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Abstract

Ryshkov S. S. in his papers has investigated extremal forms and extremal
lattices. Extremal forms and lattices are connected with hard or rigid (by
M. Gromov and other) objects in mathematics. In their work with colleagues
S. S. Ryshkov came also to the other hard (or rigid) objects, for instance, to
rigidly connected chain.

Rigid and soft methods and results already evident in the study of the
classical problems in number theory. Let us dwell briefly on the interpretation
in terms of hard and soft methods of binary and ternary Goldbach problems.
Since the binary (respectively ternary) Goldbach problems in their present
formulation there are about equalities of the type 2n = p; + pa (respectively
2n+1 = p1+pa+p3), where n is a natural number greater than 1 (respectively
n is a natural number greater than 2), p1,p2, ps prime numbers, then these
are hard (rigid) problems; the results of their studies are also hard.

However, the methods of their study include both rigid methods — the
exact formula of the method of Hardy — Littlewood — Ramanujan and a com-
bination of hard and soft methods under the investigation by the Vinogradov‘s
method of trigonometric sums.

A number of problems of analytic number theory allow dynamic interpreta-
tion. We note in this regard that on connection of methods of analytic number
theory and the theory of dynamical systems paid attention and has developed
such analogies A. G. Postnikov.

The purpose of the paper is not to provide any sort of comprehensive
introduction to rigidity in arithmetic and dynamics. Rather, we attempt to
convey elementary methods, results and some main ideas of the theory, with
a survey of some new results. We do not explore an exhaustive list of possible
topics, nor do we go into details in proofs.

After giving an elementary number theoretic, algebraic and algebraic geo-
metry introduction to rigid non-Archimedean spaces in the framework of local
one dimensional complete regular rings, modules over rings, trees and formal
schemes follow to I. R. Shafarevich, J.-P. Serre, J. Tate, D. Mumford, we review
some novel results and methods on rigidity.
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These include (but not exhaust) methods and results by H. Furstenberg,
G. A. Margulis, G. D. Mostow, R. Zimmer, J. Bourgain, A. Furman, A. Linden-
strauss, S. Mozes, J. James, T. Koberda, K. Lindsey, C. Silva, P. Speh, A. Io-
ana, K. Kedlaya, J. Tuitman, and other.
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AHHOTaIINS

C. C. PoimkoB B cBomX pafoTax HCCIEI0BA IKCTPEMAaJIbHBIE (DOPMBI U
9KCTPEMAJIBbHBIE PEIIETKU. DKCTPEMaJbHBIE (DOPMBI U SKCTPEMAJIbHBIE PEIeT-
K CBsi3aHbl ¢ xKecTKuMu (B cMbiciae M. I'pomoBa 1 Apyrux) MareMaTniecKiuMu
obbekTamu. B cBomx paborax, a Takxke B paborax ¢ kosuteramu C. C. Poimkon
npumesI u K JpyruM 2KEeCTKUM O6’beKTaM.

2Kectkue u MsIrkme 3a1a4m, METOILI M Pe3yJIbTaThbl IPOSIBJISIOTCS yKe
IIpu UCCJIeJOBaAHUU KJIaCCUIECKUX IIpO6JIeI\l TeOpUuHn JuceJI. OCTaHOBI/IMCH O4Y€Hb
KPaTKO Ha MHTEPIIPETAINN ¢ TOUKH 3PEHUST YKECTKUX U MATKHAX METOI0B OMHAp-
HO#T U TepHapHOit pobjiem ok 0axa, TpobjeM roJibadaxoBa TUIA U METOJIOB
ux uccaenoBanus. Tak Kak B OMHAPHON (COOTBETCTBEHHO, TePHAPHOIT) 1Ipob.Ie-
Max [onbabaxa B UX COBPEMEHHOI IIOCTAHOBKE Pedb HAET O PABEHCTBAX THUIIA
2n = p1 + p2 (coorBercrBenHO 2N + 1 = p1 + p2 + p3), TJEe N — HATYPAIBHOE
quco, 6osbiree 1 (coorBercTBeHHO N GoOJIbIIE 2), P1, P2, P3 — HPOCTHIE YUCIIA,
TO B CBOEH ITOCTAHOBKE 9TO YKECTKUE ITPODIEMBbI; PE3YJILTATHI UX UCCJICIOBAHUS
TaKKe SIBJIAIOTCS YKECTKIMU.

OsiHaKO MeTOJIbl WX HUCCJIEJIOBAHUS BKJIOUAIOT KaK YKECTKUE METOJIbl —
touynasi dbopmysna meroga Xapau — Jlurtisygna — Pamanyxana (X-JI-P),
[OJIydaeMasl MEeTOJAMEI KOMILIEKCHOIO aHaJIM3a, TaK U COYETAHNEe YKECTKUX U
MATKEX (soft) mMeTomoB ncciemoBanust riasnoro diena B opme X-JI-P u ocra-
TOYHOrO WIeHA METOIOM TPUIOHOMETPUUIECKUX cyMM BHHOIpaIoBa.
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Psin 3aj1a4 aHAIUTHYIECKON TEOPUHU UUCEN JOMYyCKAIOT JUHAMUIECKYIO WH-
teprperaruio. OTMETHM B CBS3HW C 9TUM, YTO HA CBA3U METOJIOB aHAJIUTUYIE-
CKOW TEOpUHU YHUCeJ M TEOPUU JIMHAMUYIECKUX CHCTEeM Obpaliajl BHUMAHUE U
passuBaj Takue aHajgoruu A. I'. IlocrHEKOB.

Hesbio npemyraraemMoii paboThl HE SBJISETCS UCUYEPIIHIBAIONIEE BBEJICHUE B
»KECTKOCTh B apugmMeTuke u B quHamuke. CKoOpee MbI CIIEIAIH HOIBITKY [IPE/I-
CTABUTH IJIEMEHTAPHBIE METOJIbI, PE3Y/IbTATHI U HEKOTOPbIE OCHOBHBIE HJICU B
9TOI 00/1aCTH, BMECTE C 0030POM DPsifia HOBBIX Pe3yJibTaToOB. MBI He gaeMm uc-
YEPIBIBAIONIEr0 0030pa BO3MOXKHBIX TEM, & TAKXKe HE BXOJUM B JIETAJU JOKa-
3aTEJIbCTB.

[Tocse mpescraBienns 3JIEMEHTAPHOIO TEOPETUKO-YUCIOBOTO, ajirebpande-
CKOT'O M aJiredpPO-reOMEeTPUIECKOTO BBEJCHUS B YKECTKUE HEAPXUMEJOBBI PO-
CTPaHCTBa Ha OCHOBE JIOKAJIBHBIX OJTHOMEPHBIX TIOJTHBIX PErYJISIPHBIX KOJIEIl, Jie-
peBbeB 1 popMmastbHbiX cxeM 110 U. P. [Mladapesuuy, 2K.-I1. Ceppy, dx. Taiity,
. Mamdopmy, Mbl 1aeM 0030p HEKOTOPBLIX HOBLIX PE3YJILTATOB U METOIOB B
HAIPABJIEHUN YKECTKOCTH.

U3ioxkenue BKIIOUaeT (HO He HCUEPIBIBAET) Pe3yibTaThl u MeTojbl H. Fur-
stenberg, G. A. Margulis, G. D. Mostow, R. Zimmer, J. Bourgain, A. Furman,
A. Lindenstrauss, S. Mozes, J. James, T. Koberda, K. Lindsey, C. Silva,
P. Speh, A. Ioana, K. Kedlaya, J. Tuitman, u apyrux.

4 npusnarenen B. M. Byxmrabepy 3a 1oje3nble 3aMeYaHUs B IIPOIECCE
00CYyKJIeHUST MOET0 JIOKJIAJIA.

4 6raroapro pereH3eHTa 3a 3aMedaHusi OTHOCUTEJIBHO COJEPXKAHUS U CTH-
JIsL U3JI02KEHU A U 3a IIPEJIO?KEHU S 110 YJIYyIIICHUIO.

Ocobas npusnarenpuocts H. M. JIo6poBOIbCKOMY 3a ITOMOIIL U TOJJIEPAK-
Ky B IIporecce 1noJrorToBKu CraTbu K Ile9aTH.

Karouesvie caosa: KeCcTKOe aHAJUTUYIECKOE MMPOCTPAHCTBO; JlepeBo Bproa
— Twurca; dpopmasibHasg cxema; *KEeCTKOe JIefiCTBIE; KOIUKICHHAS CYIIePXKeCT-
KOCTb; PAaBHOMEPHO KeCTKOe 3proJInuecKoe JIeficTBIe; CyllepzKecTKoe JielicTBue;

Bubauvoepagus: 51 nazpamnue.

1. Introduction

Ryshkov S. S. in his papers has investigated extremal forms and extremal lattices.
Extremal forms and lattices are connected with hard or rigid (by M. Gromov and
other) objects in mathematics. In their work with colleagues S. S. Ryshkov came
also to the other hard (or rigid) objects, for instance, to rigidly connected chain.

Rigid and soft methods and results already evident in the study of the classical
problems in number theory. Let us dwell briefly on the interpretation in terms of hard
and soft methods of binary and ternary Goldbach problems|2, 3, 4, 5, 6]. Since the
binary (respectively ternary) Goldbach problems in their present formulation there
are about equalities of the type 2n = p; + po (respectively 2n + 1 = py + ps + p3),
where n is a natural number greater than 1 (respectively n is a natural number
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greater than 2) pi, pe, ps prime numbers, then these are hard (rigid) problems; the
results of their studies are also hard. However, the methods of their study include
both rigid methods — the exact formula of the method of Hardy — Littlewood —
Ramanujan and a combination of hard and soft methods under the investigation by
the Vinogradov‘s method of trigonometric sums.

A number of problems of analytic number theory allow dynamic interpretation.
We note in this regard that on connection of methods of analytic number theory and
the theory of dynamical systems paid attention and has developed such analogies
A. G. Postnikov [45]. An interesting approach to rigid and soft models is proposed
by V. Arnold [8]. Special considerations need for application of the approach to
problems of number theory and algebra of our paper.

The purpose of the paper is not to provide any sort of comprehensive introduction
to rigidity in arithmetic and dynamics. Rather, we attempt to convey elementary
methods, results and some main ideas of the theory, with a survey of some new
results. We do not explore an exhaustive list of possible topics, nor do we go into
details in proofs.

After giving an elementary number theoretic, algebraic and algebraic geometry
introduction to rigid non-Archimedean spaces in the framework of local one dimen-
sional complete regular rings, modules over rings, trees and formal schemes follow
to I. R. Shafarevich, J.-P. Serre, J. Tate, D. Mumford, we review some novel results
and methods on rigidity.

These include (but not exhaust) methods and results by S. S. Ryshkov [1],
H. Furstenberg, G. A. Margulis, G. D. Mostow, M. Gromov, R. Zimmer, J. Bourgain,
A. Furman, A. Lindenstrauss, S. Mozes, J. James, T. Koberda, K. Lindsey, C. Silva,
P. Speh, A. Toana, K. Kedlaya, J. Tuitman, and other.

2. Quadratic modules over integers and sums of squa-
res

Here we consider the partial case of quadratic modules [21] over integer numbers
when the quadratic form is the sum of n squares. Let A be a lattice [21]| in n-
dimensional real euclidean space that is defined by congruences. Davenport, Mordell,
Cassels and others used the lattices and Minkowski‘s convex body theorem for
proving results about existence of nontrivial solutions of some Diophantine equa-
tions.

We will give examples below. Recall the case of positive quadratic forms.

Let 7 be a complex number, I'm 7 > 0,q = exp miT,

Os(r)= > ™

m=—0oQ

the Jacobi function. Denote by Z" the d-dimensional integer lattice.
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Let r,(m) be the number of ways of writing m as a sum f(xy,...,2,) = f of n
squares. Put Oz. = 05(7)".

2.1. Sums of two squares

Let p = 1 (mod 4). In the case there is the integer [ such that I> + 1 = 0
(mod p). The lattice A of pairs (a,b) of integer numbers is defined by congruences
a = (b (mod p) and has determinant d(A) < p. From this and Minkowski‘s convex
body theorem follow that every prime p =1 (mod 4) is the sum of two squares.

Let x be the nontrivial Dirichlet character mod 4, integer m > 0. There is the
well known

PROPOSITION 1. The number of integer solutions of the equation x3 + x2 = m

is equal 43, x(d).
In the framework of the function ©z» we have

[e.o]

Oz = Z ro(m)q™.

m=0

2.2. Sums of three squares

In the case and in the case n = 4 it is possible to use quaternions (hermitions)
but for simplicity we will formulate the well known result by ©4s and r3(m).

PROPOSITION 2.

Oz = Z r3(m)q™.

2.3. Sums of four squares

The quadratic form % + 23 + 23 + 22 represents all positive numbers (Lagrange).
The number of solutions of the equation 2 +x3+ 22+ 22 = m, where m is a positive
integer is given by Jacobi.

PROPOSITION 3. The number of integer solutions of the equation
a:f—i—x%—ka:g—i-xi:m
15 equal

8> d

dlm

24Zd

dlm

if m=2k+1, and is equal
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if m = 2k.
In the framework of the function ©zn we have

[e.o]

Op1 = Z ra(m)q™.

m=0

2.4. Sums of squares greater than four

Recall elements of Hardy-Littelwood-Kloosterman method in the case. This is
valid also in the previous case n = 4. Consider a function of complex variable
u, lul <1

[e.e]

X1 Tp=—00

Then the number r,(m) of ways of writing m as a sum of n squares by Cauchy’s
integral formula is given as

rn(m) Lyﬁﬂ(f, w)u" " du

= o

where T' is the circle |u| = exp(—-). We omit here the very important step of the
dividing I' into Farey-arcs.

3. Elements of history of rigidity

The history of rigidity is reflected in papers by A. Selberg, E. Calabi, E. Vesentini,
A. Weil, H. Furstenberg, G. Mostow, G. A. Margulis and their colleagues 22, 23,
24, 25, 26, 27|. There are interesting surveys by D. Fisher [28] and R. Spatzier [29].
Let G be a finitely generated group, D a topological group, and h : G — D a
homomorphism. Follow to [28] recall

DEFINITION 1. Given a homomorphism h : G — D, it is said that h s locally
rigid if any other homomorphism h' which is close to h is conjugate to h by a small
element of D.

Recall follow to [23, 24| in framework of [29] the Local Rigidity Theorem.

THEOREM 1. Cocompact discrete subgroups H in semisimple Lie groups without
compact nor SL(2,R) nor SL(2,C) local factors is deformation rigid.

The notion of uniform rigidity was introduced as a topological version of rigidity
by S. Glasner and D. Maon [30].
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4. Rigid non-Archimedean spaces and Formal
Groups

At first we formulate very briefly some elementary (and probably well known)
results on connections among local one dimensional complete regular rings, trees
and formal schemes. We follow to [9, 10, 52].

Let A be a local one dimensional complete regular ring with maximal ideal 7, K
its field of fractions with the multiplicative group K*, V' a two dimensional vector
space over K, M a module of the rank 2 over A (a two-dimensional lattice in the
space V). Denote by S(M) the symmetric algebra of the module M. The main
example is the case of the ring A = Z, of integer p— adic numbers, K = Q,, the field
of p— adic numbers, m = p the prime number, M a module of the rankz, M = 2
over Zy.

DEFINITION 2. Let K be a locally compact non-Archimedean field, A its valuation

ring, m the maximal ideal of A. A free module of rank n over A is called a lattice in
K™,

Two modules M and M of the rank 2 over A are called similar if M = zM,
x € K*. Denote by T the set of classes of similar modules.

DEFINITION 3. Let X be the graph whose vertices are equivalence classes [M] of

similar modules M of the rank 2 over A in'V , where two vertices x and y are joint
by an edge if v = [M] and y = [M'] with M C M, M ¢ 7M, M/M ~ A/7A.

Two modules are called adjacent if the length [((M/M') =1, i.e. M/M ~ A/mA.

THEOREM 2. The graph X is a homogeneous or a reqular tree. We will denote
the tree by T.

By OT denote the set of ends of 7 and by P!(A) denote the one-dimensional
projective space over A.

THEOREM 3. 0T ~ P'(A).

Recall that a group G acts on a set X if there is a map G x X — X, (¢g;2) — gz
such that the following are true: (i) For e the identity of G,ex = x; (ii) For h;g €
G,z € X, h(gz) = (hg)x. On the space V' act the projective linear group PG Ly(K)
and its subgroups. This action extends to the action on the tree 7T .

THEOREM 4. Let a group G acts on a tree T without fized points and without
inversions. Then G is the free group.

Let a group G C PGLy(K) acts on T discretely and freely. Follow to Mumford
it is possible to construct a subtree 75 of T.

THEOREM 5. If the group G has finite number of generators then Tg /G is finite.
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For the above mentioned symmetric algebra S(M) of the module M define the
corresponding scheme P(M) by the formula P(M) = Proj S(M). For each module
M < V there is the birational isomorphism P(M) = PY(A) @4 K 2% PL. Now
let S be a finite subtree of 7. It is possible to construct many formal schemes from
these data. We indicate here the formal scheme P that is the formal completion
(P(S)o) of the scheme P(S) along its closed fibre P(S), only. Recall that the generic
fiber of P*(A) is the one-dimensional projective space P over K.

5. Formal groups and formal stacks

Here we present results on two-dimensional commutative formal groups and on
formal stacks

5.1. On two-dimensional commutative formal groups

Let F' be a commutative formal group low of n variables over commutative ring
R with unit. In the case n = 1, following to the known results by M. Lazard, there
is only one 1— bud of the form x + y + axy.

PROPOSITION 4. Let n =2, A = Z,[«, 8] be the ring of polynomials with integer
p-adic coefficients from «, 5. 1— buds are

T1+ Y1+ oz
F —
() { Ty + Yo + Brays,

1+ Y1 + axriy;
Fa y =
() { T2 + Y2 + Briys,

T1 + Y1 + X2y
F; =
b(2:Y) { Ty + Yo + Brays,

Fioy) =4 Dtut a1+ 22)(y1 + y2)
o T+ Y2 + Bl + 22) (Y1 + 42),

REMARK 1. 1— buds given in Proposition 1 are also two-dimensional formal group
lows, whose coefficients under terms of degrees > 3 are zeros.

REMARK 2. These group lows define classes of group lows. In particular, the class F,
contains under values of parameters o = 0, 8 = —1, the Witt group, that corresponds
to prime number p = 2.
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5.2. Formal stacks

Let now the ring R is the field k. Recall, that formal k— scheme is formal
k— functor, that is the limit of directed inductive system of finite k— schemes,
and a formal group is a group object in the category of formal k— schemes. The
notion of a stack, as one of category theory variants of moduli space is defined by
P. Deligne and D. Mumford.

PROPOSITION 5. There exist formal stacks, that are categories that are bundled
on formal groupoids and that satisfy axioms of decent theory.

6. Uniformly rigid and measurable weak mixing

Authors of the paper [14] investigate properties of uniformly rigid transforma-
tions and analyze the compatibility of uniform rigidity and measurable weak mixing
along with some of their asymptotic convergence properties.

This interesting survey includes some resent results on genericity of rigid and
multiply recurrent infinite measure preserving and nonsingular transformations by
O. Ageev and C. Silva [31] and on measurable sensitivity by J. James, T. Koberda,
K. Lendsey, C. Silva, P. Speh [32].

All spaces of the paper [14] are considered simultaneously as topological spaces
and as measure spaces. Presented results concern either the measurable dynamics
on the spaces or the interplay between the measurable and topological dynamics.

After some introductory section, second section of the paper[14] considers func-
tional analytic properties of uniform rigidity that is similar to the properties of
rigidity. Authors formulate and prove

THEOREM 6. (Theorem 1.) Every totally ergodic finite measure-preserving trans-
formation on a Lebesgue space has a representation that is not uniformly rigid, except
in the case where the space consists of a single atom.

The proof of the theorem connects with results of authors of the paper [14] that
uniform rigidity and weak mixing are mutually exclusive notions on a Cantor set,
and follows from the Jewett-Krieger Theorem by [33].

Third section concerns with uniform rigidity and measurable weak mixing.

Author motivation for this topic is that a (nontrivial) measure-preserving weakly
mixing transformation that is uniformly rigid would yield an example of a measur-
able sensitive transformation that is not strongly measurably sensitive. For a subset
Y of a metric space X and a measurable transformation of X authors of the paper
[14] define the notion of uniformly rigid transformation on Y and prove Theorem 3.4
that is reminiscent of Egorov Theorem by P. Halmos [34]. In forth section authors
present asymptotic convergence behavior. Let X be a compact metric space and let
T be a finite measure-preserving ergodic transformation. Authors prove:
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PROPOSITION 6. If T is uniformly rigid, then the uniform rigidity sequence has
zero density.

The aim of section five is to study group action and generalized uniform rigidity.
Let G be a countable group endowed with the discrete topology acting faithfully
on a finite measure space by measure-preserving transformations. Following authors
of the paper [14] the action of G is uniformly rigid if there exists a sequence {g;}
of group elements that leaves every compact K C G, denoted g; — oo, such that
d(x,g; - ©) — 0 uniformly. The main result of the section is Theorem 5.3:

THEOREM 7. Let X admit a weakly mixing group action and a uniformly rigid
action by nontrivial subgroups of a fixed group of automorphisms G. Then there
exists a G—action on X that is simultaneously weakly mixing and uniformly rigid.

Authors formulate several interesting questions that arise under investigations
of weak mixing and uniform rigidity.

Some results and methods that are connected with topics of this and next section
are considered in the paper [51].

7. Actions of groups and semigroups

Furstenberg and Berent investigate the action of abelian semigroups on the
torus T for d = 1 and d > 1 respectively. The authors of the paper [12] extend
to the noncommutative case some results of Furstenberg and Berent. Author‘s
results answer problems raising by H. Furstenberg [35] and by Y. Guivarc’h [private
communication to authors of the paper [12]].

Let v be a probability measure on SL4(Z) satisfying the moment condition

E,([[g]7) < oo

for some €. The authors of the paper [12] show that if the group generated by the
support of v is large enough, in particular if this group is Zariski dense in SLg, for
any irrational € T? the probability measures 1"  J, tend to the uniform measure
on T¢. If in addition z is Diophantine generic, authors show this convergence is
exponentially fast.

This interesting survey includes resent results on rigidity theory by M. Einsiedler,
E. Lindenstrauss [36] and by G.A. Margulis [37], convolution of measures, on v—stiff
action, on Fourier coefficients of measures and on notions of coarse dimension.

Let the action of semigroup I' on T satisfy the following three conditions: (I'—0)
[ < SLy(R), (—1) T acts strongly irreducibly on R¢, (I'—2) I contains a proximal
element: there is some g € [' with a dominant eigenvalue which is a simple root of
its characteristic polynomial.

In Section 1 authors formulate main result of the paper.



134 N. M. GLAZUNOV

THEOREM 8. Let I' < SL4(R) satisfy (I'—1) and (I'—2) above, and let v be a
probability measure supported on a set of generators of I' satisfying

> wlg) g ll'< oo

gel
for some € > 0. Then for any 0 < XA < A\ (v) there is a constant C' = C(v, \)
so that if for a point x € T? the measure p, = v * 6, satisfies that for some
a € Z\ {0} | fin(a) |>t > 0, withn > C - ZOQ(M), then x admits a rational
approzimation p/q for p € Z% and q € 7, satisfying || x —§ |< exp™" and

lq|< (FFHC.

Authors of [12| denote the theorem as Theorem A.
Section 2 is devoted to the deduction of two corollaries from Theorem A. Let in
the corollaries I and v be as in theorem A.

COROLLARY 1. Let z € T?\ (Q/Z)¢. Then the measures i, = v*" * §, converge
to the Haar measure m on T in weak-* topology.

This is authors [12] Corollary B. Next corollery is the authors [12] Corollary C:

COROLLARY 2. Letz € T? and p,, = v*"x6,. Then there are ¢y, co depending only
on v so that the following holds: (1) Assume x is Diophantine generic in the sense
that for some M and Q) || x—% |> ¢~ for all integers ¢ > Q and p € Z%. Then for
n > ¢ logQ maxyega py<p | fin(b) |< Bexp=="/M (2) Assume x ¢ Q/Z)*. Then
there is a sequence n; — oo along which MaXyezd o p||<expezni | fin(D) [< exp™emi.

Section 3 gives the deduction of authors’ solution of Furstenberg problem from
the authors [12] Proposition 3.1:

PROPOSITION 7. Let I' and v be as in theorem A, 0 < X\ < A\ (v). Then for some
constant C' depending on v, X the following holds: for any probability measure pg on
2%, if u, = v % g has a nontrivial Fourier coefficient a € Z4\ {0} | fin(a) |> t,

with n> '+ log(%E), then po(Woexp-n) > (5)° where Q = (A7)

Theorem A follows from Proposition 3.1.

Section 4 is devoted to random matrix products. It includes estimates of the
metric on P! and random walks. In Section 5 two notions of coarse dimension are
discussed. Section 6 describes the structure of the set of t—large Fourier coefficients.
The last Section "Granulated measures"gives the prove of Proposition 3.1.

The results of the paper[12] will be of use to specialists interested in Diophantine
approximation, measure theory and algebraic dynamics.

8. Rigid cohomology

At first we review the necessary results on the connection and on the Gauss-
Manin connection. We follow the ideas and results by Grothendieck, Griffiths, Manin,
Katz, Deligne and others.
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8.1. Connection

Let S/k be the smooth scheme over field k, U an element of open covering of S,
Ogs the structure sheaf on S, I'(U, Og) the sections of Og on U. Let Q}q/k be the sheaf
of germs of 1—dimension differentials, F a coherent sheaf on S. The connection on
the sheaf F is the sheaf homomorphism

V:F—=Q5,®F,
such that, if f € T'(U, Og), g € T'(U, F) then
V(fg)=fV(g)+df ©g.
There is the dual definition. Let F be the locally free sheaf, ©} n the dual to sheaf
Q41 0 € T(U,Og,). The connection is the homomorphism
p: @}g/k — Endo (F,F),

p(0)(fg) = 0(f)g + fp(0).

8.2. Integration of connection

Let Q /i be the sheaf of germs of i—differentials,
Via® f)=da® f+ (=1)'aAV(f).
Then V, V* define the sequence of homomorphisms:
FoQ,, 0F 5 Q5 @F =+ ,. (1)

The map
K:Vovl:f%qu/,ﬁ@)}"

is called the curvature of the connection V.
The cochain complex

(K*d)={K* 4 k' 4 k2% ..}

is the sequence of abelian groups and differentials d : K? — KP*! with the condition
dod=0.

Let A be an abelian category, K(A) the category of complexes over A. Further-
more, there are various full subcategories of K(.A) whose respective objects are the
complexes which are bounded below, bounded above, bounded in both sides.

A connection is integrable if (1) is a complex.

PROPOSITION 8. The statements a), b), ¢) are equivalent:
a) the connection V is integrable;
b) K=VoV!=0;

c) p is the Lie-algebra homomorphism of sheaves of Lie algebras.
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More generally, let X, S be smooth schemas over k,f : X — S a smooth
morphism,
Qi £ Ox = s = Dy =+

the de Rham complex of relative differentials. There is the exact sequence
0— f1(Q5) = Q% — Q%5 — 0.

In the case there is an integrable connection, the Gauss-Manin connection.

By an abelian sheaf we mean a sheaf of abelian groups. Let R’ f, be the functor
from the category of complexes of abelian sheaves on X to the category of abelian
sheaves on S. Denote by H% n(X/S) the sheaf of de Rham cohomologies such that

pr(X/S) = R f.Q%s.

Recall that
H = Hipp = R £.0%)s
is called the Gauss-Manin bundle.

Here R'f,,i > 0, are the hyperderved functor of Rf..

For each i > 0, H%(X/S) is a locally free coherent algebraic sheaf on S, whose
fiber at each point s € S is the C—vector space H'( X, C) and has the Gauss-Manin
connection. H% (X/S) has the main interpretation as the Picard-Fuchs equations
and H'(X,, C) in the interpretation is the local system of germs of solutions of the
equations.

There is the canonical filtration of Q% /s by locally free subsheaves

X/ = FO(QE(/S) D FY Y/s) D
given by A A ‘
Fr %) = Im(f" (D) @ Q" — Q).
Let A o
gri=F"/F* i=0,1,...
EXAMPLE 1. Let S = Spec B, X = Spec A be schemas over k of algebraic
dimensions dim B =1 (for instance, B = k[z], ) dim A =2,
pr(X/S) = Hpp(A/B).
Let QL = Bdt, r =1,
0—grt = FY/F? = g =0

where F° = Q%. The exect sequence has the form

05 QA8 - Q) - Ad Q)5 — 0.
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Consider the simplest case of elliptic curve
y2 =23 +t.

In the case
B = klt,t™), A = Blo,y)/ (s — * + 1),

and w = d?”” € QL. Finally, we obtain a partial case of Fuchs equation:

dw . 1 0
— 4+ —w=0.
dt 6t

8.3. Rigidity

Y2

Let p be a prime, n a positive integer, and F, the finite field with ¢ = p
elements. Let Q, denote the unique unramified extension of degree n of the field
of p-adic numbers. Let U be an open dense subscheme of the projective space P%Qq
with nonempty complement Z. Let V' be the rigid analytic subspace of P}Qq which
is the complement of the union of the open disks of radius 1 around the points of
Z. A Frobenius structure on £ with respect to o is an isomorphism F : 0*& ~ £ of
vector bundles with connection defined on some strict neighborhood of V.

A meromorphic connection on P! over a p-adic field admits a Frobenius structure
defined over a suitable rigid analytic subspace. Authors of the paper|[l1]| give an
effective convergence bound for this Frobenius structure by studying the effect of
changing the Frobenius lift. They also give an example indicating that their bound
is optimal.

The techniques used are computational. This is a good place to see the interplay
between matrix representation of a Frobenius structure and a Gauss-Manin connec-
tion.

The theory of rigid p-adic cohomology are developed by Berthelot [38] and others.
Rigid cohomology in some sense extends crystalline cohomology. Review of some
novel results and applications of crystalline cohomology is given in paper [52].

9. Superrigidity

The notion of property (T) for locally compact groups was defined by D. Kazhdan
[39] and the notion of relative property (T) for inclusion of countable groups I'y C T
was defined by G. Margulis [40].

The concept of superrigidity was introduced by G. D. Mostow [41] and by
G. A. Margulis [42]| in the context of studying the structure of lattices in rank
one and higher rank Lie groups respectively. The first result on orbit equivalent
(OE) superrigid actions was obtained by A. Furman [43], who combined the cocycle
superrigidity by R. Zimmer [44] with ideas from geometric group theory to show
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that the actions SL,(Z) — T"(n > 3) are OE superrigid. The deformable actions
of rigid groups are OE superrigid by S. Popa [45].

The paper [13] presents a new class of orbit equivalent superrigid actions. The
main result of the paper [13] is the Theorem A on orbit equivalence (OE) superrigidi-
ty. As a consequence of Theorem A the author can constructs uncountable many
non-OE profinite actions for the arithmetic groups SL,(Z)(n > 3), as well as for
their finite subgroups, and for the groups that are semi direct products of groups
SLy(Z) and Z™(m > 2). The author deduces Theorem A as a consequence of the
Theorem B on cocycle superrigidity.

Let I' — X be a free ergodic measure-preserving profinite action (i.e., an inverse
limit of actions I' — X, with X, finite) of a countable property (T) group I' (more
generally, of a group I' which admits an infinite normal subgroup I'y such that
the inclusion I'y C T" has relative property (T) and I'/T'y is finitely generated) on
a standard probability space X. The author prove that if w : ' x X — Ais a
measurable cocycle with values in a countable group A, then w is a cohomologous
to a cocycle w’ which factors through the map I' x X — I' x X,,, for some n. As a
corollary, he shows that any free ergodic measure-preserving action A — Y comes
from a (virtual) conjugancy of actions.

10. Newton strata in the loop group of a reductive
group

Let G be a split connected reductive group over ), let 7" be a split maximal
torus of G and let LG be the loop group of G by Faltings [46].

Let R be a F,-algebra and K be the sub-group scheme of LG with K(R) =
G(R[[z]]). Let o be the Frobenius of k over F, and also of k((z)) over F,((z)). For
algebraically closed k, the set of o-conjugacy classes [b] = {g 0o (g)|g € G(k((2)))}
of elements b € LG(k) is classified by two invariants, the Kottwitz point k¢(b) and
the Newton point v.

The author of the paper [47| proves the following two main results.

THEOREM 9. Let S be an integral locally noetherian scheme and let b € LG(S).
Let j € J(v) be a break point of the Newton point v of b at the generic point of S.
Let U; be the open subscheme of S defined by the condition that a point x of S lies
in U; if and only if pr;)(vy(x)) = pr(;)(v). Then U; is an affine S-scheme.

THEOREM 10. Let p; < ps € X.(T) be dominant coweights. Let
S = | J KK
p=p o

Let [b] be a o-conjugacy class with kg(b) = T, = Ty as elements of m(G) and
with v, = po. Then the Newton stratum Ny = [b] NS, ., is non-empty and pure of
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codimension (p, piz — vp) + 3def(b) in Sy, ,,. The closure of Ny is the union of all
Ny for [b] with kg(b') = Ty and vy < vy

Here p is the half-sum of the positive roots of G and the defect def(b) is defined
as kG — rkg, J, where J, is the reductive group over F, with Jy(k((2))) = {g €
LG (k)|gb = bo(g)} for every field k containing F, and with algebraically closed k.

The proof of Theorem 9 is based on a generalization of some results by Vasiu
[48]. An interesting feature of E. Viehmann method in the prove of Theorem10 is
the using of various results on the Newton stratification on loop groups as Theorem
9 and the dimension formula for affine Deligne-Lusztig varieties by G’ortz, Haines,
Kottwitz, Reuman [49] together with results on lengths of chains of Newton points

by Chai [50].

11. Conclusion

Rigid problems, methods and results in arithmetic algebraic geometry and in
dynamics have presented. Diverse notions of rigidity and respective novel results are
reviewed.
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