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Аннотация

Рассматривается игра с природой при известных вероятностях состояний. Предлага-
ется принцип оптимальности для принятия решений для игр с природой, основанный на
оценках эффективности и риска. В отличие от традиционного подхода к определению
смешанной стратегии в теории игр, в данной работе рассматривается возможность кор-
реляционной зависимости случайных значений выигрышей для начальных альтернатив.
Предлагаются два варианта реализации двухкритериального подхода к определению прин-
ципа оптимальности. Первый вариант — минимизировать дисперсию как оценку риска с
более низким порогом математического ожидания выигрыша. Второй вариант — максими-
зировать математическое ожидание выигрыша с верхним порогом дисперсии. Получены
аналитические решения обеих задач. Рассмотрено применение полученных результатов на
примере процесса инвестирования на фондовом рынке. Инвестор, как правило, формиру-
ет портфель не сразу, а в виде последовательного процесса приобретения того или иного
финансового актива. В этом случае смешанная стратегия может быть реализована в ее
имманентном смысле, т.е. покупки осуществляются случайным образом с распределени-
ем, определяемым ранее найденным оптимальным решением. Если этот процесс достаточ-
но длительный, то структура портфеля будет примерно соответствовать типу смешанной
стратегии. Такой подход использования игры с природой с учетом корреляционной за-
висимости случайного выигрыша чистых стратегий может быть применен и к задачам
принятия решений в других областях управления рисками.

Ключевые слова: управление риском, принцип оптимальности, двухкритериальный
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Abstract

A game with nature for known state probabilities is considered. An optimality principle is
proposed for decision-making for games with nature, based on efficiency and risk estimates.
In contrast to the traditional approach to the definition of a mixed strategy in game theory,
this paper considers the possibility of correlation dependence of random payoff values for initial
alternatives. Two variants of the implementation of the two-criteria approach to the definition
of the optimality principle are suggested. The first option is to minimize the variance as a risk
estimate with a lower threshold on the mathematical expectation of the payoff. The second
option is to maximize the mathematical expectation of the payoff with an upper threshold
on the variance. Analytical solutions of both problems are obtained. The application of the
obtained results on the example of the process of investing in the stock market is considered.
An investor, as a rule, does not form a portfolio all at once, but as a sequential process of
purchasing one or another financial asset. In this case, the mixed strategy can be implemented
in its immanent sense, i.e. purchases are made randomly with a distribution determined by the
previously found optimal solution. If this process is long enough, then the portfolio structure
will approximately correspond to the type of mixed strategy. This approach of using the game
with nature, taking into account the correlation dependence of random payoff of pure strategies,
can also be applied to decision-making problems in other areas of risk management.
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expectation, standard deviation.
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1. Introduction

Decision theory describes and explains the behavior of a complex system consisting of human
and information resources. In this case, the decision maker makes an informed choice between several
options, each of which is considered achievable. This selection is based on available information.
The result of a combination of the preferences of the decision maker and various decision options
is the identification of a subjective decision that best meets the decision criteria [1, 2] [1, 2].
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When modeling decision-making processes, the game-theoretic approach is widely used [3–13].
Control processes in complex systems are characterized by incomplete information about the state
of the system and the environment. If one participant is explicitly distinguished, then a game
with nature can be used as a mathematical model for making decisions in such situations. One
of the players is a person or an institution acting as a decision-maker. The other player is nature
and can affect the outcome of the game to various degrees. Nature constitutes a set of conditions
affecting the results of taken decisions. To resolve a game of nature, it is required to apply certain
decision-making criteria indicating the choice of the optimal decision which is to be made under
the conditions of uncertainty concerning the future states of nature. In Wald’s criterion [14], based
on the loss function, the optimal decision corresponds to the lowest value of the maximum loss.
On the other hand, when using the effectiveness function, the decision that maximizes the lowest
value of the effectiveness function is the optimal one. In the case of Hurwicz’s criterion [15], the
parameter 𝛼 is adopted to determine the coefficient of pessimism (expectations as to the realization
of a given state of nature) about the possible future states of nature. This criterion determines the
optimal decision, which maximizes the average value of the lowest and highest decision efficiency
function with the weights 𝛼 and 1− 𝛼 respectively. For a specific loss function, Hurwicz’s criterion
determines the optimal decision which minimizes the average value of the highest and the lowest
loss function with the weights 𝛼 and 1 − 𝛼 respectively. Savage’s criterion [16], which is based on
Wald’s criterion, refers to the minimum regret function (alternative loss function) resulting from
wrong decisions for particular states of nature. The minimum regret function is formulated based
on the decision effectiveness function or the loss function. According to Savage’s criterion, it is first
necessary to find the relative loss matrix (regret matrix). A loss is defined as the difference between
the largest win possible in a particular state of nature, and the win corresponding to the decision
currently under investigation.

When building a model and setting an optimization problem, the question arises about the
availability of information concerning the states of nature. The definition of the concept of optimality
or, as is sometimes said, the principle of optimality, depends on this. In this paper, it is assumed
that the decision maker has information about the probabilities of the states of nature, i.e. the case
of probabilistic uncertainty is considered (or, as it is fashionable to say, we are talking about risk
management).

A large number of works are devoted to the application of mathematical methods in risk-based
decision making (see, for example, [17–23]). In the paper [20], a two-criteria approach “efficiency
– risk” was proposed to determine the principle of optimality when making decisions in stochastic
conditions. The mathematical expectation of the gain was used as an efficiency assessment, and the
VAR function was used as a risk assessment. As it is known, the VAR function and variance are
the most widely used quantities as a risk assessment (see, for example, [24–26]).

The paper [21] outlined the two-criteria approach "efficiency-risk"to the definition of the
principle of optimality in decision-making under stochastic conditions, using the mathematical
expectation of the payoff as an efficiency estimate and the standard deviation as a risk estimate.
Note that if, under known probabilities of states of nature, we are talking about maximizing the
mathematical expectation of the payoff, then using a mixed strategy does not make sense. The
situation is different with the two-criterion approach, namely, the optimal mixed strategy, generally
speaking, gives a greater gain than any pure strategy.

The main difference of this paper from the traditional approach to the definition of a mixed
strategy in game theory is that it takes into account the possibility of correlation dependence of
random payoff values of the original alternatives (pure strategies). It should be noted that it is in
the two-criteria approach that taking into account correlation becomes essential. Usually, in games
with nature, either the mathematical expectation of the payoff or the risk according to Savage is
considered as a criterion. In this case, the possible correlation of random payoffs under different pure
strategies does not play any role. If there are two criteria, one of which is the standard deviation,
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taking into account the correlation significantly affects the formulation of the problem and the
method of its solution.

Here we consider two problems: the first is to minimize the variance as a risk criterion with
a lower threshold on the mathematical expectation of the payoff; the second is to maximize the
mathematical expectation of the payoff with an upper threshold on the variance. Analytical and
algorithmic results will be obtained concerning the solution of these problems taking into account
the correlation of random payoffs of each pair of pure strategies. These results are illustrated by
the example of the investment process using real statistical data.

2. Determining the Optimal Mixed Strategy with a Restriction on
the Mathematical Expectation of the Payoff

So, we consider the situation when the decision maker can choose one of the strategies
(alternatives) 𝑖 = 1, . . . , 𝑛, with a known set of possible options for the states of the environment
(nature) 𝑗 = 1, . . . ,𝑚. The gain from the 𝑖-th decision in the 𝑗-th state of the environment is 𝑎𝑖𝑗 .
The payoff matrix from the implementation of possible solutions is 𝐴 = ‖𝑎𝑖𝑗‖. The probabilities of
states of nature 𝑞𝑗 will be considered known. The decision maker needs to choose the strategy that
will lead, if possible, to a greater gain, but at the same time, possible losses due to the ambiguity
of the outcome will be as small as possible.

As an estimation of the effectiveness of a pure strategy 𝑖 we take the mathematical expectation
of a payoff 𝑎𝑖 =

∑︀𝑚
𝑗=1 𝑎𝑖𝑗𝑞𝑗 , and as a risk estimate - the standard deviation 𝜎𝑖 =

= (
∑︀𝑚

𝑗=1 (𝑎𝑖𝑗 − 𝑎𝑖)
2𝑞𝑗)

0.5
.

When using a mixed strategy, value 𝑎𝑖 is a conditional mathematical expectation of payoff under
realization of the pure strategy 𝑖. We denote by 𝑝𝑖 the probability of choosing the pure strategy 𝑖.
Then the mathematical expectation of payoff when using the strategy 𝑝 = (𝑝1, . . . , 𝑝𝑛) is

∑︀𝑛
𝑖=1 𝑎𝑖𝑝𝑖.

Let 𝜎𝑖𝑘 be the covariance moments of random values of payoff for pure strategies 𝑖 and 𝑘, which
are determined by the formula 𝜎𝑖𝑘 =

∑︀𝑚
𝑗=1 (𝑎𝑖𝑗 − 𝑎𝑖) (𝑎𝑘𝑗 − 𝑎𝑘) 𝑞𝑗 .

We denote the covariance matrix 𝐷 = ‖𝜎𝑖𝑘‖. As known, the covariance matrix is always non-
negative definite. In what follows, we will assume a little more, namely, that it is positive definite.

The standard deviation of the random value of payoff for the strategy 𝑝 = (𝑝1, . . . , 𝑝𝑛) in
the case of correlation is determined, obviously, by the formula 𝜎 = (

∑︀𝑛
𝑖=1

∑︀𝑛
𝑘=1 𝜎𝑖𝑘𝑝𝑖𝑝𝑘)

0.5 or in
the matrix-vector form 𝜎 = ⟨𝑝,𝐷𝑝⟩0.5, where ⟨·, ·⟩ denotes the scalar product of vectors.

It is convenient to present all the data in the form of Table 1.
The first 𝑚 columns of the table are the initial data imported from external sources, and the

last 𝑛+ 1 columns are the calculated data.
We introduce 𝑛-dimensional vectors 𝑎 = (𝑎1, . . . , 𝑎𝑛) and 𝑒 = (1, . . . , 1) .
Let us formulate a problem for the minimum variance under a lower bound on the mathematical

expectation of the payoff:

𝑚𝑖𝑛
𝑝∈𝑃
⟨𝑝,𝐷𝑝⟩ , 𝑃 = {𝑝| ⟨𝑎, 𝑝⟩ ⩾ 𝑎0, ⟨𝑝, 𝑒⟩ = 1, 𝑝 ⩾ 0}. (1)

The set 𝑃 is non-empty, closed, bounded if the threshold value 𝑎0 is not greater than the
maximum of the values 𝑎𝑖. Hence, for

𝑎0 ⩽ 𝑚𝑎𝑥
𝑖=1,...,𝑛

𝑎𝑖, (2)

problem (1) has a solution.
Let us find the left boundary 𝑎* of the range of values 𝑎0, at which the first constraint in problem

(1) becomes significant. To do this, consider an auxiliary problem of quadratic programming:
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Таблица 1: Model Data.

𝑞1 𝑞2 · · · 𝑞𝑚 𝑎𝑖 1 2 · · · 𝑛

1 𝑎11 𝑎12 · · · 𝑎1𝑚 𝑎1 𝜎11 𝜎12 · · · 𝜎1𝑛
2 𝑎21 𝑎22 · · · 𝑎2𝑚 𝑎2 𝜎21 𝜎22 · · · 𝜎2𝑛
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
𝑛 𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑚 𝑎𝑛 𝜎𝑛1 𝜎𝑛2 · · · 𝜎𝑛𝑛

𝑑0 = 𝑚𝑖𝑛
𝑝∈𝑃0

⟨𝑝,𝐷𝑝⟩ , 𝑃0 = {𝑝 | ⟨𝑝, 𝑒⟩ = 1, 𝑝 ⩾ 0}. (3)

Problem (3) has a unique solution 𝑝*. Obviously, 𝑎* = ⟨𝑎, 𝑝*⟩. Denote by 𝐷̂ an arbitrary square
submatrix of the matrix 𝐷 of dimension 𝑘 × 𝑘, obtained by deleting rows and columns with the
same numbers, 𝐼1 - the set of not deleted row and column numbers, 𝐼2 - the set of deleted row and
column numbers, 𝐷̂+ - additional submatrix obtained from 𝐷 by deleting rows with numbers from
𝐼1 and columns with numbers from 𝐼2, 𝑒 – part of the vector 𝑒 of dimension 𝑘, 𝑒+ – part of the
vector 𝑒 of dimension 𝑛−𝑘, 𝑎̂ – part of the vector 𝑎 with components from 𝐼1. The following lemma
gives a formula for finding 𝑎*.

Lemma 1. There is a unique matrix 𝐷̂ such that 𝐷̂+𝑝−
⟨
𝐷̂−1𝑒, 𝑒

⟩−1
𝑒+ ⩾ 0, where

𝑝 =
⟨
𝐷̂−1𝑒, 𝑒

⟩−1
𝐷̂−1𝑒. (4)

Wherein

𝑎* =
⟨
𝐷̂−1𝑒, 𝑒

⟩−1 ⟨
𝑎̂, 𝐷̂−1𝑒

⟩
. (5)

Proof. Compose the Lagrange function 𝐿0 (𝑝, 𝜇)=0.5 ⟨𝑝,𝐷𝑝⟩+𝜇(1−⟨𝑝, 𝑒⟩).
The Karush-Kuhn-Tucker (KKT) extremum conditions for problem (3):

𝜕𝐿0(𝑝,𝜇)
𝜕𝑝𝑖

= 0, 𝑖 ∈ 𝐼, 𝜕𝐿0(𝑝,𝜇)
𝜕𝑝𝑖

⩾ 0, 𝑖 /∈ 𝐼, where 𝐼 – the set of indices corresponding to nonzero 𝑝𝑖.
For problem (2) these conditions are necessary and sufficient, and since the solution of problem
(3) 𝑝* is unique, they are satisfied only for the given vector. For nonzero components of the vector
𝑝*, the first part of the KKT conditions gives the system of equations: 𝐷̂𝑝 − 𝜇𝑒 = 0. The square
submatrices of the positive-definite matrix 𝐷 are also positive-definite and hence non-degenerate.

Therefore 𝑝 = 𝜇𝐷̂−1𝑒 and from the restriction we have 𝜇
⟨
𝐷̂−1𝑒, 𝑒

⟩
= 1. The matrix 𝐷̂−1 is also

positive definite, so 𝜇 =
⟨
𝐷̂−1𝑒, 𝑒

⟩−1
and 𝑝 =

⟨
𝐷̂−1𝑒, 𝑒

⟩−1
𝐷̂−1𝑒, i.e. we get (4). The second part

of the KKT conditions leads to the inequality 𝐷̂+𝑝−
⟨
𝐷̂−1𝑒, 𝑒

⟩−1
𝑒+ ⩾ 0.

Multiply the vector (4) by the vector 𝑎̂:

⟨𝑎̂, 𝑝⟩ =
⟨
𝑎̂,
⟨
𝐷̂−1𝑒, 𝑒

⟩−1
𝐷̂−1𝑒

⟩
=
⟨
𝐷̂−1𝑒, 𝑒

⟩−1 ⟨
𝑎̂, 𝐷̂−1𝑒

⟩
.

Hence 𝑎* =
⟨
𝐷̂−1𝑒, 𝑒

⟩−1 ⟨
𝑎̂, 𝐷̂−1𝑒

⟩
, i.e. we get (5). The lemma is proven. 2

Note that for this case, the KKT conditions are necessary and sufficient. Therefore, if 𝑝 ⩾ 0
and the rest of the KKT conditions are satisfied, namely, the nonnegativity of the derivatives of
the Lagrange function with respect to 𝑝𝑖 with numbers corresponding to zero components, then the
vector 𝑝, padded with zeros in the corresponding places, is a solution to problem (3).

Thus, the method for solving the problem (3) is reduced to enumerating the square submatrices
of the matrix 𝐷, solving the systems of equations based on them using the obtained formulas,
and checking the conditions for non-negativity of the components of the obtained vectors and the
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corresponding derivatives of the Lagrange function. Moreover, since the conditions of the KKT are
necessary and sufficient, the enumeration stops as soon as a vector satisfying them is found.

In what follows, we will assume that all 𝑎𝑖 are distinct. We will need this purely technical
assumption to formulate a theorem on the method for solving problem (1). It allows us to exclude
trivial cases when the optimal solution is a pure strategy. But this assumption is quite natural and
does not violate the generality of the consideration.

The following theorem substantiates a method for finding optimal truly mixed (containing at
least two nonzero components) strategies.

Theorem 1. If

𝑎*<𝑎0< 𝑚𝑎𝑥
𝑖=1,...,𝑛

𝑎𝑖,

all 𝑎𝑖 are distinct, matrix 𝐷= ‖𝜎𝑖𝑘‖ is positive definite, then problem (1) has a unique solution 𝑝0

and true mixed optimal strategy can be represented as

𝑝0=𝐷̃−1
(︀
𝜆0𝑎̃+𝜇0𝑒

)︀
, (6)

𝜆0=
max{𝑎0⟨𝑒,𝐷̃−1𝑒⟩−⟨𝑎̃,𝐷̃−1𝑒⟩,0}
⟨𝑎̃,𝐷̃−1𝑎̃⟩⟨𝑒,𝐷̃−1𝑒⟩−⟨𝑎̃,𝐷̃−1𝑒⟩2

,

𝜇0=
⟨𝑎̃,𝐷̃−1𝑎̃⟩−𝑎0⟨𝑎̃,𝐷̃−1𝑒⟩

⟨𝑎̃,𝐷̃−1𝑎̃⟩⟨𝑒,𝐷̃−1𝑒⟩−⟨𝑎̃,𝐷̃−1𝑒⟩2
,

(7)

𝐷̃ is some (unique) square submatrix of the matrix 𝐷 obtained by deleting rows and columns with
the same numbers, 𝑝0 is a vector of nonzero components of the vector 𝑝0, 𝑎̃ is a vector of the part of
the components of the vector 𝑎, 𝑒 is a vector from a part of the components of the vector 𝑒, obtained
by deleting the components with numbers corresponding to the zero components of the vector 𝑝0.

Proof. If condition (2) is satisfied, the set 𝑃 is not empty, closed, and bounded; therefore,
the convex programming problem (1) has a solution, and it is unique, because the objective
function is strictly convex. The KKT conditions for it are necessary and sufficient (in a problem
with linear constraints, the Slater regularity condition is not required). The Lagrange function
has the form 𝐿1 (𝑝, 𝜆, 𝜇)=0.5 ⟨𝑝,𝐷𝑝⟩+𝜆 (𝑎0−⟨𝑎, 𝑝⟩)+𝜇 (1−⟨𝑝, 𝑒⟩) , 𝜆 ⩾ 0. Let 𝐼 be the set of
indices corresponding to non-zero 𝑝𝑖. The KKT extremum conditions for problem (1) have the form
𝜕𝐿1(𝑝,𝜆,𝜇)

𝜕𝑝𝑖
= 0, 𝑖 ∈ 𝐼, 𝜕𝐿1(𝑝,𝜆,𝜇)

𝜕𝑝𝑖
⩾ 0, 𝑖 /∈ 𝐼.

For the non-zero components of the vector 𝑝, we have the system of equations: 𝐷̃𝑝−𝜆𝑎̃−𝜇𝑒= 0,
where 𝐷̃ is a square submatrix of the matrix𝐷 obtained by deleting rows and columns with numbers
corresponding to the zero components of the vector 𝑝, 𝑝 is a vector of non-zero components of the
vector 𝑝, 𝑎̃ is a vector from the part of the components of the vector 𝑎, 𝑒 is a vector from the part of
the components of the vector 𝑒, obtained by deleting the components with numbers corresponding
to the zero components of the vector 𝑝.

Suppose first that 𝜆>0, then the first constraint in (1) is active. As mentioned above, the
square submatrices of the positive-definite matrix 𝐷 are also positive-definite and, therefore,
non-degenerate. Therefore, we have 𝑝=𝐷̃−1(𝜆𝑎̃+𝜇𝑒). We substitute this expression into the

constraints of problem (1):
⟨
𝑎̃, 𝐷̃−1(𝜆𝑎̃+𝜇𝑒)

⟩
=𝑎0,

⟨
𝐷̃−1(𝜆𝑎̃+𝜇𝑒),𝑒

⟩
= 1. We transform the first

equality to the form 𝜆
⟨
𝑎̃, 𝐷̃−1𝑎̃

⟩
+𝜇
⟨
𝑎̃, 𝐷̃−1𝑒

⟩
=𝑎0. From the second equality, we express

𝜇= (1−𝜆
⟨
𝑒, 𝐷̃−1𝑎̃

⟩
)
⟨
𝑒, 𝐷̃−1𝑒

⟩−1
and substitute into the first:⟨

𝑎̃, 𝐷̃−1𝑎̃
⟩
+(1−𝜆

⟨
𝑒, 𝐷̃−1𝑎̃

⟩
)
⟨
𝑒, 𝐷̃−1𝑒

⟩−1 ⟨
𝑎̃, 𝐷̃−1𝑒

⟩
=𝑎0.
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Thus, taking into account the fact that the matrix 𝐷̃−1 is symmetric, we obtain an expression
for 𝜆:

𝜆=
𝑎0−

⟨
𝑒, 𝐷̃−1𝑒

⟩−1 ⟨
𝑎̃, 𝐷̃−1𝑒

⟩
⟨
𝑎̃, 𝐷̃−1𝑎̃

⟩
−
⟨
𝑒, 𝐷̃−1𝑒

⟩−1⟨
𝑎̃, 𝐷̃−1𝑒

⟩2 , (8)

or, after transformation 𝜆=
𝑎0⟨𝑒,𝐷̃−1𝑒⟩−⟨𝑎̃,𝐷̃−1𝑒⟩

⟨𝑎̃,𝐷̃−1𝑎̃⟩⟨𝑒,𝐷̃−1𝑒⟩−⟨𝑎̃,𝐷̃−1𝑒⟩2
. Let us show that the denominator is positive,

i.e. there is an inequality ⟨
𝑎̃, 𝐷̃−1𝑎̃

⟩⟨
𝑒, 𝐷̃−1𝑒

⟩
−
⟨
𝑎̃, 𝐷̃−1𝑒

⟩2
>0. (9)

Indeed, since 𝐷̃−1 is a positive definite matrix, there exists a nondegenerate matrix B such
that 𝐷̃−1=𝐵𝑇𝐵. Substituting this decomposition of the matrix into the left-hand side of the
inequality (9), we have

⟨︀
𝑎̃, 𝐵𝑇𝐵𝑎̃

⟩︀ ⟨︀
𝑒,𝐵𝑇𝐵𝑒

⟩︀
−
⟨︀
𝑒,𝐵𝑇𝐵𝑎̃

⟩︀2
= ⟨𝐵𝑎̃,𝐵𝑎̃⟩ ⟨𝐵𝑒,𝐵𝑒⟩−⟨𝐵𝑒,𝐵𝑎̃⟩2. We

apply the Cauchy-Bunyakovsky inequality: ⟨𝑥, 𝑦⟩2 ⩽ ‖𝑥‖2 · ‖𝑦‖2, setting 𝑥=𝐵𝑎̃, 𝑦=𝐵𝑒. In the
Cauchy-Bunyakovsky inequality equality holds only if the vectors 𝑥 and 𝑦 are collinear. But the
vectors 𝐵𝑎̃ and 𝐵𝑒 cannot be collinear, since otherwise, when they are multiplied by the matrix
𝐵−1, the vectors 𝑎̃ and 𝑒 are also collinear. This contradicts the condition of the theorem, since by
assumption, all 𝑎𝑖 are distinct, and all components of the vector 𝑒 are equal to ones. Therefore, if
these vectors have at least two components, (9) holds.

The numerator in (8) is non-negative, because otherwise for the submatrix 𝐷̃ the threshold
value 𝑎0 is less than the mathematical expectation of the payoff corresponding to the minimum of
the variance (it follows from the lemma, see formula (5)).

Substituting 𝜆 into the expression for 𝜇 we have

𝜇=

(︂
1− 𝑎0−⟨𝑒,𝐷̃−1𝑒⟩−1⟨𝑎̃,𝐷̃−1𝑒⟩
⟨𝑎̃,𝐷̃−1𝑎̃⟩−⟨𝑒,𝐷̃−1𝑒⟩−1⟨𝑎̃,𝐷̃−1𝑒⟩2

⟨
𝑒, 𝐷̃−1𝑎̃

⟩)︂⟨
𝑒, 𝐷̃−1𝑒

⟩−1
=

= 1

⟨𝑒,𝐷̃−1𝑒⟩−
𝑎0⟨𝑎̃,𝐷̃−1𝑒⟩−⟨𝑒,𝐷̃−1𝑒⟩−1⟨𝑎̃,𝐷̃−1𝑒⟩2

⟨𝑎̃,𝐷̃−1𝑎̃⟩⟨𝑒,𝐷̃−1𝑒⟩−⟨𝑎̃,𝐷̃−1𝑒⟩2
=

⟨𝑎̃,𝐷̃−1𝑎̃⟩−𝑎0⟨𝑎̃,𝐷̃−1𝑒⟩
⟨𝑎̃,𝐷̃−1𝑎̃⟩⟨𝑒,𝐷̃−1𝑒⟩−⟨𝑎̃,𝐷̃−1𝑒⟩2

.

If 𝑝 ⩾ 0 and the rest of the KKT conditions are satisfied, namely, the non-negativity of
the derivatives of the Lagrange function with respect to 𝑝𝑖 with numbers corresponding to zero
components, then the vector 𝑝, padded with zeros at the appropriate places, is a solution to problem
(1).

Let now 𝜆= 0, then we have 𝐷̃𝑝−𝜇𝑒= 0. Combining both cases, we obtain formulas (6), (7).
The theorem has been proven. 2

Note: If formula (8) gives 𝜆<0, i.e. numerator 𝑎0−
⟨
𝑒, 𝐷̃−1𝑒

⟩−1 ⟨
𝑎̃, 𝐷̃−1𝑒

⟩
<0, then this means

that for the given submatrix 𝐷̃ the first constraint of problem (1) for a given 𝑎0 cannot be active and
the case 𝜆= 0 takes place. The algorithm for finding a solution to problem (1) includes enumeration
of sets of nonzero components 𝐼. Since for the convex programming problem (2) the KKT optimality
conditions are also sufficient, if a solution satisfies them, then the enumeration process ends.

3. Determining the Optimal Mixed Strategy with a Restriction on
the Payoff Variance

The problem for the maximum of mathematical expectation of payoff under an upper bound on
the standard deviation has the form:

𝑚𝑎𝑥
𝑝∈𝑃
⟨𝑎, 𝑝⟩ , 𝑃 = {𝑝|⟨𝑝,𝐷𝑝⟩0.5 ⩽ 𝜎0, ⟨𝑝, 𝑒⟩ = 1, 𝑝 ⩾ 0}. (10)

The set 𝑃 is not empty if the threshold value 𝜎0 is not less than the minimum value of the
standard deviation on the set 𝑃0 = {𝑝 | ⟨𝑝, 𝑒⟩ = 1, 𝑝 ⩾ 0}. To find this value, you need to solve
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an auxiliary quadratic programming problem (2). Substituting this vector 𝑝 =
⟨
𝐷̂−1𝑒, 𝑒

⟩−1
𝐷̂−1𝑒

into the objective function (2), we obtain the value 𝑑0 =
⟨
𝐷̂−1𝑒, 𝑒

⟩−1
.

In what follows, we will assume again that all 𝑎𝑖 are different. This does not violate the generality
of the consideration, since if two pure strategies have the same mathematical expectation of payoff
and the standard deviations are also equal, then such strategies are equivalent within the framework
of this approach and one of them can be excluded. If one of these strategies has a larger standard
deviation than the other, then, within the framework of this approach, such a pure strategy cannot
be included in the optimal mixed strategy with a nonzero weight.

The following theorem substantiates a method for finding the optimal truly mixed (containing
at least two nonzero components) strategies.

Theorem 2. If 𝜎0 > 𝑑0.50 , all 𝑎𝑖 are different, the matrix 𝐷 = ‖𝜎𝑖𝑘‖ is positive definite, then
the problem (10) has a solution 𝑝0 and the truly mixed optimal strategy can be represented as

𝑝0 = 𝜆0
−1
𝐷̃−1

(︀
𝑎̃− 𝜇0𝑒

)︀
, (11)

𝜆0 =

⎯⎸⎸⎸⎸⎷
⟨
𝑎̃, 𝐷̃−1𝑎̃

⟩⟨
𝑒, 𝐷̃−1𝑒

⟩
−
⟨
𝑒, 𝐷̃−1𝑎̃

⟩2
𝜎20

⟨
𝑒, 𝐷̃−1𝑒

⟩
− 1

, 𝜇0 =

⟨
𝑒, 𝐷̃−1𝑎̃

⟩
− 𝜆0⟨

𝑒, 𝐷̃−1𝑒
⟩ , (12)

𝐷̃ is some square submatrix of matrix 𝐷 obtained by deleting rows and columns with the same
numbers, 𝑝0 is a vector from nonzero components of the vector 𝑝0, 𝑎̃ is a vector from a part of the
components of the vector 𝑎, 𝑒 is a vector from parts of the components of the vector 𝑒 obtained by
deleting the components with numbers corresponding to the zero components of the vector 𝑝0.

Proof. For 𝜎0 > 𝑑0.50 the set 𝑃 is not empty, closed and bounded; therefore, convex
programming problem (10) has a solution and satisfies the Slater condition, and the KKT conditions
for it are necessary and sufficient. In problem (10), to apply the extremum conditions, it is more
convenient to square the first constraint. Then the Lagrange function has the form
𝐿2 (𝑝, 𝜆, 𝜇) = ⟨𝑎, 𝑝⟩+ 1

2𝜆
(︀
𝜎20 − ⟨𝑝,𝐷𝑝⟩

)︀
+ ⟨𝜇, 1− ⟨𝑝, 𝑒⟩⟩ , 𝜆 ⩾ 0.

Let, as before, 𝐼 be the set of indices corresponding to nonzero 𝑝𝑖. The conditions KKT of
extremum for the problem (10) have the form 𝜕𝐿2(𝑝,𝜆,𝜇)

𝜕𝑝𝑖
= 0, 𝑖 ∈ 𝐼, 𝜕𝐿2(𝑝,𝜆,𝜇)

𝜕𝑝𝑖
⩽ 0, 𝑖 /∈ 𝐼.

For nonzero components of the vector 𝑝, we have a system of equations: 𝑎̃ − 𝜆𝐷̃𝑝 − 𝜇𝑒 = 0,
where 𝐷̃ is a square submatrix of the matrix𝐷 obtained by deleting rows and columns with numbers
corresponding to the zero components of the vector 𝑝, 𝑝 is a vector of nonzero components of the
vector 𝑝, 𝑎̃ is a vector from a part of the components of the vector 𝑎, 𝑒 is a vector from a part of
the components of the vector 𝑒 obtained by deleting the components with numbers corresponding
to the zero components of the vector 𝑝.

If 𝜆 = 0, then we have 𝑎̃ − 𝜇𝑒 = 0. But by virtue of the assumption of the theorem that all 𝑎𝑖
are different, this equality is possible only for one index, so in this case, the optimality conditions
can be satisfied only for the set 𝐼 containing one index. If the quadratic constraint in the problem
(10) is not active, then 𝜆 = 0. Therefore, for a truly mixed optimal strategy with at least two
components different from zero, the quadratic constraint in (10) must be active and 𝜆 > 0.

As mentioned above, the square submatrices of the positive definite matrix 𝐷 are also positive
definite and, therefore, nondegenerate. Therefore, we have 𝑝 = 𝜆−1𝐷̃−1(𝑎̃−𝜇𝑒). We substitute this
expression into the constraints of problem (10):⟨
𝐷̃−1(𝑎̃− 𝜇𝑒), (𝑎̃− 𝜇𝑒)

⟩
= 𝜆2𝜎20, 𝜆−1

⟨
𝐷̃−1 (𝑎̃− 𝜇𝑒) , 𝑒

⟩
= 1.

We transform the first equality to the form:
⟨
𝑎̃, 𝐷̃−1𝑎̃

⟩
+𝜇2

⟨
𝑒, 𝐷̃−1𝑒

⟩
− 2𝜇

⟨
𝑒, 𝐷̃−1𝑎̃

⟩
= 𝜆2𝜎20.

From the second equality, we express 𝜇: 𝜇 =
(︁⟨
𝑒, 𝐷̃−1𝑎̃

⟩
− 𝜆

)︁⟨
𝑒, 𝐷̃−1𝑒

⟩−1
, and substitute into
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the first equality
⟨
𝑎̃, 𝐷̃−1𝑎̃

⟩⟨
𝑒, 𝐷̃−1𝑒

⟩
+
⟨
𝑒, 𝐷̃−1𝑎̃

⟩2
− 2𝜆

⟨
𝑒, 𝐷̃−1𝑎̃

⟩
+ 𝜆2−

−2
(︂⟨

𝑒, 𝐷̃−1𝑎̃
⟩2
− 𝜆

⟨
𝑒, 𝐷̃−1𝑎̃

⟩)︂
= 𝜆2𝜎20

⟨
𝑒, 𝐷̃−1𝑒

⟩
.

In this expression, the coefficient at 𝜆 is zero. Thus, we obtain a quadratic equation for 𝜆:

𝜆2
(︁
𝜎20

⟨
𝑒, 𝐷̃−1𝑒

⟩
− 1
)︁

=
⟨
𝑎̃, 𝐷̃−1𝑎̃

⟩⟨
𝑒, 𝐷̃−1𝑒

⟩
−
⟨
𝑒, 𝐷̃−1𝑎̃

⟩2
. As it was shown the free term in

the last equation is positive (see the inequality (9)). Let us show that the coefficient at 𝜆2 is also
positive. To do this, we will use the form of solution of the problem (3) obtained above. If we solve
a similar problem of minimizing the variance with the covariance matrix 𝐷̃, corresponding to the

solution of the problem (10), we obtain the minimum value of the variance
⟨
𝐷̃−1𝑒, 𝑒

⟩−1
. By the

assumption of the theorem, 𝜎20 is greater than this value, i.e. 𝜎
2
0 >

⟨
𝑒, 𝐷̃−1𝑒

⟩−1
. Considering, that

𝜆 > 0, 𝜆 is a solution with a plus sign in front of the radical.
If 𝑝 ⩾ 0 and the rest of the KKT conditions are satisfied, namely, the non-positiveness of

the derivatives of the Lagrange function with respect to 𝑝𝑖 with numbers corresponding to zero
components, then the vector 𝑝, padded with zeros in the corresponding places, is a solution to the
problem (10).

As a result, we obtain formulas (11) and (12). Q.E.D. 2

4. Calculation Examples for Stock Investment Problems

Let us consider the application of the obtained results on the example of the process of investing
in the stock market. Usually, a mixed strategy is interpreted as a vector of shares of financial
instruments in a portfolio. Without excluding such an interpretation, we will offer a slightly different
point of view. An investor, as a rule, does not form a portfolio all at once, but as a sequential process
of purchasing one or another financial asset. In this case, the mixed strategy can be implemented
in its immanent sense, i.e. purchases are made randomly with a distribution determined by the
previously found optimal solution. If this process is long enough, then the portfolio structure will
approximately correspond to the type of mixed strategy. Within the framework of this model, as
a game with nature, when applied to the stock market, short sales are unacceptable, because the
solution is mixed strategies, the components of which, in principle, cannot be negative.

We will conduct a technical analysis and find the optimal investment strategy using real data
on stock quotes of Russian companies for the period from 02/01/2021 to 05/01/2021. This period
was chosen because the later data period characterizes the fall of market indices and is associated
not so much with economic as with political reasons.

Three relatively successful companies were selected, namely VTB Bank (VTBR), Gazprom
(SAGP), Sberbank of Russia (SBER). Based on data on daily closing prices, the daily value of
company returns, average returns, variance, and covariance for a given period were calculated (data
taken from the site of FINAM Investment Company [27]).

Strategy 1 − investment in shares of VTB Bank, strategy 2 − investment in shares of Gazprom,
strategy 3 − investment in shares of Sberbank of Russia. In this case, the average values of returns
are equal to 𝑎1 = 0.00548 (0.548%), 𝑎2 = 0.00127 (0.127%), 𝑎3 = 0.002 (0.2%), the covariance

matrix has the form 𝐷 =

⎛⎝ 0.00034 0.00010 0.000095
0.00010 0.00016 0.000094
0.000095 0.000094 0.00017

⎞⎠.
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At first, we will solve the problem (1) for the minimum variance with a constraint on the
mathematical expectation of the payoff. According to the condition of Theorem 1, we calculate the
left and right ends of the interval⟨

𝐷̂−1𝑒, 𝑒
⟩−1 ⟨

𝑎̂, 𝐷̂−1𝑒
⟩
< 𝑎0 < 𝑚𝑎𝑥

𝑖=1,...,𝑛
𝑎𝑖.

The solution of problem (3) gives a full-size portfolio
𝑝 = (0.11532, 0.44388, 0.44079), therefore, for the initial matrix𝐷 and the initial vector of expected
payoffs 𝑎 = (0.00548, 0.00127, 0.002) we have

𝐷−1 =

⎛⎝ 3815.458 −1597.97754 −1296.22457
−1597.97754 9840.62394 −4696.6592
−1296.22457 −4696.6592 9514.1783

⎞⎠ ,
⟨︀
𝑒,𝐷−1𝑒

⟩︀
= 7988.538,⟨︀

𝑎,𝐷−1𝑒
⟩︀
= 16.60911. Then we get 0.00208 < 𝑎0 < 0.00548.

Let us solve the problem (1) with the threshold value of the mathematical expectation of the
payoff 𝑎0 = 0.003. For clarity, we present a detailed procedure for solving this problem using
formulas (6), (7).

Let us take 𝐼={1, 2, 3}, i.e. we use the original vector of expected payoffs 𝑎 = (0.00548, 0.00127,
0.002) and the original covariance matrix 𝐷, then we get

⟨︀
𝑎,𝐷−1𝑎

⟩︀
= 0.093993 . By formulas (7)

we have 𝜆 = 0.01549, 𝜇 = 0.00009. Using formula (6), we have 𝑝= (0.33775, 0.24212, 0.42013).
Let us now solve the problem (1) with the threshold value of the mathematical expectation of the

payoff 𝑎0= 0.0045. Let’s take 𝐼 = {1, 2, 3}, then similarly by formulas (7) we have 𝜆 = 0.04071,
𝜇 = 0.00004. Using formula (6), we have 𝑝= (0.70007, −0.08654, 0.38648). The non-negativity
condition 𝑝 ⩾ 0 is not satisfied in this case, which means that this vector 𝑝 is not a solution. Since
𝑝2 is negative in this case, we can assume that the optimal mixed strategy contains a second zero
component.

So let us take 𝐼 = {1, 3} , then 𝑎̃= (0.00548, 0.002),

𝐷̃=

(︂
0.00034 0.000095
0.000095 0.00017

)︂
, 𝐷̃−1=

(︂
3555.96955 −2058.89531
−2058.89531 7272.59202

)︂
,⟨

𝑎̃, 𝐷̃−1𝑎̃
⟩
=0.090743 ,

⟨
𝑒, 𝐷̃−1𝑒

⟩
=6710.771,

⟨
𝑒, 𝐷̃−1𝑎̃

⟩
=18.64708 and by formulas (7) we obtain

𝜆 = 0.04422, 𝜇 = 0.00003. Using formula (6), we have a vector of nonzero components
𝑝= (0.71830, 0.28170).

Let us check the fulfillment of the KKT condition for the crossed-out number 𝑖= 2. The derivative
of the Lagrange function with respect to 𝑝2 is

𝜕𝐿1(𝑝,𝜆,𝜇)
𝜕𝑝2

=
∑︀3

𝑘=1 𝜎2𝑘𝑝𝑘−𝜆𝑎2−𝜇. When substituting
the vector (0.71830, 0, 0.28170) and the Lagrange multipliers 𝜆= 0.04422 and 𝜇= 0.00003, it is equal
𝜕𝐿1(𝑝,𝜆,𝜇)

𝜕𝑝2
= 0.00002. This means that all KKT conditions are satisfied and the optimal solution to

problem (1) has the form 𝑝0= (0.71830, 0, 0.28170).
Now let us solve problem (10) for the maximum mathematical expectation of the payoff with a

restriction on the variance. For the original matrix 𝐷, the solution of the problem (3) is the strategy
𝑝 = (0.11532, 0.44388, 0.44079) and the corresponding minimum value of the objective function is
𝑑0 = 0.00013.

Let us solve the problem (10) at the threshold value of the standard deviation 𝜎0 = 0.014 (or
the variance 𝜎20 = 0.0002).

Take 𝐼 = {1, 2, 3}, i.e. we will use the original vector of expected returns
𝑎 = (0.00548, 0.00127, 0.002) and the original covariance matrix 𝐷, then we get by formulas (11),
(12) 𝜆 = 28.1906, 𝜇 = −0.00145, 𝑝 = (0.62479, −0.01826, 0.39346). The non-negativity condition
𝑝 ⩾ 0 is not satisfied in this case, which means that this vector 𝑝 is not a solution. Since 𝑝2 is
negative in this case, it can be assumed that the optimal mixed strategy contains the second zero
component.
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Therefore, we take 𝐼 = {1, 3}, then 𝑎̃ = (0.00548, 0.002),

𝐷̃ =

(︂
0.00034 0.000095
0.000095 0.00017

)︂
, and we get by (12) 𝜆 = 27.63183, 𝜇 = −0.00134. Using (11), we

have the vector of nonzero components 𝑝= (0.62840, 0.37161).
Let us check the fulfillment of the KKT condition for the crossed-out number 𝑖 = 2. The

derivative of the Lagrange function with respect to 𝑝2 is 𝜕𝐿2(𝑝,𝜆,𝜇)
𝜕𝑝2

= 𝑎2 − 𝜆
∑︀3

𝑘=1 𝜎2𝑘𝑝𝑘 − 𝜇.
When substituting the vector (0.62840, 0, 0.37161) and Lagrange multipliers 𝜆 = 27.63183 and
𝜇 = −0.00134, we have 𝜕𝐿2(𝑝,𝜆,𝜇)

𝜕𝑝2
= −0.00009.

This means that all the KKT conditions are satisfied and the optimal solution of the problem
(10) has the form 𝑝0 = (0.62840, 0, 0.37161).

In [21], an example of investing in shares of Russian companies for the period from 10/01/2019
to 12/31/2019 was considered. Analysis of statistical data showed that the values of the covariance
of the returns of the companies under consideration were an order of magnitude less than the
values of their variances. So covariances practically did not affect the calculation results, and it was
legitimate to assume that they could be neglected.

In the above example with data on stock quotes of Russian companies for the period from
02/01/2021 to 05/01/2021 the covariances and variances have approximately the same order, and
the covariances are positive. It can be assumed that this is due to recovery growth after the peak
of the pandemic.

If we neglect the covariances in this example, then we have the following results.
Having solved problem (10) with covariances equal to zero and the same threshold value of the

standard deviation, we obtain a solution of the problem (10) 𝑝 = (0.75124, 0, 0.24876). As you can
see, the structure of the strategy has not changed, but the values of the first and third components
differ significantly from these values of the vector 𝑝0 = (0.62840, 0, 0.37161).

Thus, the idea of mixed strategy calculations without neglecting the covariance of random
payoffs of different pure strategies in games with nature is founded. Of course, this idea is not new
in portfolio analysis, but games with nature can be models for other management tasks.

5. Conclusion

The purpose of this work is to develop a new approach in game theory, specifically in games
with nature, related to the consideration of the correlation of random payoffs for each pair of pure
strategies. The obtained theoretical results, in our opinion, can find applications in various decision-
making problems. The considered example of stock investment is an illustration of the practical
application of the results obtained. At the same time, we note that in general theoretical terms, we
are talking about finding an optimal mixed strategy for which the condition of non-negativity of the
components is mandatory (which, by the way, significantly complicates the search for a solution).
Therefore, when applying this approach to stock investing, short selling is excluded. However, for
the stock markets, restrictions on short sales, up to their complete ban, are not so rare.
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