑦𝑖 are selected that satisfy the conditions

gcd(𝑥𝑖, 𝑦𝑖) = 1, 0 < 𝑦𝑖 ⩽ 𝑘, (2)

for which the inequality holds ⃒⃒⃒⃒
𝑐𝑖
𝑎𝑖

− 𝑥𝑖
𝑦𝑖

⃒⃒⃒⃒
⩽

1

𝑦𝑖(𝑘 + 1)
. (3)

After that we select a new pair of numbers

(𝑎𝑖+1, 𝑏𝑖+1) = (𝑏𝑖, |𝑦𝑖𝑐𝑖 − 𝑥𝑖𝑎𝑖|) , if 𝑖 ⩾ 0, (4)

or
(𝑎𝑖+1, 𝑏𝑖+1) = (𝑏𝑖+1, 𝑎𝑖+1) , if 𝑏𝑖+1 > 𝑎𝑖+1. (5)

We will assume that the number 𝑥𝑖 belongs to the interval (0, 𝑘] because all other cases of
choosing this number do not satisfy inequality (3). The choice of numbers 𝑥𝑖, 𝑦𝑖 is carried out by
enumerating possible variants and checking the feasibility of this inequality. The existence of such
numbers is guaranteed by Dirichlet’s lemma on Diophantine approximations (refer to [11, chapter
X lemma 2]).

The algorithm terminates when one of the arguments 𝑎𝑖, 𝑏𝑖 vanishes: in this case, the second
argument becomes the answer. However, during algorithm execution at the 𝑖-th step a “spurious”
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Algorithm 1 Main loop of the left-shift 𝑘-ary gcd

if 𝑎 < 𝑏 then
𝑠𝑤𝑎𝑝(𝑎, 𝑏)

end if

while 𝑏 ̸= 0 do
compute 𝑐 = 𝑘𝑒𝑏 such that 𝑐 ⩽ 𝑎 < 𝑐𝑘
find x,y ⩽ 𝑘 such that 𝑐/𝑎 ≈ 𝑥/𝑦
𝑎 = |𝑦𝑐− 𝑥𝑎|
if 𝑎 < 𝑏 then

𝑠𝑤𝑎𝑝(𝑎, 𝑏)
end if

end while

factor 𝛼𝑖 = gcd(𝑏𝑖, 𝑥𝑖) may appear, therefore, the result of the Sorenson algorithm will be a certain
number that differs from the gcd(𝑎, 𝑏) by the factor

∏︀𝑛
𝑖=1 𝛼𝑖. In Sorenson’s paper, this factor was

removed using a special phase of the algorithm, performed after the main loop, called “trivial
division”. It consists of searching through possible divisors of the answer among all prime numbers
from 2 to 𝑘 and then removing them. This phase was also performed at the beginning of the
algorithm in order to find small common divisors of the input numbers. Subsequently, they were
stored as a product by which each input number 𝑎0, 𝑏0 was divided. At the end, the saved product
was added to the answer obtained as a result of running the “trivial division” phase again. This
made it possible to save small common divisors of the input numbers because they could have been
deleted regardless of the presence of a spurious factor. Here, usage of this phase of the algorithm is
omitted, as well as precomputation of some numbers, which is used during the performing algorithm.

Instead of the precomputation phase, you can take the answer 𝑎𝑛 obtained during the main
loop in 𝑛 steps and find gcd using the following scheme (this idea was proposed in modification of
the Sorenson right shift 𝑘-ary gcd algorithm (refer to [12])):

gcd(gcd(𝑎0, 𝑎𝑛), 𝑏0),

besides these two gcd calculation are performed using algorithms, in which there are no any spurious
factors. For example, it is Euclidean algorithm or binary algorithm (refer to [13]).

Below is an example of how the algorithm works. Let us fix parameter 𝑘 to 7, input numbers 𝑎0
and 𝑏0 equals to 4415 and 60, respectively. At the zero step, first we find the value of 𝑒0. It equals
to 2. After that we select the values of the numbers 𝑥0, 𝑦0, so that inequality (3) is performed. Let
us set them to 2 and 3, respectively. Further, we calculate a new pair of numbers 𝑎1, 𝑏1 according
to rules (4), (5). It equals to (60, 10). It is easy to see that the gcd(𝑎1, 𝑏1) is equals to 10, although
gcd of the input numbers 𝑎0 and 𝑏0 is equals to 5. Result does not match, due to the fact that at
this step of the algorithm a spurious factor gcd(𝑏0, 𝑥0) equals to 2 is appeared. The next step also
begins with searching value of 𝑒1. It equals to 0. The numbers 𝑥1 = 1, 𝑦1 = 6 satisfy inequality (3).
At the end of this step search for a new pair of numbers (𝑎2, 𝑏2) is performed again. Value of 𝑏2 is
equals to 0, so the number 𝑎2, which equals to 10, will be the answer after division by the spurious
factor, which equals to 2.

Sorenson showed that for pairs of numbers (𝑎, 𝑏), that are chosen according to the rules

𝑎 =
𝑚∑︁
𝑖=0

𝑘2𝑖, 𝑏 = 1, (6)

the number of steps is equal to 𝑚+ 1, and for the number 𝑚 the next estimate will be fair
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𝑚 = Ω(log(𝑎𝑏)/ log(𝑘)). (7)

Estimate (7) has been proven only for numbers of type (6). Subsequently, for two numbers
having 𝑛 binary digits, Sorenson proved the asymptotic of the number of steps in the worst case
equal to Θ(𝑛/ log(𝑘))𝑣 using estimate (7). No worst-case examples of the algorithm work were given.
Also, the question of the constant in the estimate bounded from above remained open until now. In
paragraph 4, we give an example of the worst case of the algorithm, and prove the following result:

Theorem 1. For arbitrary integers 𝑎 ⩾ 𝑏 > 1 the main loop of the Sorenson left-shift 𝑘-ary
algorithm calculates gcd in no more than ⌊log(𝑎)/ log(𝑘)⌋ + ⌊log(𝑏)/ log(𝑘)⌋ + 1 steps.

Using the Sorenson right-shift 𝑘-ary gcd algorithm, we can obtain continued fractions with
rational partial quotients with right shift. For brevity, we call such fractions as continued fractions
of the first kind. There are two main types of such fractions: continued fractions of the first type

𝑦0𝛾0
𝑥0𝛽0

+
𝑘0⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1𝑥0𝛽0𝛾1

𝛾0𝑥1𝛽1
+

𝑘1⎛⎜⎜⎜⎜⎜⎜⎝
. . . +

𝑘𝑛−1

𝑦𝑛
∏︀

0⩽𝑖<𝑛,
𝑖 ̸≡𝑛 (mod 2)

𝑥𝑖𝛽𝑖
∏︀

0⩽𝑡⩽𝑛,
𝑡≡𝑛 (mod 2)

𝛾𝑡

∏︀
0⩽𝑗⩽𝑛,

𝑗≡𝑛 (mod 2)

𝑥𝑗𝛽𝑗
∏︀

0⩽𝑚<𝑛,
�̸�≡𝑛 (mod 2)

𝛾𝑚

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and continued fractions of the second type

𝑦0𝛾0

𝑥0𝛽0
+

𝑘0𝛾0⎛⎜⎜⎜⎝
𝑥0𝛽0⎛⎜⎝ 𝑦1𝛾1

𝑥1𝛽1
+

𝑘1𝛾1

. . . +
𝑘𝑛−1𝛾𝑛−1𝑥𝑛𝛽𝑛

𝑥𝑛−1𝛽𝑛−1𝑦𝑛𝛾𝑛

⎞⎟⎠
⎞⎟⎟⎟⎠
.

The numerators and denominators of such fractions can be expressed using polynomials of a
special kind called continuants. Previously, the properties of extreme values of such continuants with
restrictions on the variables were studied, and a construction similar to the triangle of Fibonacci
polynomials was obtained (refer to [14]).

This paper is introduced a generalized Sorenson left-shift 𝑘-ary gcd algorithm, finite continued
fractions with rational partial quotients with left shift and corresponding continuants. We have
obtained formulas expansion of continuants. We give conditions, under which it is possible to
construct strictly increasing sequences of continuants, convergents of rational numbers. Also in
this paper, we present an accurate estimate of the number of steps of the Sorenson left-shift 𝑘-ary
gcd algorithm in the worst case.

2. The Generalized Sorenson algorithm

Consider the following generalized Sorenson algorithm. Instead of the number 𝑘, some infinite
sequence of numbers 𝐾 = {𝑘𝑖}∞𝑖=0 is fixed, consisting of natural numbers 𝑘𝑖 ⩾ 2. At the next step
of the algorithm, a pair of numbers (𝑎𝑖+1, 𝑏𝑖+1) is constructed using formulas that are obtained
from (1) – (5) by replacing 𝑘 to 𝑘𝑖. If we multiply each half of inequality (3) by the number 𝑦𝑖,
come to the one denominator on the left side, and then flip each parts of the inequality, then we
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get expression 𝑎𝑖/|𝑦𝑖𝑐𝑖 − 𝑥𝑖𝑎𝑖| ⩾ (𝑘𝑖 + 1). This fact ensures convergence of the generalized Sorenson
algorithm to the solution.

Let 𝑘 = min(𝑘𝑖), 𝑘𝑖 ∈ 𝐾. Then the number of steps of the generalized Sorenson algorithm does
not exceed the magnitude ⌊log(𝑎)/ log(𝑘)⌋ + ⌊log(𝑏)/ log(𝑘)⌋ + 1. The author suggests that this
estimate, made by analogy with theorem 1, can be improved.

3. Finite continued fractions with rational partial quotients

The generalized Sorenson algorithm leads to a new expansion of the number 𝑎/𝑏 into a (regular)
continued fraction with rational partial quotients with a left shift 4, which for brevity we will call
continued fraction of the second kind. Denote by 𝑔𝑖 the four numbers (𝑦𝑖, 𝑥𝑖, 𝑘𝑖, 𝑒𝑖). The number 𝑦0
is integer, and 𝑥0, 𝑥𝑖, 𝑦𝑖 are non-zero integers when 𝑖 is greater than one.

There are two main types of expansion of the number 𝑎/𝑏 into a continued fraction of the
second kind. For brevity, we will call them expansions of the third and fourth types. The third type
continued fraction has the following form

𝑦0
𝑥0
𝑘0

𝑒0 +
𝛿0⎛⎜⎜⎜⎜⎜⎜⎝

𝑥0𝑦1

𝑥1
𝑘1

𝑒1 +
𝛿1⎛⎜⎜⎜⎜⎝. . . +

𝑦𝑛𝑘𝑛
𝑒𝑛

∏︀
𝑖<𝑛,

𝑖 ̸≡𝑛 (mod 2)

𝑥𝑖

𝑥𝑛
∏︀
𝑗<𝑛,

𝑗≡𝑛 (mod 2)

𝑥𝑗

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

= [𝑔0; 𝑔1..., 𝑔𝑛]3 , (8)

where the value 𝛿𝑖 = 𝛿𝑖(𝑎𝑖, 𝑐𝑖, 𝑥𝑖, 𝑦𝑖) is defined as

𝛿𝑖 =

{︃
−1, if 𝑐𝑖𝑦𝑖 − 𝑥𝑖𝑎𝑖 ⩾ 0.

1, if 𝑐𝑖𝑦𝑖 − 𝑥𝑖𝑎𝑖 < 0.
(9)

Theorem 2. Let the finite sequences of numbers {𝑥𝑖}𝑛𝑖=0, {𝑦𝑖}𝑛𝑖=0 have been obtained by applying
the generalized Sorenson left-shift 𝑘-ary gcd algorithm for the input numbers 𝑎, 𝑏 and a pre-fixed
infinite sequence 𝐾 of natural numbers greater than two. If the following inequalities are true for
each 𝑖

𝑎𝑖 > 𝑏𝑖 > |𝑦𝑖𝑐𝑖 − 𝑥𝑖𝑎𝑖|, (10)

then the number 𝑎/𝑏 can be represented as a third type continued fraction.

The proof of the theorem and all following results are given in a separate section.
If continued fractions have been contained a large number of elements, and besides that each

element needs to be shown, then it is not always convenient to represent such fractions with formula
(8). In such cases it is convenient to use an alternative notation of the continued fraction, so that
the sum of the elements will be written in a line:

𝑦0𝑘0
𝑒0

𝑥0
+

𝛿0

𝑥0𝑦1𝑘1
𝑒1

𝑥1
+

𝛿1

𝑥1𝑦2𝑘2
𝑒2

𝑥2𝑥0
+

𝛿2

𝑥0𝑥2𝑦3𝑘3
𝑒3

𝑥3𝑥1
+

· · ·

4The left shift in the name is a reference to the Sorenson left-shift 𝑘-ary gcd algorithm, which is used when
decomposing the number 𝑎/𝑏. If we select 𝑘 = 2𝑠, then multiplication by 𝑘 is the same as performing a bitwise left
shift operation by 𝑠 positions (refer to [15]). This analogy is reflected in the name of the algorithm.
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The fourth type continued fraction has the following form

𝑛−1∑︁
𝑖=0

𝑦𝑖𝑘𝑖
𝑒𝑖

𝑥𝑖

𝑖−1∏︁
𝑗=0

𝛿𝑗

𝑥𝑗
+

𝑥𝑛

𝑦𝑛𝑘𝑛
𝑒𝑛

𝑛−1∏︁
𝑖=0

𝛿𝑖

𝑥𝑖
= [𝑔0; 𝑔1, ..., 𝑔𝑛]4 , (11)

where the value 𝛿𝑖 is defined as in theorem 2.

Theorem 3. Let the finite sequences of numbers {𝑥𝑖}𝑛𝑖=0, {𝑦𝑖}𝑛𝑖=0 have been obtained by applying
the generalized Sorenson left-shift 𝑘-ary gcd algorithm for the input numbers 𝑎, 𝑏 and a pre-fixed
infinite sequence 𝐾 of natural numbers greater than two. If the following inequalities are true for
each 𝑗 under the condition 0 ⩽ 𝑗 ⩽ 𝑛− 1

𝑏𝑗 ⩽ |𝑦𝑗𝑐𝑗 − 𝑥𝑗𝑎𝑗 | < 𝑎𝑗 , (12)

and for 𝑗 equal to 𝑛, conditions (10) are satisfied, then the number 𝑎/𝑏 can be represented as a
fourth type continued fraction.

The indices “3” and “4” after the square brackets to the right of the continued fraction in
theorems 2, 3 mean the third and fourth types of expansion into continued fractions of the second
kind. Note that at the last 𝑛-th step of the algorithm at expansion into a fourth type continued
fraction formula (10) will be fulfilled instead of conditions (12).

The fourth type continued fraction has another form of notation:

𝑦0
𝑥0
𝑘0

𝑒0 +
𝛿0

𝑥0⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1

𝑥1
𝑘1

𝑒1 +
𝛿1

𝑥1⎛⎜⎜⎜⎝
· · ·⎛⎜⎝𝑦𝑛−1𝑘

𝑒𝑛−1
𝑛−1

𝑥𝑛−1
+

𝛿𝑛−1

𝑥𝑛−1𝑦𝑛𝑘𝑛
𝑒𝑛

𝑥𝑛

⎞⎟⎠
⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

If we consider a part of this construction, which had obtained at the 𝑖-th step excluding the
previous steps of the algorithm, then we can obtain the following:

𝑦𝑖𝑘𝑖
𝑒𝑖

𝑥𝑖
+

𝛿𝑖⎛⎝ 𝑥𝑖(︂
|𝑦𝑖𝑐𝑖 − 𝑥𝑖𝑎𝑖|

𝑏𝑖

)︂⎞⎠
=
𝑦𝑖𝑘𝑖

𝑒𝑖

𝑥𝑖
+
𝛿𝑖|𝑦𝑖𝑐𝑖 − 𝑥𝑖𝑎𝑖|

𝑥𝑖𝑏𝑖
. (14)

The right part is obtained by opening the brackets in the left part and writing all the values
in a line. Then, continued fraction (13) can be represented as (11). Here and further we will use
continued fraction (11) as more compact.

We need to make a small remark regarding the last 𝑛-th step in theorem 3. Сondition (10) is
fulfilled instead of condition (12). If 𝑛 steps were not enough to expand the number 𝑎/𝑏 into a
fourth type continued fraction and at least one more step is required, on which condition (10) must
be satisfied, then in this case we will assume that we are dealing with a combination of fractions of
the fourth and third types.

Expansion into continued fractions of the third and fourth types is ambiguous. This is due to
the fact that at each step of the algorithm there can be several pairs of numbers (𝑥, 𝑦) that satisfy
inequality (3). For example, the inequality |8/13 − 𝑥/𝑦| < 1/(4𝑦) is satisfied by pairs (1, 2), (2, 3).
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Example 1. Сonsider an example of expansion into a third type continued fraction. The following
table shows the calculation results:

Step № 𝑎𝑖 𝑏𝑖 |𝑦𝑖𝑐𝑖 − 𝑥𝑖𝑎𝑖| 𝑘𝑖 𝑒𝑖 𝑥𝑖 𝑦𝑖 𝛿𝑖
0 1117 505 107 3 0 1 2 1
1 505 107 30 5 0 1 5 -1
2 107 30 17 3 1 1 1 1
3 30 17 5 5 0 3 5 1
4 17 5 2 3 1 1 1 1
5 5 2 0 7 0 2 5 -1

Using this table and formula (8), we can get at a fraction

1117

505
= 2 +

1

5 −
1

3 +
1

5

3
+

1

3

⎛⎝3 +
1(︂
5

2

)︂⎞⎠
Example 2. Сonsider an example of expansion into a fourth type continued fraction. The

following table shows the calculation results:

Step № 𝑎𝑖 𝑏𝑖 |𝑦𝑖𝑐𝑖 − 𝑥𝑖𝑎𝑖| 𝑘𝑖 𝑒𝑖 𝑥𝑖 𝑦𝑖 𝛿𝑖
1 291 11 54 4 2 2 3 1
2 54 11 12 3 1 1 2 -1
3 12 11 1 11 0 1 1 1
4 11 1 0 13 0 1 11 -1

Using this table and formula (11), we can get at a fraction

291

11
=

3

2
× 16 +

1

2
×

(︃
3 × 2 −

(︃
1 +

1

11

)︃)︃
.

This expansion ended at the third step, since at the fourth step 𝑏4 = 1 and 𝑎4 < 𝑘4. In general,
when given a certain sequence 𝐾, the expansion into a continued fraction can end much earlier. If
in this example at the second step we take the number 54 as the parameter 𝑘𝑖, and define the pair
(𝑥𝑖, 𝑦𝑖) as (11, 54), then expansion into a continued fraction will be finished at the second step. This
means that the ratio of the numbers 54/11 will not actually expand into any continued fraction. In
this case, the last element in formula (11) will disappear and it will take the following form:

𝑛∑︁
𝑖=0

𝑦𝑖𝑘𝑖
𝑒𝑖

𝑥𝑖

𝑖−1∏︁
𝑗=0

𝛿𝑗

𝑥𝑗
.

Such cases of “stopping” number expansion into a continued fraction are not considered in the
article.

For given integers 𝑎, 𝑏, a combination of continued fractions of type (8), (11) is observed, when
conditions (10) and (12) alternate subject to condition 𝑖 ̸= 𝑗. Expansion of the number 𝑎/𝑏 into a
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second kind continued fraction is not the only one, since at the next step of the algorithm there
may be several pairs of numbers 𝑥𝑖, 𝑦𝑖 that satisfy conditions (1) – (3).

The numerator and denominator of a continued fraction of the second kind can be expressed
using continuant. A continuant of the third type is defined as a determinant

⟨𝑔0, 𝑔1, ..., 𝑔𝑛⟩3 = det

⎛⎜⎜⎜⎜⎝
𝑦0𝑘0

𝑒0 𝛿0 0 0 0 · · · 0
−𝑥1 𝑦1𝑘1

𝑒1 𝛿1 0 0 · · · 0
0 −𝑥2 𝑦2𝑘2

𝑒2 𝛿2 0 · · · 0
· · · · · · · · · · · · · · ·

0 · · · 0 0 0 −𝑥𝑛 𝑦𝑛𝑘𝑛
𝑒𝑛

⎞⎟⎟⎟⎟⎠ , (15)

where 𝑥𝑖, 𝑦𝑖, 𝑘𝑖, 𝑒𝑖 are elements of corresponding continued fracion, and the value of 𝛿𝑖 is determined
according to rule (9). In particular, ⟨𝑔0⟩3 = 𝑦0𝑘0

𝑒0 , ⟨𝑔0, 𝑔1⟩3 = 𝑦0𝑦1𝑘0
𝑒0𝑘1

𝑒1 + 𝛿0𝑥1. Moreover, by
definition we assume ⟨ ⟩3 = 1.

Lemma 1. Let [𝑔0; 𝑔1, 𝑔2, ..., 𝑔𝑛]3 be the expansion of the number 𝑎/𝑏 into a third type continued
fraction, with 𝑛 ⩾ 3. Then the following formulas are true:

1. ⟨𝑔0, ..., 𝑔𝑛⟩3 = 𝑦𝑛𝑘𝑛
𝑒𝑛 ⟨𝑔0, ..., 𝑔𝑛−1⟩3 + 𝛿𝑛−1𝑥𝑛 ⟨𝑔0, ..., 𝑔𝑛−2⟩3;

2. ⟨𝑔0, 𝑔1, ..., 𝑔𝑛⟩3 = 𝑦0𝑘0
𝑒0 ⟨𝑔1, ..., 𝑔𝑛⟩3 + 𝛿0𝑥1 ⟨𝑔2, ..., 𝑔𝑛⟩3;

3. ⟨𝑔0, ..., 𝑔𝑛⟩3 = ⟨𝑔0, ..., 𝑔𝑗⟩3 ⟨𝑔𝑗+1, ..., 𝑔𝑛⟩3 + 𝛿𝑗𝑥𝑗+1 ⟨𝑔0, ..., 𝑔𝑗−1⟩3 ⟨𝑔𝑗+2, ..., 𝑔𝑛⟩3, where the
number 𝑗 satisfies the condition 1 ⩽ 𝑗 ⩽ 𝑛.

Moreover, the following equality is true:

𝑎

𝑏
=

⟨𝑔0, 𝑔1, 𝑔2, ..., 𝑔𝑛⟩3
𝑥0 ⟨𝑔1, 𝑔2, ..., 𝑔𝑛⟩3

.

A continuant of the fourth type is defined as a determinant

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛿0 0 0 0 0 · · · 0 0 (−1)𝑛+1𝑤0 0
𝑥1 𝛿1 0 0 0 · · · 0 0 (−1)𝑛+2𝑤1 0
0 𝑥2 𝛿2 0 0 · · · 0 0 (−1)𝑛+3𝑤2 0
0 0 𝑥3 𝛿3 0 · · · 0 0 (−1)𝑛+4𝑤3 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · 𝛿𝑛−3 0 (−1)2𝑛−2𝑤𝑛−3 0
0 0 0 0 0 · · · 𝑥𝑛−2 𝛿𝑛−2 (−1)2𝑛−1𝑤𝑛−2 0
0 0 0 0 0 · · · 0 𝑥𝑛−1 𝑤𝑛−1 𝛿𝑛−1

0 0 0 0 0 · · · 0 0 −𝑥𝑛 𝑤𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (16)

where 𝑤𝑖 = 𝑦𝑖𝑘𝑖
𝑒𝑖 . Again 𝑥𝑖, 𝑦𝑖, 𝑘𝑖, 𝑒𝑖 are elements of continued fraction, and the function 𝛿𝑖

is defined according to rule (9). Continuants of the fourth type are denoted as ⟨𝑔0, ..., 𝑔𝑛⟩4. In
particular, ⟨𝑔0⟩4 = 𝑦0𝑘0

𝑒0 , ⟨𝑔0, 𝑔1⟩4 = 𝑦0𝑦1𝑘0
𝑒0𝑘1

𝑒1 + 𝛿0𝑥1, ⟨ ⟩4 = 1.

Lemma 2. Let [𝑔0; 𝑔1, 𝑔2, ..., 𝑔𝑛]4 be the expansion of the number 𝑎/𝑏 into a fourth type continued
fraction, with 𝑛 ⩾ 3. Then the following formulas are true:

⟨𝑔0, ..., 𝑔𝑛⟩4 = 𝛿0⟨𝑔1, ..., 𝑔𝑛⟩4 + ⟨𝑔0⟩4⟨𝑔𝑛⟩4
𝑛−1∏︁
𝑖=1

𝑥𝑖.

Moreover, the following equality is true:

𝑎

𝑏
=

⟨𝑔0, 𝑔1, 𝑔2, · · · 𝑔𝑛⟩4
⟨𝑔𝑛⟩4

∏︀𝑛−1
𝑖=0 𝑥𝑖

.
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Due to the fact that matrix (16) is not diagonal, a continuant of the fourth type of 𝑛-th order can
not be represented as a sum of products of continuants of lower orders by performing an arbitrary
partition of the original continuant following the example of paragraph 3 of lemma 1.

Lemma 3. If at least one of the conditions is performed

∙ 𝛿𝑖 = 1 for any 0 ⩽ 𝑖 < 𝑛,
∙ 𝛿𝑗 = −1 and 𝑦𝑖𝑘𝑖

𝑒𝑖 − 𝑥𝑖 > 1 for any 0 ⩽ 𝑖 ⩽ 𝑛, 0 ⩽ 𝑗 < 𝑛,
∙ 𝛿𝑛−1 = −1 and 𝑦𝑛𝑘𝑛

𝑒𝑛 − 𝑥𝑛 > 1, and for other values 𝛿𝑖 = 1, 0 ⩽ 𝑖 < 𝑛− 1,
(17)

then for an arbitrary 𝑛 the following inequalities are true:

0 < ⟨𝑔0⟩3 < ⟨𝑔0, 𝑔1⟩3 < ...⟨𝑔0, 𝑔1, ..., 𝑔𝑛⟩3. (18)

If one of three conditions (17) is performed at expansion into the third type continued fraction,
then the third type continuants, with the help of which the numerators and denominators are
expressed, will strictly increase.

Example 3. Consider an example of an increasing sequence of the third type continuants. The
following table shows the calculation results:

Step № 𝑎𝑖 𝑏𝑖 |𝑦𝑖𝑐𝑖 − 𝑥𝑖𝑎𝑖| 𝑘𝑖 𝑒𝑖 𝑥𝑖 𝑦𝑖 𝛿𝑖 Condition
0 117520 1371 173 7 2 4 7 -1 true
1 1371 173 13 2 3 1 1 -1 true
2 173 13 5 3 2 2 3 -1 true
3 13 5 0 13 0 5 13 -1 true

The following values of the continuants are obtained: ⟨𝑔0⟩3 = 73 = 343, ⟨𝑔0, 𝑔1⟩3 = 73× 8− 1 =
= 2743, ⟨𝑔0, 𝑔1, 𝑔2⟩3 = 2743×9×3−2×343 = 73375, ⟨𝑔0, 𝑔1, 𝑔2, 𝑔3⟩3 = 73375×13−5×2743 = 940160.
The last column in the table shows the fulfillment of inequality (3), which corresponds to the “true”
value. Hence we get that ⟨𝑔0⟩3 < ⟨𝑔0, 𝑔1⟩3 < ⟨𝑔0, 𝑔1, 𝑔2⟩3 < ⟨𝑔0, 𝑔1, 𝑔2, 𝑔3⟩3.

Growth the sequence of continuants of the fourth type is equivalent to fulfillment several
inequalities, as indicated by the following

Lemma 4. If at least one of conditions (17) is satisfied for zero- and first-order continuants, if
⟨𝑔0, 𝑔1, 𝑔2⟩4 > ⟨𝑔0, 𝑔1⟩4, 𝛿−1 = 1, and also for all 2 < 𝑖 ⩽ 𝑛 the following inequality holds

𝛿0𝛿1 · · · 𝛿𝑖−2(⟨𝑔𝑖−1, 𝑔𝑖, 𝑔𝑖+1⟩4 − ⟨𝑔𝑖−1, 𝑔𝑖⟩4) > (⟨𝑔𝑖⟩4 − 𝑥𝑖⟨𝑔𝑖+1⟩4)
𝑖−1∑︁
𝑗=0

𝛿𝑗−1𝑦𝑗𝑘𝑗
𝑒𝑗

𝑖−1∏︁
𝑧=𝑗+1

𝑥𝑧, (19)

then for an arbitrary 𝑛 the following inequalities are true:

0 < ⟨𝑔0⟩4 < ⟨𝑔0, 𝑔1⟩4 < ...⟨𝑔0, 𝑔1, ..., 𝑔𝑛⟩4. (20)

Example 4. Consider an example of an increasing sequence of the fourth type continuants. The
following table shows the calculation results:

Step № 𝑎𝑖 𝑏𝑖 |𝑦𝑖𝑐𝑖 − 𝑥𝑖𝑎𝑖| 𝑘𝑖 𝑒𝑖 𝑥𝑖 𝑦𝑖 𝛿𝑖 Condition
0 518 11 221 3 2 1 3 1 false
1 221 11 112 6 1 2 5 1 false
2 112 11 2 5 1 1 2 1 true
3 11 2 0 11 0 2 11 -1 true
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Using this table, we will find the corresponding values of the continuants. So, we get the following
values: ⟨𝑔0⟩4 = 27, ⟨𝑔0, 𝑔1⟩4 = 3×9×5×6+2 = 812, ⟨𝑔0, 𝑔1, 𝑔2⟩4 = (5×6×2×5+1)+3×32×2×2×5 =
= 841. Now find the value of the fourth-order continuant. So, we get the following values: ⟨𝑔2, 𝑔3⟩4 =
=2×5×11+2=112, ⟨𝑔1, 𝑔2, 𝑔3⟩4=112+5×6×11=442, ⟨𝑔0, 𝑔1, 𝑔2, 𝑔3⟩4=442+3×32×2×11 = 1036.
We get that ⟨𝑔0⟩4 < ⟨𝑔0, 𝑔1⟩4 < ⟨𝑔0, 𝑔1, 𝑔2⟩4 < ⟨𝑔0, 𝑔1, 𝑔2, 𝑔3⟩4.

In example 4 condition (3) is not always taken into account. This means that a pair of numbers
(𝑥𝑖, 𝑦𝑖) may be not the best approximation to the fraction 𝑏𝑖𝑘𝑖𝑒𝑖/𝑎𝑖 in the general case. The last
column “Condition” indicates that this condition is fulfilled (true) or not fulfilled (false). The
question of the existence of an increasing sequence of continuants of arbitrary length (𝑛 ⩾ 3)
remains open, provided that formula (3) is fulfilled.

Definition 1. The rational numbers

𝑝𝑖,(0,0)

𝑞𝑖,(0,0)
= [𝑔0]𝑖,

𝑝𝑖,(0,1)

𝑞𝑖,(0,1)
= [𝑔0; 𝑔1]𝑖;

𝑝𝑖,(0,2)

𝑞𝑖,(0,2)
= [𝑔0; 𝑔1, 𝑔2]𝑖, · · · ,

𝑝𝑖,(0,𝑛)

𝑞𝑖,(0,𝑛)
= [𝑔0; 𝑔1, · · · , 𝑔𝑛]𝑖

are called the convergents of 𝑖-th type of the number 𝑝/𝑞, expressed using the fraction [𝑔0; 𝑔1, · · · ,
𝑔𝑛]𝑖.

The first numeral in the index of convergent of the number 𝑝𝑖,(0,𝑗)/𝑞𝑖,(0,𝑗) indicates the
appropriate type of continued fraction. For example, when 𝑖 = 3, we use third type continued
fraction. If some part of the continued fraction is considered, for example, [𝑔𝑙; 𝑔𝑙+1, · · · , 𝑔𝑛]𝑖, then
the corresponding convergents also begin from the 𝑙-th element: 𝑝𝑖,(𝑙,𝑙)/𝑞𝑖,(𝑙,𝑙), 𝑝𝑖,(𝑙,𝑙+1)/𝑞𝑖,(𝑙,𝑙+1),
𝑝𝑖,(𝑙,𝑙+2)/𝑞𝑖,(𝑙,𝑙+2) etc.

The following lemma allows us to calculate convergents of the third type without resorting to
calculating the values of the continuants. You just need to perform the product of matrices.

Lemma 5. Let the number 𝑛 > 1 and the product of matrices 𝐴 =
∏︀𝑛

𝑖=0𝐴𝑖 are set, where

𝐴𝑖 =

⎛⎝ 0 1
𝛿0

𝑥0

𝑦𝑖𝑘𝑖
𝑒𝑖

𝑥𝑖

⎞⎠ , 𝐴 =

(︂
𝑃 𝑃 ′

𝑄 𝑄′

)︂
, (21)

then

𝑃 =
𝛿𝑛⟨𝑔1, · · · , 𝑔𝑛−1⟩3∏︀𝑛

𝑖=1 𝑥𝑖
, 𝑃 ′ =

⟨𝑔1, · · · , 𝑔𝑛⟩3∏︀𝑛
𝑖=1 𝑥𝑖

,

𝑄 =
𝛿𝑛⟨𝑔0, · · · , 𝑔𝑛−1⟩3∏︀𝑛

𝑖=0 𝑥𝑖
, 𝑄′ =

⟨𝑔0, · · · , 𝑔𝑛⟩3∏︀𝑛
𝑖=0 𝑥𝑖

, det(𝐴) =
𝑛∏︁

𝑖=0

𝛿𝑖

𝑥𝑖
.

Corollary 1.
𝑄

𝑃
=
𝑝3,(0,𝑛−1)

𝑞3,(0,𝑛−1)
,
𝑄′

𝑃 ′ =
𝑝3,(0,𝑛)

𝑞3,(0,𝑛)
.

The proof of corollary 1 follows automatically from lemmas 1, 5.
Consider convergents of rational numbers, which had been obtained using (regular) continued

fractions. Let’s number them in order, adding the corresponding index to them. All convergents
with even indices form a strictly increasing sequence, and all convergents with odd indices form a
strictly decreasing sequence (refer to [16]). But despite this, in the general case nothing similar can
be done for convergents 𝑝𝑖,(0,0)/𝑞𝑖,(0,0), 𝑝𝑖,(0,1)/𝑞𝑖,(0,1), .... Look at example 1 again. We calculate all
convergents of the number 1117/505. Then we get
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𝑝3,(0,0)

𝑞3,(0,0)
= 2,

𝑝3,(0,1)

𝑞3,(0,1)
=

10 + 1

5
=

11

5
,
𝑝3,(0,2)

𝑞3,(0,2)
=

3 · 11 − 2

5 · 3 − 1
=

31

14
,
𝑝3,(0,3)

𝑞3,(0,3)
=

5 · 31 + 3 · 11

5 · 14 + 3 · 5
=

188

85
,

𝑝3,(0,4)

𝑞3,(0,4)
=

3 · 188 + 31

85 · 3 + 14
=

595

269
,
𝑝3,(0,5)

𝑞3,(0,5)
=

5 · 595 + 2 · 188

5 · 269 + 2 · 85
=

1117

505
.

Let’s compare all convergents with each other:

𝑝3,(0,0)

𝑞3,(0,0)
<
𝑝3,(0,1)

𝑞3,(0,1)
<
𝑝3,(0,3)

𝑞3,(0,3)
<
𝑝3,(0,5)

𝑞3,(0,5)
<
𝑝3,(0,4)

𝑞3,(0,4)
<
𝑝3,(0,2)

𝑞3,(0,2)
.

It is possible to identify conditions, under which successive convergents will be strictly greater or
lesser than each other. Comparison of convergents of the third type 𝑛 and 𝑛+1 order 𝑝3,(0,𝑛)/𝑞3,(0,𝑛),
𝑝3,(0,𝑛+1)/𝑞3,(0,𝑛+1) is equivalent to comparing magnitudes 𝛿0𝑞3,(1,𝑛)/𝑝3,(1,𝑛), 𝛿0𝑞3,(1,𝑛+1)/𝑝3,(1,𝑛+1).
Their calculation can be simplified. To do this, you need to perform a certain number of expansions
of the continuants in numerators and denominators, grouping the common parts together. This
idea underlies the following results. Moreover, in some cases it is not even necessary to completely
calculate the value of continuant.

Theorem 4. If the following inequality is true

⟨𝑔𝑛−1, 𝑔𝑛⟩3
𝑥𝑛−1⟨𝑔𝑛⟩3

>
⟨𝑔𝑛−1, 𝑔𝑛, 𝑔𝑛+1⟩3
𝑥𝑛−1⟨𝑔𝑛, 𝑔𝑛+1⟩3

, (22)

𝛿𝑗 = 1 for all 0 ⩽ 𝑗 < 𝑛 and the number 𝑛 is odd, then

𝑝3,(0,𝑛)

𝑞3,(0,𝑛)
>
𝑝3,(0,𝑛+1)

𝑞3,(0,𝑛+1)
. (23)

If condition (22) is performed, 𝛿𝑗 = 1 for all 0 ⩽ 𝑗 < 𝑛 and the number 𝑛 is even, then

𝑝3,(0,𝑛)

𝑞3,(0,𝑛)
<
𝑝3,(0,𝑛+1)

𝑞3,(0,𝑛+1)
.

Theorem 5. If inequality (22) is true, 𝛿𝑗 = −1 for all 0 ⩽ 𝑗 < 𝑛, then inequality (23) is true.

Theorem 6. If for all positive integers 𝑡 the equalities 𝛿2𝑡 = 1, 𝛿2𝑡+1 = −1 are satisfied,
condition (22) is true, and for a natural number 𝑛 and a positive integer 𝑖, 0 ⩽ 𝑖 ⩽ 𝑛− 1, condition

� 𝑛− 1 ≡ 0 (mod 4) or 𝑛− 1 ≡ 2 (mod 4) is true, then for 𝑖 ≡ 0 (mod 4) and 𝑖 ≡ 1 (mod 4)
inequality

𝑝3,(𝑛−1−𝑖,𝑛)

𝑞3,(𝑛−1−𝑖,𝑛)
>
𝑝3,(𝑛−1−𝑖,𝑛+1)

𝑞3,(𝑛−1−𝑖,𝑛+1)
(24)

is true, and for 𝑖 ≡ 2 (mod 4) and 𝑖 ≡ 3 (mod 4) inequality (24) is satisfied with a minus
sign “<”.

� 𝑛− 1 ≡ 1 (mod 4) or 𝑛− 1 ≡ 3 (mod 4) is true, then for 𝑖 ≡ 0 (mod 4) and 𝑖 ≡ 2 (mod 4)
inequality (24) is true, and for 𝑖 ≡ 1 (mod 4) and 𝑖 ≡ 3 (mod 4) inequality (24) is satisfied
with a minus sign “<”.
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Theorem 6 can also be used to compare two convergents. To do this, you only need to know the
remainder of dividing the number 𝑛− 1 by 4 and use one of the conditions.

If in condition (22) sign will change to the opposite, then signs of comparisons in inequalities of
theorems 4, 6, 5 will also change.

It is quite difficult to obtain results similar to theorems 4, 6, 5 for convergents of the fourth
type. Nevertheless, this task can be reduced to comparing the following magnitudes.

Proposition 1. The task of comparing convergents of the fourth type

𝑝4,(0,𝑛)

𝑞4,(0,𝑛)
and

𝑝4,(0,𝑛+1)

𝑞4,(0,𝑛+1)

is equivalent to comparing magnitudes

𝛿0⟨𝑔1, · · · , 𝑔𝑛⟩4
⟨𝑔𝑛⟩4

and
𝛿0⟨𝑔1, · · · , 𝑔𝑛⟩4
𝑥𝑛⟨𝑔𝑛+1⟩4

.

4. Estimation of the number of steps in the Sorenson algorithm

Proof of theorem 1.
Proof of this theorem, as in the Sorenson theorem (refer to [3], lemma 3.2) is based on the

method of mathematical induction. Let 𝑠, 𝑚 are positive integers, 𝑠 ⩾ 𝑚, and the numbers 𝑎, 𝑏 are
defined as

𝑎 =

𝑠∑︁
𝑖=0

𝑡𝑖𝑘
𝑖, 𝑏 =

𝑚∑︁
𝑗=0

𝑞𝑗𝑘
𝑗 , (25)

where 𝑡𝑖, 𝑞𝑖 ∈ {1, 2, · · · , 𝑘 − 1}. Hence the inequality 0 < 𝑏 ⩽ 𝑎 < 𝑘𝑠+1 is true. Let’s prove that
gcd(𝑎, 𝑏) is calculated at ⌊log(𝑎)/ log(𝑘)⌋ + ⌊log(𝑏)/ log(𝑘)⌋ + 1 step.

Let the numbers 𝑎, 𝑏 take any values on the interval [1, 𝑘− 1], then 𝑚, 𝑠 are equal to zero. The
value of 𝑒 is equal to zero, and as a pair of numbers (𝑥, 𝑦), satisfying inequality (3), we can take
(𝑏, 𝑎). If they are not coprime (refer to formula (2)), then divide both numbers 𝑥, 𝑦 by their gcd.
Thus, it will take 1 step to calculate gcd(𝑎, 𝑏).

Let the inequalities 0 < 𝑚 ⩽ 𝑀 , 0 < 𝑠 ⩽ 𝑀 are true. Suppose that for all pairs of numbers
(𝑎, 𝑏) defined using formula (25), the induction assumption is true. Then the number of steps is
2𝑚 + 1 in the worst case. We prove the induction hypothesis for pairs of numbers (𝑎′, 𝑏′) defined
using the magnitudes 𝑚 = 𝑀 + 1, 𝑠 = 𝑆, 𝑚 < 𝑠:

𝑎′ =

𝑆∑︁
𝑖=0

𝑡′𝑖𝑘
𝑖, 𝑏′ =

𝑀+1∑︁
𝑗=0

𝑞′𝑗𝑘
𝑗 , 1 ⩽ 𝑡′𝑖, 𝑞

′
𝑗 ⩽ 𝑘, 𝑎′ ⩾ 𝑏′. (26)

After the value 𝑒′ has been calculated and the numbers (𝑥′, 𝑦′) has been choosen that satisfy
inequality (3), we obtain

𝑎′′ = |𝑏′𝑘𝑒′𝑦′ − 𝑎′𝑥′| < 𝑎′

𝑘 + 1
<

⌊︂
𝑎′

𝑘

⌋︂
=

𝑆∑︁
𝑖=0

𝑡′𝑖+1𝑘
𝑖, 𝑎′′ > 𝑏′. (27)

Further, for the input numbers (𝑎′′, 𝑏′), we calculate 𝑒′, select the numbers (𝑥′, 𝑦′) and find a
linear combination, as in formula (27), where instead of 𝑎′ under formula module (27) there will be
𝑎′′. This procedure continues for no more than 𝑆 −𝑀 − 1 step, including the one described. After
that the number 𝑎′′ can be represented as the sum of the powers of 𝑘, and each of them will be
multiplied by a number from 0 to 𝑘, as in formula (26), but the summation will be carried out up
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to 𝑀 + 1. If 𝑎′′ < 𝑏′, then swap their values. After that we again calculate 𝑒′, select the numbers
(𝑥′, 𝑦′) and find a linear combination of the numbers 𝑎′′, 𝑏′, as in formula (27):

𝑎′′ = |𝑏′𝑘𝑒′𝑦′ − 𝑎′′𝑥′|. (28)

The new value of 𝑎′′ is
∑︀𝑀

𝑖=0 𝑡
′′
𝑖 𝑘

𝑖, and the inequality 0 ⩽ 𝑡′′𝑖 < 𝑘 is true. If at this step 𝑎′′ < 𝑏′,
then swap their values again and run another step of the procedure described above.

As a result, we obtain that the numbers 𝑎′′, 𝑏′ are expressed as the sums
∑︀𝑀

𝑖=0 𝑡𝑖𝑘
𝑖,
∑︀𝑀

𝑗=0 𝑡
′′
𝑗𝑘

𝑗 ,
moreover the inequality 0 ⩽ 𝑡𝑖, 𝑡

′′
𝑗𝑘 is true. And for such numbers, according to the assumption of

induction, the number of steps does not exceed 2𝑚+ 1.
We have done no more than 𝑆 −𝑀 − 1 linear combinations after that we could perform a total

of 2 exchanges and linear combinations. As a result, the total number of steps does not exceed
𝑆 −𝑀 − 1 + 2 + 2𝑀 + 1 = 𝑆 + (𝑀 + 1) + 1. The proof is done. 2

Here is an example of how the algorithm works in the worst case. Let the following numbers be
given: 𝑎 = 1000351, 𝑏 = 38530, 𝑘 = 25. The following table shows the calculation results. Columns
named “poly(a)”, “poly(b)”, means representation of the numbers 𝑎, 𝑏 as sum of the powers of 𝑘.
The fourth column, named 𝑟, contains all the values |𝑦𝑏𝑘𝑒 − 𝑎𝑥|. Note that the last step, where
one of the numbers is zero, is not included in the total number of steps, since no calculations occur
there. In the end there were 8 steps.

𝑎 𝑏 𝑟 𝑝𝑜𝑙𝑦(𝑎) 𝑝𝑜𝑙𝑦(𝑏) 𝑒 𝑥 𝑦

1000351 38530 37101 2𝑘4 + 13𝑘3 + 25𝑘2 + 14𝑘 + 1 2𝑘3 + 11𝑘2 + 16𝑘 + 5 1 1 1
38530 37101 1429 2𝑘3 + 11𝑘2 + 16𝑘 + 5 2𝑘3 + 9𝑘2 + 9𝑘 + 1 0 1 1
37101 1429 1376 2𝑘3 + 9𝑘2 + 9𝑘 + 1 2𝑘2 + 7𝑘 + 4 1 1 1
1429 1376 53 2𝑘2 + 7𝑘 + 4 2𝑘2 + 5𝑥+ 1 0 1 1
1376 53 51 2𝑘2 + 5𝑥+ 1 2𝑘 + 3 1 1 1
53 51 2 2𝑘 + 3 2𝑘 + 1 0 1 1
51 2 1 2𝑘 + 1 2 1 1 1
2 1 0 2 1 0 1 2

In example, at each step of algorithm, ratio between the numbers 𝑎, 𝑏𝑘𝑒 is approximately equal
to one. The numbers 𝑥, 𝑦 are equal to one (except for the last step of algorithm). All this leads to
the fact that at each step ratio of largest of the numbers and result of the linear combination is
approximately equal to 𝑘, which is consistent with inequality (3): |𝑏𝑦𝑘𝑒 − 𝑥𝑎| ⩽ 𝑎/(𝑘 + 1).

5. Proofs

All proofs in this article is presented in full without abbreviations.
Proof of theorem 2. Let 𝑎0 and 𝑏0 are the input numbers of the generalized Sorenson

left-shift gcd algorithm, and the magnitude 𝑠𝑖 is equal to |𝑦𝑖𝑐𝑖 − 𝑥𝑖𝑎𝑖|. Using rules (4), (5) and
determining magnitude (9), you can get the formula 𝛿0𝑠0 + 𝑦0𝑐0 = 𝑥0𝑎0. Division both parts by
𝑥0𝑏0 leads to the expression

𝑎0
𝑏0

=
𝑦0𝑘0

𝑒0

𝑥0
+

𝛿0

𝑥0

(︃
𝑏0

𝑠0

)︃ . (29)

At the first step of the algorithm, we move on to a pair of numbers (𝑎1, 𝑏1) = (𝑏0, 𝑠0), moreover
𝑏0 > 𝑠0. In view of this, at expansion of the numbers 𝑎1, 𝑏1 into a continued fraction of the third
type, expression (29) is represented as



О цепных дробях с рациональными неполными частными 57

𝑎0
𝑏0

=
𝑦0𝑘0

𝑒0

𝑥0
+

𝛿0

𝑦1𝑥0𝑘1
𝑒1

𝑥1
+

𝛿1(︂
𝑥1

𝑥0
×
(︂
𝑏1

𝑠1

)︂)︂. (30)

Further, the process of expansion into a continued fraction of the third type continues similarly
to the previous steps. We will assume that formula (8) is correct at the 𝑡 steps of algorithm. Using
the principle of mathematical induction, we prove that it is also true at the (𝑡+ 1)-th step, where
the value of 𝑡 + 1 does not exceed 𝑛. Consider expansion of the number 𝑎𝑡/𝑏𝑡 taking into account
all the multipliers 𝑥𝑖 obtained in the previous steps of the algorithm:

𝑦𝑡𝑘𝑡
𝑒𝑡

∏︀
𝑖<𝑡,

𝑖 ̸≡𝑡 (mod 2)

𝑥𝑖

𝑥𝑡
∏︀
𝑗<𝑡,

𝑗≡𝑡 (mod 2)

𝑥𝑗
+

𝛿𝑛⎛⎜⎜⎜⎜⎝
𝑏𝑡𝑥𝑡

∏︀
𝑗<𝑡,

𝑗≡𝑡 (mod 2)

𝑥𝑗

𝑠𝑡
∏︀
𝑖<𝑡,

𝑖 ̸≡𝑡 (mod 2)

𝑥𝑖

⎞⎟⎟⎟⎟⎠
(31)

Now let’s perform expansion of the number 𝑎𝑡+1/𝑏𝑡+1 = 𝑏𝑡/𝑠𝑡. The denominator of the right term
can be written as

𝑦𝑡+1𝑘𝑡+1
𝑒𝑡+1

∏︀
𝑗<𝑡+1,

𝑗 ̸≡𝑡+1 (mod 2)

𝑥𝑗

𝑥𝑡+1
∏︀
𝑖<𝑡,

𝑖≡𝑡+1 (mod 2)

𝑥𝑖
+

𝛿𝑡⎛⎜⎜⎜⎜⎝
𝑏𝑡+1𝑥𝑡+1

∏︀
𝑖<𝑡,

𝑖≡𝑡+1 (mod 2)

𝑥𝑖

𝑠𝑡+1
∏︀

𝑗<𝑡+1,
𝑗 ̸≡𝑡+1 (mod 2)

𝑥𝑗

⎞⎟⎟⎟⎟⎠
. (32)

Thus, we obtained the necessary product of the elements 𝑥𝑖 in numerators and denominators of
formula (32). The proof is done. 2

Proof of theorem 3. The zero step of the algorithm completely coincides with its description
in the proof of theorem (2). As a result of this step, we can obtain the expression

𝑎0
𝑏0

=
𝑦0𝑘0

𝑒0

𝑥0
+
𝛿0𝑠0
𝑥0𝑏0

. (33)

At the first step of the algorithm, we get a pair of numbers (𝑎1, 𝑏1) = (𝑠0, 𝑏0), moreover 𝑠0 ⩾ 𝑏0.
In view of this, at expansion the numbers 𝑎1, 𝑏1 into a continued fraction of the fourth type,
expression (33) is represented in the form

𝑎0
𝑏0

=
𝑦0𝑘0

𝑒0

𝑥0
+
𝛿0

𝑥0

(︃
𝑦1𝑘1

𝑒1

𝑥1
+
𝛿1𝑠1

𝑥1𝑏1

)︃
. (34)

Then the process of expansion into a fourth type continued fraction continues in the same way
as at the previous steps. Let’s assume that formula (11) is correct at 𝑡 steps of the algorithm. Using
the principle of mathematical induction, we prove that it‘s also true at the (𝑡 + 1)-th step, where
the value of 𝑡 + 1 does not exceed 𝑛. Consider expansion of the number 𝑎𝑡/𝑏𝑡 taking into account
all the multipliers 𝑥𝑖 that had been obtained in the previous steps of the algorithm:
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𝑡−1∑︁
𝑖=0

𝑦𝑖𝑘𝑖
𝑒𝑖

𝑥𝑖

𝑖−1∏︁
𝑗=0

𝛿𝑗

𝑥𝑗
+
𝑠𝑡

𝑏𝑡

𝑡∏︁
𝑖=0

𝛿𝑖

𝑥𝑖
(35)

Now let’s perform expansion of number 𝑎𝑡+1/𝑏𝑡+1 = 𝑏𝑡/𝑠𝑡. Fraction (35) can be written as

𝑡−1∑︁
𝑖=0

𝑦𝑖𝑘𝑖
𝑒𝑖

𝑥𝑖

𝑖−1∏︁
𝑗=0

𝛿𝑗

𝑥𝑗
+

𝑡−1∏︁
𝑖=0

𝛿𝑖

𝑥𝑖

(︃
𝑦𝑡𝑘𝑡

𝑒𝑡

𝑥𝑡
+
𝛿𝑡𝑠𝑡

𝑥𝑡𝑏𝑡

)︃
. (36)

If 𝑡 + 1 is the last step of the algorithm, then this means that conditions (10) are performed
instead of conditions (12). Then, the number 𝑏𝑡/𝑠𝑡 will be represented as 𝑦𝑡+1𝑘𝑡+1

𝑒𝑡+1/𝑥𝑡+1 and
substituted into formula (36). This proves formula (11). 2

T. Muir introduced continuant (refer to [17]), as a determinant of the tridiagonal matrix 𝐸1,𝑛:

det(𝐸1,𝑛) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ℎ1 𝑙1 0 0 0 0 · · · 0
𝑚1 ℎ2 𝑙2 0 0 0 · · · 0
0 𝑚2 ℎ3 𝑙3 0 0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

0 · · · · · · · · · 0 𝑚𝑛−2 ℎ𝑛−1 𝑙𝑛−1

0 · · · · · · · · · 0 0 𝑚𝑛−1 ℎ𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (37)

He obtained a formula for the expansion of a continuant of arbitrary order (refer to [17, p. 518]).
We write this formula in terms of the expansion of determinant of the matrix 𝐸1,𝑛 of 𝑛-th order:

det(𝐸1,𝑛) = det(𝐸1,𝑟) det(𝐸𝑟+1,𝑛) − 𝑙𝑟−1𝑚𝑟−1 det(𝐸1,𝑟−1) det(𝐸𝑟+2,𝑛). (38)

The matrix 𝐸𝑖,𝑗 is defined in the same way as the matrix 𝐸1,𝑛:

det(𝐸𝑖,𝑗) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ℎ𝑖 𝑙𝑖 0 0 0 0 · · · 0
𝑚𝑖 ℎ𝑖+1 𝑙𝑖+1 0 0 0 · · · 0
0 𝑚𝑖+1 ℎ𝑖+2 𝑙𝑖+2 0 0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

0 · · · · · · · · · 0 𝑚𝑗−2 ℎ𝑗−1 𝑙𝑗−1

0 · · · · · · · · · 0 0 𝑚𝑗−1 ℎ𝑗

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Proof of lemma 1. It is easy to see that the formulas of points 1-3 are obtained by simply
substituting the corresponding values of the matrix elements from formula (15) to formula (38).

Since third type continued fractions are connected to the generalized Sorenson left-shift
algorithm, then to prove the last point of the lemma we use integer sequences {𝑎𝑖}𝑛𝑖=0, {𝑏𝑖}𝑛𝑖=0

defined using the algorithm and principle of mathematical induction. At the penultimate step of
the algorithm, we can obtain formula (29), in which all indices are equal to 𝑛 − 1. Expanding the
number 𝑏𝑛−1/𝑠𝑛−1 into a continued fraction we obtain the expression

𝑎𝑛−1

𝑏𝑛−1
=
𝑦𝑛−1𝑘𝑛−1

𝑒𝑛−1

𝑥𝑛−1
+

𝛿𝑛−1

𝑦𝑛𝑥𝑛−1𝑘𝑛
𝑒𝑛

𝑥𝑛

=
⟨𝑔𝑛−1, 𝑔𝑛⟩3
𝑥𝑛−1⟨𝑔𝑛⟩3

. (39)

Consider the ratio of the magnitudes 𝑎𝑡, 𝑏𝑡 at the (𝑡 + 1)-th step of algorithm. Let condition
0 < 𝑡 < 𝑛 is satisfied and the formula

𝑎𝑡
𝑏𝑡

=
⟨𝑔𝑡, ..., 𝑔𝑛⟩3

𝑥𝑡⟨𝑔𝑡+1, ..., 𝑔𝑛⟩3
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is true. Consider the ratio of the magnitudes 𝑎𝑡−1, 𝑏𝑡−1 at the 𝑡-th step of algorithm:

𝑎𝑡−1

𝑏𝑡−1
=
𝑦𝑡−1𝑘𝑡−1

𝑒𝑡−1

𝑥𝑡−1
+

𝛿𝑡−1(︂
𝑥𝑡−1𝑎𝑡

𝑏𝑡

)︂ =
𝑦𝑡−1𝑘𝑡−1

𝑒𝑡−1

𝑥𝑡−1
+
𝛿𝑡−1𝑥𝑡⟨𝑔𝑡+1, ..., 𝑔𝑛⟩3
𝑥𝑡−1⟨𝑔𝑡, ..., 𝑔𝑛⟩3

. (40)

After several mathematical operations, we obtain the same denominator for both fractions in
formula (40) and obtain expression

𝑎𝑡−1

𝑏𝑡−1
=

⟨𝑔𝑡−1, ..., 𝑔𝑛⟩3
𝑥𝑡−1⟨𝑔𝑡, ..., 𝑔𝑛⟩3

.

The lemma is proved. 2
Proof of lemma 2. It is easy to see that the formula of сontinuant expansion is obtained

from the formula of matrix determinant expansion (16) by the first row.
As in the proof of lemma (1), here we again use integer sequences {𝑎𝑖}𝑛𝑖=0, {𝑏𝑖}𝑛𝑖=0, which are

determined using algorithm, and also the principle of mathematical induction. At the penultimate
step of the algorithm, expanding the number 𝑏𝑛−1/𝑠𝑛−1 into a fraction, we obtain formula (39). It‘s
equals to ⟨𝑔𝑛−1, 𝑔𝑛⟩4/(𝑥𝑛−1⟨𝑔𝑛⟩4).

Consider the ratio of the magnitudes 𝑎𝑡, 𝑏𝑡 at the (𝑡 + 1)-th step of algorithm. Let condition
0 < 𝑡 < 𝑛 is satisfied and the formula

𝑎𝑡

𝑏𝑡
=

⟨𝑔𝑡, 𝑔𝑡+1, 𝑔𝑡+2, · · · , 𝑔𝑛⟩4
⟨𝑔𝑛⟩4

∏︀𝑛−1
𝑖=𝑡 𝑥𝑖

is true. Consider the ratio of the magnitudes 𝑎𝑡−1, 𝑏𝑡−1 at the 𝑡-th step of algorithm:

𝑎𝑡−1

𝑏𝑡−1
=
𝑦𝑡−1𝑘𝑡−1

𝑒𝑡−1

𝑥𝑡−1
+
𝛿𝑡−1𝑎𝑡

𝑥𝑡−1𝑏𝑡
=
𝑦𝑡−1𝑘𝑡−1

𝑒𝑡−1

𝑥𝑡−1
+
𝛿𝑡−1⟨𝑔𝑡, 𝑔𝑡+1, 𝑔𝑡+2, · · · 𝑔𝑛⟩4

𝑥𝑡−1⟨𝑔𝑛⟩4
∏︀𝑛−1

𝑖=𝑡 𝑥𝑖
= .

⟨𝑔𝑡−1⟩4⟨𝑔𝑛⟩4
∏︀𝑛−1

𝑖=𝑡 𝑥𝑖 + 𝛿𝑡−1⟨𝑔𝑡, 𝑔𝑡+1, 𝑔𝑡+2, · · · , 𝑔𝑛⟩4
𝑥𝑡−1⟨𝑔𝑛⟩4

∏︀𝑛−1
𝑖=𝑡 𝑥𝑖

=
⟨𝑔𝑡−1, · · · , 𝑔𝑛⟩4
⟨𝑔𝑛⟩4

∏︀𝑛−1
𝑖=𝑡−1 𝑥𝑖

The lemma is proved. 2
Proof of lemma 3. The numbers 𝑥𝑖, 𝑦𝑖 are positive (refer to introduction), and 𝑥𝑖 ⩽ 𝑦𝑖 (refer

to inequality (3)). It follows that for 𝛿𝑖 = 1 and for all ⩽ 𝑖 < 𝑛 continuants of the third and fourth
types are strictly positive and form a strictly increasing sequence. If 𝛿𝑖 = −1, then the situation is
already ambiguous, and each case needs to be analyzed separately. At the beginning, instead of a
certain comparison sign, we will put a question mark, which will be replaced by a comparison sign
as the proof progresses.

To prove inequalities (18), we use the method of mathematical induction. Obviously, ⟨𝑔0⟩3 > 0.
Now let’s compare the zeroth and first order continuants:

𝑦0𝑦1𝑘0
𝑒0𝑘1

𝑒1 − 𝑥1 ? 𝑦0𝑘0
𝑒0

Division by 𝑦0𝑘0𝑒0 will allow us to compare 𝑦1𝑘1𝑒1 − 𝑥1/(𝑦0𝑘0
𝑒0) ? 1. If the second condition

from system (17) is satisfied, then instead of the sign “?” you can put a “>” sign. Further, assume
that for all continuants up to the 𝑛-th order, formula (18) is true (here it is possible to fulfill the
conditions 𝛿𝑗 = 1, 0 ⩽ 𝑗 < 𝑛 or 𝑦𝑖𝑘𝑖𝑒𝑖 − 𝑥𝑖 > 1 for all 0 ⩽ 𝑖 ⩽ 𝑛 ).

Division by 𝑦0𝑘0𝑒0 will allow us to compare 𝑦1𝑘1𝑒1 − 𝑥1/(𝑦0𝑘0
𝑒0) ? 1. If the second condition

from system (17) is satisfied, then instead of the sign “?” you can put a “>” sign. Further, assume
that for all continuants up to the 𝑛th order, formula (18) is true (here it is possible to fulfill the
conditions 𝛿𝑗 = 1, 0 ⩽ 𝑗 < 𝑛 or 𝑦𝑖𝑘𝑖𝑒𝑖 − 𝑥𝑖 > 1 for all 0 ⩽ 𝑖 ⩽ 𝑛 ). We will prove this formula for
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continuants of (𝑛+ 1)-th order by comparing a continuant of (𝑛+ 1)-th order with a continuant of
𝑛-th order, simultaneously performing an expansion of the first of them (the magnitude 𝛿𝑛 is equal
to -1 according to the initial guess):

𝑦𝑛+1𝑘𝑛+1
𝑒𝑛+1⟨𝑔0, ..., 𝑔𝑛⟩3 − 𝑥𝑛+1⟨𝑔0, ..., 𝑔𝑛−1⟩3 ? ⟨𝑔0, ..., 𝑔𝑛⟩3.

Since the induction assumption is valid for all previous continuants, then division both sides by
⟨𝑔0, ..., 𝑔𝑛⟩3 > 0, we obtain the expression

𝑦𝑛+1𝑘𝑛+1
𝑒𝑛+1 − 𝑥𝑛+1

⟨𝑔0, ..., 𝑔𝑛−1⟩3
⟨𝑔0, ..., 𝑔𝑛⟩3

? 1.

Condition 2 from formula (17) is satisfied. This allows you to replace the “?” sign to the “>”
sign. 2

Proof of lemma 4. Consider the continuants of 𝑖 + 1 and 𝑖 order, compare them with each
other and simultaneously perform an expansion of each of them. As in previous proofs, we will put
a question mark at the beginning when comparing two magnitudes. So,

⟨𝑔0, ..., 𝑔𝑖+1⟩4 ? ⟨𝑔0, ..., 𝑔𝑖⟩4

𝛿0⟨𝑔1, ..., 𝑔𝑖+1⟩4 + ⟨𝑔0⟩4⟨𝑔𝑖+1⟩4
𝑖∏︁

𝑗=1

𝑥𝑗 ? 𝛿0⟨𝑔1, ..., 𝑔𝑖⟩4 + ⟨𝑔0⟩4⟨𝑔𝑖⟩4
𝑖−1∏︁
𝑧=1

𝑥𝑧

Perform another expansion of the continuants, grouping them with each other. We get expression

𝛿0𝛿1(⟨𝑔2, ..., 𝑔𝑖+1⟩4 − ⟨𝑔2, ..., 𝑔𝑖⟩4) ? ⟨𝑔0⟩4
𝑖−1∏︁
𝑧=1

𝑥𝑧(⟨𝑔𝑖⟩4 − 𝑥𝑖⟨𝑔𝑖+1⟩4) + 𝛿0⟨𝑔1⟩4
𝑖−1∏︁
𝑧=2

𝑥𝑧(⟨𝑔𝑖⟩4 − 𝑥𝑖⟨𝑔𝑖+1⟩4)

Performing further expansion of continuants, taking into account condition 𝛿−1 = 1, allows us
to obtain expression

𝛿0𝛿1...𝛿𝑖−2(⟨𝑔𝑖−1, 𝑔𝑖, 𝑔𝑖+1⟩4 − ⟨𝑔𝑖−1, 𝑔𝑖⟩4) ?

𝑖−1∑︁
𝑗=0

𝛿𝑗−1⟨𝑔𝑗⟩4
𝑖−1∏︁

𝑧=𝑗+1

𝑥𝑧(⟨𝑔𝑖⟩4 − 𝑥𝑖⟨𝑔𝑖+1⟩4). (41)

If instead of the sign “?” we put “>”, then the original continuant of the (𝑖+ 1)-th order will be
greater than continuant of the 𝑖-th order. Execution of formula (41) for all 2 < 𝑖 ⩽ 𝑛, together with
the other conditions, which is specified in condition of the lemma, allows us to construct a strictly
increasing sequence of continuants. 2

Proof of lemma 5. At the beginning, we will prove formulas for the magnitudes 𝑃 , 𝑄, 𝑃 ′,
𝑄′. Product of the matrices 𝐴0, 𝐴1 is equal to⎛⎜⎜⎜⎜⎝

𝛿1

𝑥1

𝑦1𝑘1
𝑒1

𝑥1

𝑦0𝑘0
𝑒0𝛿1

𝑥0𝑥1

𝑦0𝑦1𝑘0
𝑒0𝑘1

𝑒1 + 𝛿0𝑥1

𝑥0𝑥1

⎞⎟⎟⎟⎟⎠ (42)

It is easy to verify veracity of the statement for resulting matrix. Now let’s assume that for the
first 𝑛 matrices, statement of the theorem is true. We prove this for 𝑛+ 1 products of matrices. We
get expressions
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𝑃 =
𝛿𝑛+1⟨𝑔1, · · · , 𝑔𝑛⟩3∏︀𝑛+1

𝑖=1 𝑥𝑖
, 𝑃 ′ =

(︃
𝛿𝑛⟨𝑔1, · · · , 𝑔𝑛−1⟩3∏︀𝑛

𝑖=1 𝑥𝑖
+
𝑦𝑛+1𝑘𝑛+1

𝑒𝑛+1

𝑥𝑛+1

⟨𝑔1, · · · , 𝑔𝑛⟩3∏︀𝑛
𝑖=1 𝑥𝑖

)︃
,

𝑄 =
𝛿𝑛+1⟨𝑔0, · · · , 𝑔𝑛⟩3∏︀𝑛+1

𝑖=0 𝑥𝑖
, 𝑄′ =

(︃
𝛿𝑛⟨𝑔0, · · · , 𝑔𝑛−1⟩3∏︀𝑛

𝑖=0 𝑥𝑖
+
𝑦𝑛+1𝑘𝑛+1

𝑒𝑛+1

𝑥𝑛+1

⟨𝑔0, · · · , 𝑔𝑛⟩3∏︀𝑛
𝑖=0 𝑥𝑖

)︃
.

(43)

Usage of lemma 1 makes it easy to prove formulas for the magnitudes 𝑃 ′, 𝑄′.
Now we can prove the formula for the determinant of the matrix. In the case of matrix (42)

determinant is equal to 𝛿0/𝑥0. Let the formula for the determinant obtained by multiplying 𝑛
matrices be fulfilled. Let’s find the determinant of matrix (43). It‘ equals to

𝛿𝑛+1(⟨𝑔1, · · · , 𝑔𝑛⟩3⟨𝑔0, · · · , 𝑔𝑛+1⟩3 − ⟨𝑔0, · · · , 𝑔𝑛⟩3⟨𝑔1, · · · , 𝑔𝑛+1⟩3)(︁∏︀𝑛+1
𝑖=1 𝑥𝑖

)︁(︁∏︀𝑛+1
𝑗=0 𝑥𝑗

)︁
Performing the expansion of (𝑛+ 1)-th order continuants, we obtain the expressions

𝛿𝑛+1𝛿𝑛(⟨𝑔1, · · · , 𝑔𝑛⟩3⟨𝑔0, · · · , 𝑔𝑛−1⟩3 − ⟨𝑔0, · · · , 𝑔𝑛⟩3⟨𝑔1, · · · , 𝑔𝑛−1⟩3)(︁∏︀𝑛+1
𝑖=1 𝑥𝑖

)︁(︁∏︀𝑛
𝑗=0 𝑥𝑗

)︁ .

Further, we decompose the 𝑛th order continuants and obtain the expressions

𝛿𝑛+1𝛿𝑛𝛿𝑛−1(⟨𝑔1, · · · , 𝑔𝑛−2⟩3⟨𝑔0, · · · , 𝑔𝑛−1⟩3 − ⟨𝑔0, · · · , 𝑔𝑛−2⟩3⟨𝑔1, · · · , 𝑔𝑛−1⟩3)(︁∏︀𝑛+1
𝑖=1 𝑥𝑖

)︁(︁∏︀𝑛−1
𝑗=0 𝑥𝑗

)︁ .

Continuing this procedure, we obtain the final formula for the determinant of matrix (43). 2
Proof of theorem 4. Instead of some comparison sign, for now we will put the sign “?”.

We will define the comparison sign at the end of the proof. Let us decompose numerators and
denominators of convergents. We get inequality

𝑦0𝑘0
𝑒0

𝑥0
+
𝛿0𝑥1⟨𝑔2, ..., 𝑔𝑛⟩3
𝑥0⟨𝑔1, ..., 𝑔𝑛⟩3

?
𝑦0𝑘0

𝑒0

𝑥0
+
𝛿0𝑥1⟨𝑔2, ..., 𝑔𝑛+1⟩3
𝑥0⟨𝑔1, ..., 𝑔𝑛+1⟩3

.

Subtract 𝑦0𝑘0𝑒0/𝑥0 from each part, multiply by 𝑥0, invert the ratio of continuants and obtain
the inequality

𝛿0(︂
⟨𝑔1, ..., 𝑔𝑛⟩3
𝑥1⟨𝑔2, ..., 𝑔𝑛⟩3

)︂ ?
𝛿0(︂

⟨𝑔1, ..., 𝑔𝑛+1⟩3
𝑥1⟨𝑔2, ..., 𝑔𝑛+1⟩3

)︂.
Further we will perform 𝑛− 2 decompositions of continuants and 𝑛− 2 upheavals. We will get

continued fractions

𝛿0⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1𝑘1
𝑒1

𝑥1
+

𝛿1⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1𝑦2𝑘2
𝑒2

𝑥2
+

𝛿2⎛⎜⎜⎜⎜⎜⎜⎝
. . . +

𝛿𝑛−2⎛⎜⎜⎜⎜⎝
⟨𝑔𝑛−1, 𝑔𝑛⟩3

∏︀
0⩽𝑖<𝑛−1,

𝑖 ̸≡𝑛−1 (mod 2)

𝑥𝑖

𝑥𝑛−1⟨𝑔𝑛⟩3
∏︀

0⩽𝑗<𝑛−1,
𝑗≡𝑛−1 (mod 2)

𝑥𝑗

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(44)



62 Д. А. Долгов

and

𝛿0⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1𝑘1
𝑒1

𝑥1
+

𝛿1⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1𝑦2𝑘2
𝑒2

𝑥2
+

𝛿2⎛⎜⎜⎜⎜⎜⎜⎝
. . . +

𝛿𝑛−2⎛⎜⎜⎜⎜⎝
⟨𝑔𝑛−1, 𝑔𝑛, 𝑔𝑛+1⟩3

∏︀
0⩽𝑖<𝑛−1,

𝑖 ̸≡𝑛−1 (mod 2)

𝑥𝑖

𝑥𝑛−1⟨𝑔𝑛, 𝑔𝑛+1⟩3
∏︀

0⩽𝑗<𝑛−1,
𝑗≡𝑛−1 (mod 2)

𝑥𝑗

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(45)

In the resulting formulas, only the terms differ

⟨𝑔𝑛−1, 𝑔𝑛⟩3
∏︀

0⩽𝑖<𝑛−1,
𝑖 ̸≡𝑛−1 (mod 2)

𝑥𝑖

𝑥𝑛−1⟨𝑔𝑛⟩3
∏︀

0⩽𝑗<𝑛−1,
𝑗≡𝑛−1 (mod 2)

𝑥𝑗
and

⟨𝑔𝑛−1, 𝑔𝑛, 𝑔𝑛+1⟩3
∏︀

0⩽𝑖<𝑛−1,
𝑖 ̸≡𝑛−1 (mod 2)

𝑥𝑖

𝑥𝑛−1⟨𝑔𝑛, 𝑔𝑛+1⟩3
∏︀

0⩽𝑗<𝑛−1,
𝑗≡𝑛−1 (mod 2)

𝑥𝑗
. (46)

Taking into account condition (22), and the sequence {𝛿𝑖} fixed by condition, and necessity to
flip over the ratio of continuants, we can conclude that

𝑝3,(𝑛−2,𝑛)

𝑞3,(𝑛−2,𝑛)
<
𝑝3,(𝑛−2,𝑛+1)

𝑞3,(𝑛−2,𝑛+1)
.

Further comparing the convergents 𝑝3,(𝑛−3,𝑛)/𝑞3,(𝑛−3,𝑛) and 𝑝3,(𝑛−3,𝑛+1)/𝑞3,(𝑛−3,𝑛+1), we get that
they will change the sign of comparison:

𝑝3,(𝑛−3,𝑛)

𝑞3,(𝑛−3,𝑛)
>
𝑝3,(𝑛−3,𝑛+1)

𝑞3,(𝑛−3,𝑛+1)
.

After a few steps, in a similar way the ratio of continuants will be considered, in which the first
element will be 𝑔1. We perform their comparison, after which we change its sign to the opposite
one due to the necessity reverse the ratio of continuants. This ratio is multiplied by 𝛿0 (refer to
formulas (44), (45)). Therefore, the comparison sign will depend only on the parity or oddness of
𝑛 under conditions specified above. 2

Proof of theorem 5. The proof is similar to the proof of theorem 4. After (𝑛− 1) expansion
of continuant and upheaval of the ratio of continuants, formulas (44), (45) will be obtained. The
only different terms will be elements of formula (46).

Taking into account condition (22), and fixed sequence {𝛿𝑖} by condition, as well as the need to
reverse the ratio of continuants, we can conclude that

𝑝3,(𝑛−2,𝑛)

𝑞3,(𝑛−2,𝑛)
>
𝑝3,(𝑛−2,𝑛+1)

𝑞3,(𝑛−2,𝑛+1)
.

Further, comparing the convergents 𝑝3,(𝑛−3,𝑛)/𝑞3,(𝑛−3,𝑛) and 𝑝3,(𝑛−3,𝑛+1)/𝑞3,(𝑛−3,𝑛+1), we obtain
that they have the same comparison sign again:

𝑝3,(𝑛−3,𝑛)

𝑞3,(𝑛−3,𝑛)
>
𝑝3,(𝑛−3,𝑛+1)

𝑞3,(𝑛−3,𝑛+1)
.

Following this procedure, the desired result is obtained. 2
Proof of theorem 6. Let 𝑛 − 1 ≡ 0 (mod 4). Condition (22) is satisfied. Let us denote by

𝑓𝑠,𝑡 result of the following expression:
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⟨𝑔𝑠, · · · , 𝑔𝑡⟩3
∏︀

0⩽𝑖<𝑠,
𝑖 ̸≡𝑠 (mod 2)

𝑥𝑖

𝑥𝑠⟨𝑔𝑠+1, · · · , 𝑔𝑡⟩3
∏︀

0⩽𝑖<𝑠,
𝑖≡𝑠 (mod 2)

𝑥𝑗
=

𝑦𝑠
∏︀

0⩽𝑖<𝑠,
𝑖 ̸≡𝑠 (mod 2)

𝑥𝑖

𝑥𝑠
∏︀

0⩽𝑖<𝑠,
𝑖≡𝑠 (mod 2)

𝑥𝑗
+

𝛿𝑠

𝑓𝑠+1,𝑡
. (47)

We can compare the elements of the sequences of magnitudes {𝑓𝑠,𝑡}, {𝑓𝑠,𝑡+1} with each other.
Taking into account the results of lemma 1, the following inequalities are true:

𝑓𝑛−1,𝑛 > 𝑓𝑛−1,𝑛+1, 𝑓𝑛−2,𝑛 > 𝑓𝑛−2,𝑛+1, 𝑓𝑛−3,𝑛+1 < 𝑓𝑛−3,𝑛+1,

𝑓𝑛−4,𝑛 < 𝑓𝑛−4,𝑛+1, 𝑓𝑛−5,𝑛 > 𝑓𝑛−5,𝑛+1.

Let the following inequalities are true for natural 𝑣, 1 < 𝑣 < (𝑛− 4)/4:

𝑓𝑛−4𝑣−1,𝑛 > 𝑓𝑛−4𝑣−1,𝑛+1, 𝑓𝑛−4𝑣−2,𝑛 > 𝑓𝑛−4𝑣−2,𝑛+1,

𝑓𝑛−4𝑣−3,𝑛+1 < 𝑓𝑛−4𝑣−3,𝑛+1, 𝑓𝑛−4𝑣−4,𝑛 < 𝑓𝑛−4𝑣−4,𝑛+1,

Consider the following 4 values of the elements of each of the sequences {𝑓𝑠,𝑡}, {𝑓𝑠,𝑡+1} separately.
According to the definition of magnitude 𝑓𝑠,𝑡, it can be expressed in terms of magnitude 𝑓𝑠+1,𝑡.
Inasmuch as 𝑛 − 1 ≡ 0 (mod 4), then 𝑛 − 1 ≡ 0 (mod 2). Hence, 𝑛 − 4𝑣 − 5 is even number, so
𝛿𝑛−4𝑣−5 = 1. Therefore, comparing magnitudes 𝑓𝑛−4𝑣−5,𝑛 and 𝑓𝑛−4𝑣−5,𝑛+1, we obtain inequality

𝑦𝑛−4𝑣−5
∏︀

0⩽𝑖<𝑛−4𝑣−5,
𝑖 ̸≡𝑛−4𝑣−5 (mod 2)

𝑥𝑖

𝑥𝑛−4𝑣−5
∏︀

0⩽𝑗<𝑛−4𝑣−5,
𝑗≡𝑛−4𝑣−5 (mod 2)

𝑥𝑗
+

1

𝑓𝑛−4𝑣−4,𝑛
>

𝑦𝑛−4𝑣−5
∏︀

0⩽𝑖<𝑛−4𝑣−5,𝑛,
𝑖 ̸≡𝑛−4𝑣−5 (mod 2)

𝑥𝑖

𝑥𝑛−4𝑣−5,𝑛
∏︀

0⩽𝑗<𝑛−4𝑣−5,
𝑗≡𝑛−4𝑣−5 (mod 2)

𝑥𝑗
+

1

𝑓𝑛−4𝑣−4,𝑛+1
.

The number 𝑛− 4𝑣 − 6 is odd, so therefore, expanding the value of magnitudes 𝑓𝑛−4𝑣−6,𝑛,
𝑓𝑛−4𝑣−6,𝑛+1, we get inequality

𝑦𝑛−4𝑣−6
∏︀

0⩽𝑖<𝑛−4𝑣−6,
𝑖 ̸≡𝑛−4𝑣−6 (mod 2)

𝑥𝑖

𝑥𝑛−4𝑣−6
∏︀

0⩽𝑗<𝑛−4𝑣−6,
𝑗≡𝑛−4𝑣−6 (mod 2)

𝑥𝑗
−

1

𝑓𝑛−4𝑣−5,𝑛
>

𝑦𝑛−4𝑣−6
∏︀

0⩽𝑖<𝑛−4𝑣−6,𝑛,
𝑖 ̸≡𝑛−4𝑣−6 (mod 2)

𝑥𝑖

𝑥𝑛−4𝑣−6,𝑛
∏︀

0⩽𝑗<𝑛−4𝑣−6,
𝑗≡𝑛−4𝑣−6 (mod 2)

𝑥𝑗
−

1

𝑓𝑛−4𝑣−5,𝑛+1
.

The following inequality can also be proven by comparison magnitudes 1/𝑓𝑛−4𝑣−6,𝑛 and
1/𝑓𝑛−4𝑣−6,𝑛+1. Hence, the inequality 𝑓𝑛−4𝑣−7,𝑛 < 𝑓𝑛−4𝑣−7,𝑛+1 is obtained. Comparing expressions
with each other −1/𝑓𝑛−4𝑣−7,𝑛 and −1/𝑓𝑛−4𝑣−7,𝑛+1, we get inequality 𝑓𝑛−4𝑣−8,𝑛 < 𝑓𝑛−4𝑣−8,𝑛+1. This
proves the first point of the theorem. The remaining points can be proved in the same way. 2

Proof of proposition 1. Let us write down fourth type continued fractions corresponding
to the convergents under consideration, and also perform an expansion of continuants. We get
expressions

𝛿0⟨𝑔1, · · · , 𝑔𝑛⟩4 + ⟨𝑔0⟩4⟨𝑔𝑛⟩4
∏︀𝑛−1

𝑖=1 𝑥𝑖

⟨𝑔𝑛⟩4
∏︀𝑛−1

𝑖=0 𝑥𝑖
and

𝛿0⟨𝑔1, · · · , 𝑔𝑛+1⟩4 + ⟨𝑔0⟩4⟨𝑔𝑛+1⟩4
∏︀𝑛

𝑖=1 𝑥𝑖
⟨𝑔𝑛+1⟩4

∏︀𝑛
𝑖=0 𝑥𝑖

Multiply both parts by
∏︀𝑛−1

𝑖=0 𝑥𝑖, then we get expression
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𝛿0⟨𝑔1, · · · , 𝑔𝑛⟩4
⟨𝑔𝑛⟩4

+ ⟨𝑔0⟩4
𝑛−1∏︁
𝑖=1

𝑥𝑖 and
𝛿0⟨𝑔1, · · · , 𝑔𝑛+1⟩4

𝑥𝑛⟨𝑔𝑛+1⟩4
+ ⟨𝑔0⟩4

𝑛−1∏︁
𝑖=1

𝑥𝑖.

Reducing common parts, we obtain the required values. 2

6. Conclusion

In this paper, the generalized Sorenson left-shift gcd algorithm was introduced. It coincides
with the original Sorenson algorithm, except that instead of the parameter 𝑘, an infinite sequence
of natural numbers 𝐾 is fixed, each element of which is greater than two. For the original Sorenson
algorithm, an estimate of the number of steps in the worst case is obtained, an example is given.
An evaluation of the generalized algorithm is also given. However, the author believes that it can
be improved.

Also in this article, continued fractions with rational partial quotients with a left shift were
introduced, and continuants, with the help of which one can express the numerator and denominator
of such fractions. The question of search conditions, under which the sequence of continuants with
increasing order is strictly increasing was investigated. Conditions have been found, under which
convergents of rational numbers made using continued fractions with rational partial quotients can
be unambiguously compared. Applying these conditions to all obtained convergents allows us to
determine whether such sequence will be strictly increasing or not.
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