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Аннотация

Для ℎ, 𝑛 ≥ 1 и 𝑒 > 0 рассматривается хроматическое число пространств вида R𝑛×[0, 𝑒]ℎ.
Представлен обзор имеющихся результатов, рассмотрена задача о хроматическом числе
нормированных пространств с запрещенными одноцветными арифметическими прогрес-
сиями. Показано, что для любого 𝑛 существует двуцветная раскраска пространства R𝑛,
при которой достаточно длинная арифметическая прогрессия содержит точки обоих цве-
тов, и такая раскраска применима к пространствам вида R𝑛 × [0, 𝑒]ℎ.
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Abstract

For ℎ, 𝑛 ≥ 1 and 𝑒 > 0 we consider a chromatic number of the spaces R𝑛× [0, 𝑒]ℎ and general
results in this problem. Also we consider the chromatic number of normed spaces with forbidden
monochromatic arithmetic progressions. We show that for any 𝑛 there exists a two-coloring of
R𝑛 such that all long unit arithmetic progressions contain points of both colors and this coloring
covers spaces of the form R𝑛 × [0, 𝑒]ℎ.
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1. Introduction

The problem with which all the problems discussed in this article was first formulated in 1950
and is known as the Hadwiger–Nelson problem: what is the minimum number of colors required to
color the plane such that no two points at a distance of 1 from each other have the same color?
For an 𝑛-dimensional normed space R𝑛

𝑁 , it is required to find its chromatic number 𝜒(R𝑛
𝑁 ) , defined

as the smallest 𝑟 for which there is a coloring of points R𝑛
𝑁 in 𝑟 colors, i.e. an 𝑟-coloring, and

with no two points of the same color unit distance apart. The chromatic number problem is one
of the central problems of modern combinatorial geometry. This problem has been studied most
actively for 𝑙𝑝-spaces R𝑛

𝑝 . Recall that the 𝑙𝑝 -norm of a point 𝑥 ∈ R𝑛 is defined by the equality

‖𝑥‖𝑝 = (
∑︀

𝑖 |𝑥𝑖|𝑝)1/𝑝 for all real 𝑝 ≥ 1, but for 𝑝 =∞ by the equality ‖𝑥‖∞ = 𝑚𝑎𝑥𝑖|𝑥𝑖|. It is known
that for all 1 ≤ 𝑝 ≤ ∞, the value of 𝜒(R𝑛

𝑁 ) grows exponentially with the growth of 𝑛.
To generalize these problems, Erdős, together with his co-authors in [6, 7, 8] proposed prohibiting

the monotony of more complex configurations. A subset M′ ⊂ R𝑛 is called an 𝑁 -isometric copy of
M if there exists a bijection 𝑓 : M → M′ such that ‖𝑥 − 𝑦‖𝑁 = ‖𝑓(𝑥) − 𝑓(𝑦)‖𝑁 for all 𝑥, 𝑦 ∈ M.
For an 𝑛-dimensional normed space R𝑛

𝑁 , and a subset M ⊂ R𝑛, the chromatic number 𝜒(R𝑛
𝑁 ,M)

is the smallest 𝑟 such that there exists an 𝑟-coloring of R𝑛 with no monochromatic 𝑁 -isometric
copy of M. In these terms, classical definition of chromatic number 𝜒(R𝑛

𝑁 ) = 𝜒(R𝑛
𝑁 , 𝐼), where 𝐼 is

a two-point set.
In our present note, we will mostly be interested in one-dimensional sets playing the role of

M. Let us utilize the notation introduced in [15]: given a sequence of positive reals 𝜆1, . . . , 𝜆𝑘, we
call a set {0, 𝜆1, 𝜆1 + 𝜆2, . . . ,

∑︀𝑘
𝑡=1 𝜆𝑡} ⊂ R a baton and denote it by B𝑘 . We consider the case

𝜆1 = · · · = 𝜆𝑘 = 1, i.e., the set B𝑘 is just a unit arithmetic progression.
In 2016, in the work [12], A. Kanel-Belov, V. Voronov and D. Cherkashin progressed this topic by

proposing the following interpretation of the problem. They suggested considering an intermediate
case between a plane and a space, namely a layer between two planes of height 𝑒. It is obvious that
with a sufficiently small value of 𝑒, a coloring of 7 colors without single-color dots at a unit distance is
preserved. Thus, we will consider colorings of a set R𝑛

𝑁×[0, 𝑒]ℎ, where natural 𝑛, ℎ ≥ 1 and real 𝑒 > 0,
in a finite number of colors with the forbidden distance 1 between monochromatic points. Further
such sets are called slices and denoted by 𝑆𝑙𝑖𝑐𝑒𝑁 (𝑛, ℎ, 𝑒). We say that 𝑛 is the dimension of a slice.
These sets were introduced in the work [12] and were studied for 1-dimensional and 2-dimensional
cases exclusively for Euclidean distance. In a recent paper [4], authors studied 3-dimensional slices,
and in addition to real slices, they considered rational slices of the form Q𝑛

2 × [0, 𝑒]ℎ.
In the next section, all the latest results on slices studies will be described in more detail.

Section 3 is devoted to the problem of the chromatic number of normed spaces with forbidden
monochromatic set B𝑘, and we will consider this problem on slices and discussing further issues.

2. The chromatic numbers of rational and real slices

Obviously for any positive 𝑒 the next inequalities are true:

𝜒(R𝑛
𝑁 ) ≤ 𝜒(𝑆𝑙𝑖𝑐𝑒𝑁 (𝑛, ℎ, 𝑒)) ≤ 𝜒(R𝑛+ℎ

𝑁 ).

Currently, the best known bounds on the plane are 5 ⩽ 𝜒(R2
2) ⩽ 7. The lower bound is a relatively

recent breakthrough by de Grey [5] (reproved quickly after by Exoo and Ismailescu [9]). The upper
bound here is classical. See also Soifer’s account of the history of this problem in [20]. As for
the growing dimension case, currently the best asymptotic lower and upper bounds belong to
Raigorodskii [18] and Larman and Rogers [16, 17] respectively: (1.239+𝑜(1))𝑛 ⩽ 𝜒(R𝑛

2 ) ⩽ (3+𝑜(1))𝑛

as 𝑛 → ∞. It is obvious that the chromatic number of 𝑆𝑙𝑖𝑐𝑒𝑁 (𝑛, ℎ, 𝑒) is finite. So by the de
Bruijn–Erdos theorem it is achieved on a finite subgraph.
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As stated earlier, the study of slices colorings started in the work [12] for 1-dimensional and
2-dimensional Euclidean slices. The following main result.

Theorem 1. For an arbitrary 𝑒 > 0, the following inequality holds:

6 ≤ 𝜒(R2 × [0, 𝑒]2).

The following lower and upper bounds obtained in the works[2, 13] are known. Statement.

Let 0 < 𝑒 ≤
√︁

3
4ℎ . Then

𝜒(R× [0, 𝑒]ℎ) = 3.

Let
√︁

3
4ℎ < 𝑒 <

√︁
8
9ℎ . Then

𝜒(R× [0, 𝑒]ℎ) = 4.

Consider the intermediate case between a plane and a 3-dimensional space R2× [0, 𝑒] (slice with
height 𝑒). This set allows correct coloring in 7 colors. However, the lower bound is less trivial than
for the plane:

5 ≤ 𝜒(R2 × [0, 𝑒]) ≤ 7.

In [12] it is proved that the upper bound remains the same with increasing dimension due to
the fact that the coloring of the plane in 7 colors does not contain distances belonging to a certain
interval, and also that the lower bound can be improved with the value ℎ = 2.

Theorem 2. Let ℎ ∈ Z, 𝑒 < 𝑒𝑜(ℎ) is positive. Then

𝜒(R2 × [0, 𝑒]ℎ) ≤ 7.

For the lower estimates given, it is sufficient to consider the coloring of a bounded area whose
diameter does not depend on the choice of valueа 𝑒.

In the work [21] authors considered 3-dimensional real and 2-dimensional rational slices. They
proved the next theorem.

Theorem 3. There is 𝑒0 > 0, such that for an arbitrary positive 𝑒 > 𝑒0 holds

10 ≤ 𝜒(𝑆𝑙𝑖𝑐𝑒(3, 6, 𝑒)) ≤ 15.

The upper bound follows from the proof of the upper bound 𝜒(R3) ≤ 15, which was obtained
independently by Coulson [3] and Radoicic, Toth [19].

In the case of rational slices, in [21] authors showed that the chromatic number of 2-dimensional
rational slice is at most 4:

𝜒(Q2 × [0, 𝑒]2Q) = 4

where [0, 𝑒]2Q is the set of rational numbers from [0, 𝑒] and 𝑒 > 0. In [12] authors considered 1-
dimensional slices and showed that

𝜒(Q× [0, 𝑒]3Q) = 3.

3. The chromatic number of normed spaces with forbidden one-color
arithmetic progressions

In a recent series of papers [10, 11, 15], the chromatic numbers 𝜒(R𝑛
∞,M) of the 𝑛-dimensional

Chebyshev spaces R𝑛
∞ were studied. In particular, it was proven in [15] that

𝜒(R𝑛
∞,B𝑘) ⩾

(︂
𝑘 + 1

𝑘

)︂𝑛

(1)
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for all 𝑘, 𝑛 ∈ N. This inequality shows that, unlike the Euclidean case, for any given 𝑘, every two-
coloring of R𝑛 contains a monochromatic ℓ∞-isometric copy of B𝑘 whenever the dimension 𝑛 is
large enough in terms of 𝑘.

However, in [14] authors showed that this is not the case in the "opposite"situation, when 𝑘 is
sufficiently large in terms of 𝑛. For arbitrary 𝑛 ∈ N, they construct a two-coloring of R𝑛 with the
maximum metric satisfying the following. For any finite set B𝑘 with diameter greater than 5𝑛 such
that the distance between any two consecutive points of B𝑘 does not exceed one, no isometric copy
of B𝑘 is monochromatic.

Theorem 4. For any 1 ≤ 𝑝 ≤ ∞ and any natural 𝑛, there exist sufficiently large 𝑘 = 𝑘(𝑝, 𝑛),
such that 𝜒(R𝑛

𝑝 ,B𝑘) = 2.

Proof. The proof of this theorem is constructive.
For the case 𝑝 =∞, the proof is carried out using an explicit, but technically complex two-color

coloring consisting of identical layers located on top of each other - "snakes"[14], the colors of which
we alternate. It is shown that this coloring of the space R𝑛 does not contain one-color 𝑙∞-isometric
copies of progressions B𝑘 for 𝑘 ≥ 5𝑛.

Suppose now that 1 ≤ 𝑝 ≤ ∞ . It is known that the unit ball of the 𝑙𝑝 norm in this case is strictly
convex. This means that every 𝑙𝑝 - isometric copy of the set B𝑘 lies on some straight line. As a
consequence, it is an arithmetic progression in the space R𝑛

∞, the length of the link (and hence the
diameter) which can be controlled in terms of 𝑛 and 𝑝. Here we use the fact that 𝑙𝑝- and 𝑙∞-norms
on R𝑛 are ’equivalent’ to each other, i.e. for some positive 𝑐 = 𝑐(𝑛, 𝑝) and 𝐶 = 𝐶(𝑛, 𝑝) it is true
that 𝑐‖𝑥‖∞ ⩽ ‖𝑥‖𝑝 ⩽ 𝐶‖𝑥‖∞ for all 𝑥 ∈ R𝑛. So, from the absence in some coloring of the space R𝑛

with the norm 𝑙∞ of sufficiently long one-color arithmetic progressions, it really follows from this
that there are no one-color 𝑙𝑝-isometric copies of the sets B𝑘 for all sufficiently large values of 𝑘.

Finally, we consider the case 𝑝 = 1. In a sense, this situation is diametrically opposite to the
previous one, since the unit ball of the 𝑙1-norm is a convex centrally symmetric polyhedron (more
precisely, a hyperoctahedron or a cross-polytope). It is known that every such polyhedron with 𝑓
pairs of opposite faces is the central section of an 𝑓 -dimensional hypercube by some hyperplane.
This means that the R𝑚

1 space can be isometrically embedded in R𝑚
∞ for 𝑚 = 2𝑛−1. Therefore, to

construct the desired two-coloring of R𝑛
1 , it is sufficient to consider such a coloring of R𝑚

∞, and then
simply induce it to the corresponding subspace.

Corollary 1. For any normed space R𝑛
𝑁 there exists a real 𝛿 = 𝛿(R𝑛

𝑁 ) such that the following
holds. There exists a two-coloring of R𝑛 with no monochromatic collinear 𝑁 -isometric copies of all
batons B𝑘 such that max𝑡 𝜆𝑡 ⩽ 1 and

∑︀𝑘
𝑡=1 𝜆𝑡 ⩾ 𝛿. In particular, all sufficiently long unit arithmetic

progressions in R𝑛
𝑁 contain points of both colors under this coloring.

The following theorem is a corollary of Theorem 4.

Theorem 5. For any 1 ≤ 𝑝 ≤ ∞ and any natural ℎ, 𝑛 ≥ 1 and 𝑒 > 0, there is 𝑘 = 𝑘(𝑛, ℎ, 𝑒)
such that 𝜒(𝑆𝑙𝑖𝑐𝑒𝑝(𝑛, ℎ, 𝑒),B𝑘) = 2.

Доказательство. Since 𝑆𝑙𝑖𝑐𝑒𝑝(𝑛, ℎ, 𝑒) ⊂ R𝑛+ℎ
𝑝 . If we want to color the slice R𝑛 × [0, 𝑒]ℎ so

that there is no monochromatic B𝑘 in it, then it is not difficult to see that this is an intermediate
case between coloring of R𝑛+ℎ and R𝑛+ℎ+1. Moreover, if 𝑒 is smaller than the diameter of B𝑘,
then this task exactly coincides with the task of two-coloring R𝑛+ℎ and the set R𝑛 × [0, 𝑒]ℎ is also
two-colorable. But if 𝑒 is large, then the 𝑆𝑙𝑖𝑐𝑒(𝑛, ℎ, 𝑒) roughly coincides with the space R𝑛+ℎ+1 .
This is obvious, but it can be strictly proved through the De Bruijn—Erdős compactness theorem
for hypergraphs.

2 Note that the question of the asymptotic behavior of the optimal constant 𝑘 = 𝑘(𝑝, 𝑛) from
the Theorem 4 is open and also raises the following problem accordingly. Problem. Find the
smallest 𝑘 = 𝑘(𝑛, ℎ, 𝑒) such that 𝜒(𝑆𝑙𝑖𝑐𝑒(𝑛, ℎ, 𝑒),B𝑘) = 2.
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7. P. Erdős, R.L. Graham, P. Montgomery, B.L. Rothschild, J. Spencer, E.G. Straus, Euclidean
Ramsey theorems II// Colloq. Math. Soc. J. Bolyai, 10 (1973), Infinite and Finite Sets,
Keszthely, Hungary and North-Holland, Amsterdam, 520–557.
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