ЧЕБЫШЕВСКИЙ СБОРНИК

Том 17. Выпуск 1.

УДК 517.5

САМОУЛУЧШЕНИЕ L^p -НЕРАВЕНСТВА ПУАНКАРЕ ПРИ p>0

А. И. Порабкович (г. Минск)

Аннотация

Классическое (θ, p) -неравенство Пуанкаре на \mathbb{R}^n

$$\left(\frac{1}{\mu(B)}\int\limits_{B}\left|f(y)-\frac{1}{\mu(B)}\int\limits_{B}f\,d\mu\right|^{\theta}\,d\mu(y)\right)^{1/\theta}\lesssim r_{B}\left(\frac{1}{\mu(B)}\int\limits_{B}\left|\nabla f\right|^{p}d\mu\right)^{1/p},$$

 $(r_B -$ радиус шара $B \subset \mathbb{R}^n)$ обладает свойством самоулучшения — из (1,p)-неравенства, 1 , вытекает «более сильное» <math>(q,p)-неравенство (Соболева–Пуанкаре), где 1/q = 1/p - 1/n (неравенство $A \lesssim B$ означает, что $A \leqslant cB$ с несущественной постоянной c).

Такой эффект изучался в ряде работ для неравенств более общего вида

$$\left(\frac{1}{\mu(B)} \int_{B} |f(y) - S_B f|^{\theta} d\mu(y)\right)^{1/\theta} \lesssim \eta(r_B) \left(\frac{1}{\mu(B)} \int_{\sigma_B} g^p d\mu\right)^{1/p}$$

для функций на метрическом пространстве с мерой. Здесь $f \in L^{\theta}_{loc}, g \in L^{p}_{loc}, S_B f$ — некоторое число, зависящее от шара B и функции f, η — некоторая положительная возрастающая функция, $\sigma \geqslant 1$. В качестве $S_B f$ выбиралось среднее значение функции f по шару B и рассматривался случай $p \geqslant 1$.

Мы изучаем свойство самоулучшения для таких неравенств на квазиметрических пространствах с мерой, удовлетворяющей условию удвоения с показателем $\gamma>0$. Существенным отличием нашей работы от предыдущих является рассмотрение случая $p,\theta>0$. В этой ситуации функции не обязаны быть суммируемыми и мы берем $S_B f = I_B^{(\theta)} f$ — наилучшее приближение постоянными в метрике пространства $L^{\theta}(B)$.

Мы доказываем, что если $\eta(t)t^{-\alpha}$ возрастает при некотором $\alpha>0$, то при $0< p<\gamma/\alpha$ и $\theta>0$ из (θ,p) -неравенства Пуанкаре вытекает (q,p)-неравенство с $1/q>1/p-\gamma/\alpha$. При $p\geqslant \gamma(\gamma+\alpha)^{-1}$ (при таких p функция f является локально суммируемой) отсюда вытекает также (q,p)-неравенство с интегральными средними на месте наилучших приближений $I_B^{(\theta)}f$.

В работе рассматриваются также случаи $\alpha p = \gamma$ и $\alpha p > \gamma$. Если $\alpha p = \gamma$, то из (θ, p) неравенства Пуанкаре вытекает (q, p)-неравенство с любым q > 0 и, более того, справедливо экспоненциальное неравенство типа известного неравенства Трудингера.

Если же $\alpha p > \gamma$, то из (θ, p) -неравенства Пуанкаре вытекает неравенство

$$|f(x) - f(y)| \lesssim \eta(d(x,y))[d(x,y)]^{-\gamma/p} \lesssim [d(x,y)]^{\alpha - \gamma/p}$$

для почти всех x и y из любого фиксированного шара $B (\lesssim$ зависит от B).

 ${\it Knючевые\ c.noвa:}\ {\it метрическое\ пространство\ c\ мерой,\ условие\ удвоения,\ неравенство\ Пуанкаре.}$

Библиография: 15 названий.

SELF-IMPROVEMENT OF (θ, p) POINCARÉ INEQUALITY FOR p > 0

A. I. Porabkovich (Minsk)

Abstract

Classical Poincaré (θ, p) -inequality on \mathbb{R}^n

$$\left(\frac{1}{\mu(B)}\int\limits_{B}\left|f(y)-\frac{1}{\mu(B)}\int\limits_{B}f\,d\mu\right|^{\theta}\,d\mu(y)\right)^{1/\theta}\lesssim r_{B}\left(\frac{1}{\mu(B)}\int\limits_{B}|\nabla f|^{p}\,d\mu\right)^{1/p},$$

 $(r_B \text{ is the radius of ball } B \subset \mathbb{R}^n)$ has a self-improvement property, that is (1, p)-inequality, 1 , implies the «stronger» <math>(q, p)-inequality (Sobolev-Poincaré), where 1/q = 1/p - 1/n (inequality $A \lesssim B$ means that $A \leqslant cB$ with some inessential constant c).

Such effect was investigated in a series of papers for the inequalities of more general type

$$\left(\frac{1}{\mu(B)} \int_{B} |f(y) - S_B f|^{\theta} d\mu(y)\right)^{1/\theta} \lesssim \eta(r_B) \left(\frac{1}{\mu(B)} \int_{\sigma_B} g^p d\mu\right)^{1/p}$$

for functions on metric measure spaces. Here $f \in L^{\theta}_{loc}$, $g \in L^{p}_{loc}$, and $S_B f$ is some number depending on the ball B and on the function f, η is some positive increasing function, $\sigma \geqslant 1$. Usually mean value of the function f on a ball B is chosen as $S_B f$, and the case $p \geqslant 1$ is considered.

We investigate self-improvement property for such inequalities on quasimetric measure spaces with doubling condition with parameter $\gamma > 0$. Unlike previous papers on this topic we consider the case $\theta, p > 0$. In this case functions are not required to be summable, and we take $S_B f = I_B^{(\theta)} f$. Here $I_B^{(\theta)} f$ is the best approximation of the function f in $L^{\theta}(B)$ by constants. We prove that if $\eta(t)t^{-\alpha}$ increases with some $\alpha > 0$, then for $0 and <math>\theta > 0$

We prove that if $\eta(t)t^{-\alpha}$ increases with some $\alpha > 0$, then for $0 and <math>\theta > 0$ (θ, p) -inequality Poincaré implies (q, p)-inequality with $1/q > 1/p - \gamma/\alpha$. If $p \ge \gamma(\gamma + \alpha)^{-1}$ (then the function f is locally integrable) then it implies also (q, p)-inequality with mean value instead of the best approximations $I_B^{(\theta)} f$.

Also we consider the cases $\alpha p = \gamma$ and $\alpha p > \gamma$. If $\alpha p = \gamma$, then (q, p)-inequality with any q > 0 follows from Poincaré (θ, p) -inequality and moreover some exponential Trudinger type inequality is true.

If $\alpha p > \gamma$ then Poincaré (θ, p) -inequality implies the inequality

$$|f(x) - f(y)| \lesssim \eta(d(x,y))[d(x,y)]^{-\gamma/p} \lesssim [d(x,y)]^{\alpha - \gamma/p}$$

for almost all x and y from any fixed ball $B (\leq \text{does depend on } B)$.

Keywords: Metric measure space, doubling condition, Poincaré inequality.

Bibliography: 15 titles.

1. Введение

Классическое неравенство Пуанкаре на \mathbb{R}^{n1}

$$\frac{1}{\mu(B)} \int_{B} \left| f(y) - \frac{1}{\mu(B)} \int_{B} f \, d\mu \right| d\mu(y) \lesssim r_B \left(\frac{1}{\mu(B)} \int_{B} |\nabla f|^p \, d\mu \right)^{1/p}.$$

 $^{^1}$ Запись $A \lesssim B$ всегда означает, что $A \leqslant cB$, где c некоторая положительная постоянная зависящая, возможно, от некоторых параметров, но эти зависимости для нас несущественны (эти постоянные могут быть различными даже в пределах одной строки).

 $(r_B - \text{радиус шара } B \subset \mathbb{R}^n)$ обладает свойством самоулучшения — из него вытекает «более сильное» неравенство

$$\left(\frac{1}{\mu(B)}\int\limits_{B}\left|f(y)-\frac{1}{\mu(B)}\int\limits_{B}f\,d\mu\right|^{q}d\mu(y)\right)^{1/q}\lesssim r_{B}\left(\frac{1}{\mu(B)}\int\limits_{B}|\nabla f|^{p}\,d\mu\right)^{1/p},$$

где p > 1, 1/q = 1/p - 1/n.

Такой эффект изучался для неравенств более общего вида

$$\left(\frac{1}{\mu(B)} \int_{B} |f(y) - S_B f|^{\theta} d\mu(y)\right)^{1/\theta} \leqslant \eta(r_B) \left(\frac{1}{\mu(B)} \int_{\sigma B} g^p d\mu\right)^{1/p}.$$
 (1)

для функций на метрическом пространстве с мерой (см., например, [1, 2]). Здесь $f \in L^{\theta}_{loc}$, $g \in L^{p}_{loc}$, $S_B f$ — некоторое число, зависящее от шара B и функции f, η — некоторая положительная функция, $\sigma \geqslant 1$.

В цитированных работах в качестве $S_B f$ выбиралось среднее значение функции f по шару B и рассматривался случай $\theta \geqslant 1$. Существенным отличием нашей работы от предыдущих является изучение свойства самоулучшения для неравенств (1) при $\theta > 0$ — при таких условиях рассматриваемые функции не обязаны быть суммируемыми. Для формулировки нашего основного результата нам понадобится ряд определений и обозначений.

Пусть (X,d,μ) — хаусдорфово пространство с регулярной борелевской мерой μ и квазиметрикой d (неравенство треугольника заменяется следующим: существует такая постоянная $a_d \geqslant 1$, что $d(x,y) \leqslant a_d[d(x,z)+d(z,y)]$ для любых $x,y,z \in X$).

Кроме того, семейство открытых шаров

$$B(x,r) = \{ y \in X : d(x,y) < r \}$$

образует базу окрестностей топологии X и

$$0 < \mu(B(x,r)) < +\infty, \quad x \in X, \ r > 0.$$

Часто шар будет обозначаться просто B, тогда r_B — его радиус, $\lambda B \subset X$ — шар, концентрический с B, радиуса λr_B . Кроме того, пусть

$$f_B = \oint_B f \, d\mu = \frac{1}{\mu(B)} \int_B f \, d\mu$$

— среднее значение функции $f \in L^1_{\mathrm{loc}}(X)$ по шару $B \subset X.$

Говорят, что мера μ удовлетворяет условию удвоения, если существует такое число $a_{\mu}>0,$ что

$$\mu\left(B(x,2r)\right) \leqslant a_{\mu}\mu\left(B(x,r)\right), \quad x \in X, \quad r > 0.$$

Этому условию можно придать количественный вид: существует $\gamma > 0$ (можно взять $\gamma = \log_2 a_\mu$), для которого выполнено неравенство

$$\mu(B(x,R)) \leqslant a_{\mu} \left(\frac{R}{r}\right)^{\gamma} \mu(B(x,r)), \quad x \in X, \ 0 < r \leqslant R.$$
 (2)

Мы предполагаем (2) выполненным на протяжении всей работы. В таком случае тройка (X, d, μ) называется пространством однородного типа [9].

Для $0 \leqslant \alpha < \beta < \infty$ определим $\Omega[\alpha, \beta]$ как множество положительных возрастающих функций $\eta: [0,1) \to [0,+\infty)$, для которых $\eta(t)t^{-\alpha}$ возрастает и $\eta(t)t^{-\beta}$ убывает. Пусть еще

$$\Omega[\alpha,\beta) = \bigcup_{\beta' \in [\alpha,\beta)} \Omega[\alpha,\beta'], \quad \Omega[\alpha,\infty) = \bigcup_{\beta>\alpha} \Omega[\alpha,\beta).$$

Пусть $\eta \in \Omega[0,\infty)$, $\sigma \geq 1$ и $\theta, p > 0$. Будем говорить, что пара функции $f \in L^{\theta}_{loc}(X)$, $g \in L^{p}_{loc}(X)$ удовлетворяет $(\sigma, \eta, \theta, p)$ -неравенству Пуанкаре, если для всех шаров $B \subset X$

$$\left(\oint_{B} |f(y) - I_{B}^{(\theta)} f|^{\theta} d\mu(y) \right)^{1/\theta} \leqslant \eta(r_{B}) \left(\oint_{\sigma_{B}} g^{p} d\mu \right)^{1/p}. \tag{3}$$

Здесь $I_B^{(\theta)}f$ — постоянная наилучшего приближения функции f в $L^{\theta}(B)$ (см. ниже лемму 3), т.е.

$$\left(\oint_{B} |f(y) - I_{B}^{(\theta)} f|^{\theta} d\mu(y) \right)^{1/\theta} = \inf_{I \in \mathbb{R}} \left(\oint_{B} |f(y) - I|^{\theta} d\mu(y) \right)^{1/\theta}. \tag{4}$$

Основной результат нашей работы — следующая теорема, описывающая свойство самоулучшения неравенства Пуанкаре (3). Она была анонсирована в [14].

ТЕОРЕМА 1. Пусть $\theta, p > 0, \ 0 < \alpha < \gamma/p, \ \eta \in \Omega[\alpha, \gamma/p), \ \sigma \geqslant 1$. Пусть также функции $f \in L^{\theta}_{\mathrm{loc}}(X), \ g \in L^{p}_{\mathrm{loc}}(X)$ удовлетворяют $(\sigma, \eta, \theta, p)$ -неравенству Пуанкаре, $1/q \geqslant 1/p - \alpha/\gamma$. Тогда для любого шара $B \subset X$

1) если $1/q = 1/p - \alpha/\gamma$, то справедливо неравенство слабого типа

$$\frac{\mu\left(\left\{x \in B : |f(x) - I_B^{(\theta)}f| > \lambda\right\}\right)}{\mu\left(B\right)} \lesssim \left[\frac{\eta(r_B)}{\lambda} \left(\int_{4a_d^2\sigma B} g^p d\mu\right)^{1/p}\right]^q, \quad \lambda > 0; \tag{5}$$

2) $ecnu 1/q > 1/p - \alpha/\gamma$, mo

$$\left(\oint_{B} |f(y) - I_{B}^{(\theta)} f|^{q} d\mu(y) \right)^{1/q} \lesssim \eta(r_{B}) \left(\oint_{4a_{d}^{2} \sigma B} g^{p} d\mu \right)^{1/p}, \tag{6}$$

 $r\partial e \lesssim не$ зависят от f, g u B.

Заметим, что если $q\geqslant 1$ (т.е. $p\geqslant \gamma(\gamma+\alpha)^{-1}$), то неравенства (5) и (6) в теореме 1 сохраняют силу, если в них заменить $I_B^{(\theta)}f$ на интегральные средние f_B . Это следует из известного простого неравенства

$$\left(\int_{B} |f(y) - f_B|^q d\mu(y)\right)^{1/q} \leqslant 2 \left(\int_{B} |f(y) - I_B^{(q)} f|^q d\mu(y)\right)^{1/q},$$

справедливого при $q \geqslant 1$.

В случае $p > \theta = 1$ это утверждение имеется в [2] (при $\eta(t) = t$ см. также [1, теорема 5.1]). Следовательно, из теоремы 1 вытекает распространение этих результатов из [1, 2] на случай $p \ge \gamma (\gamma + \alpha)^{-1}$.

Мы приведем доказательство теоремы 1 в разделе 3.

Кроме того, в пп. 3.2, 3.3 рассматриваются аналоги теоремы 1 для случаев $\alpha \geqslant \gamma/p$.

2. Вспомогательные утверждения

ЛЕММА 1. Пусть $B_1 \subset B_2 \subset X - \partial \epsilon a$ шара, причем $0 < r_{B_1} \leqslant r_{B_2}$. Тогда

$$\frac{\mu\left(B_{2}\right)}{\mu\left(B_{1}\right)} \lesssim \left(\frac{r_{B_{2}}}{r_{B_{1}}}\right)^{\gamma}.$$

Эта лемма имеется, например, в [2, лемма 1]. Для $\theta > 0$, шара $B_0 \subset X$ и $x \in B_0$ положим

$$M_{\theta,B_0}f(x) = \sup_{B\ni x, r_B\leqslant r_{B_0}} \left(\oint_B |f|^{\theta} d\mu \right)^{1/\theta},$$

где точная верхняя граница берется по всем шарам B радиуса $r_B \leqslant r_{B_0}$, содержащим точку x. Это — локальная максимальная функция Харди–Литтлвуда. Для нее справедливы следующие стандартные оценки с обычным доказательством (см. например, [10, 11]).

ЛЕММА 2. Пусть $0 < q < p < \infty, \ f \in L^p_{\mathrm{loc}}(X)$. Тогда для любого шара $B \subset X$ справедливы неравенства

$$\mu\left(\left\{x \in B : M_{p,B}f(x) > \lambda\right\}\right) \lesssim \left(\frac{\|f\|_{L^{p}(2a_{d}B)}}{\lambda}\right)^{p}, \quad \lambda > 0$$
 (7)

u

$$||M_{p,B}f||_{L^{q}(B)} \lesssim \mu(B)^{1/q-1/p} ||f||_{L^{p}(2a_{d}B)}.$$
 (8)

Следующие три леммы имеются в [14] — см. [14, лемма 3], [14, лемма 5] и [14, лемма 7] соответственно (по поводу леммы 5 см. еще [12, 13]).

ЛЕММА 3. Пусть $B \subset X$, $f \in L^{\theta}(B)$, $\theta > 0$. Тогда существует такое число $I_B^{(\theta)} f \in \mathbb{R}$, что выполнено (4).

Число $I_B^{(\theta)}f$ из леммы 3 определяется неоднозначно (если $\theta\leqslant 1$). В дальнейшем под $I_B^{(\theta)}f$ понимаем любое из его возможных значений.

ЛЕММА 4. Пусть $f \in L^{\theta}_{loc}(X), \ \theta > 0, \ B_1, B_2 \subset X - \partial sa$ шара, причем $0 < r_{B_1} \leqslant r_{B_2}$. Тогда:

1) $ecnu\ B_1 \subset B_2$, mo

$$|I_{B_1}^{(\theta)}f - I_{B_2}^{(\theta)}f| \lesssim \left(\int_{B_1} |f(y) - I_{B_1}^{(\theta)}f|^{\theta} d\mu \right)^{1/\theta} + \left(\frac{r_{B_2}}{r_{B_1}} \right)^{\gamma/\theta} \left(\int_{B_2} |f(y) - I_{B_2}^{(\theta)}f|^{\theta} d\mu \right)^{1/\theta};$$

2) если $B_1\cap B_2\neq \varnothing$, то для любой точки $x_0\in B_1\cap B_2$ выполнено неравенство

$$|I_{B_1}^{(\theta)} f - I_{B_2}^{(\theta)} f| \lesssim \left(\int_{B_1} |f(y) - I_{B_1}^{(\theta)} f|^{\theta} d\mu \right)^{1/\theta} + \left(\int_{B_2} |f(y) - I_{B_2}^{(\theta)} f|^{\theta} d\mu \right)^{1/\theta} + \left(\frac{r_{B_2}}{r_{B_1}} \right)^{\gamma/\theta} \left(\int_{B(x_0, R)} |f(y) - I_{B(x_0, R)}^{(\theta)} f|^{\theta} d\mu \right)^{1/\theta},$$

 $r\partial e R = 2a_d r_{B_2}$.

ЛЕММА 5. Для любой функции $f \in L^{\theta}_{loc}(X), \ \theta > 0$

$$\lim_{r \to +0} I_{B(x,r)}^{(\theta)} f = f(x) \tag{9}$$

для почти всех $x \in X$.

Точки, в которых выполнено соотношение (9), будем называть θ -точками Лебега. Отметим еще, что для любой функции $\eta \in \Omega[\alpha, \beta)$, $0 < \alpha < \beta$, выполнены неравенства

$$\sum_{k=n}^{\infty} \eta(2^{-k}) \lesssim \eta(2^{-n}), \quad \sum_{k=0}^{n} 2^{\beta k} \eta(2^{-k}) \lesssim 2^{\beta n} \eta(2^{-n}). \tag{10}$$

3. Самоулучшение неравенств Пуанкаре

3.1. Доказательство теоремы 1

Пусть $B \subset X$ — любой фиксированный шар, $r = r_B$, $R = 2a_d r$. Рассмотрим любую θ -точку Лебега $x \in B$. Для произвольного s > 0 положим

$$v(x,s) = \left(\int_{\sigma B(x,s)} g^p \, d\mu \right)^{1/p}.$$

Отметим, что в силу условия удвоения (2) при $t \leqslant s$ выполнено неравенство

$$v(x,t) \leqslant \left(\frac{\mu\left(B(x,s)\right)}{\mu\left(B(x,t)\right)} \underset{\sigma B(x,s)}{\cancel{f}} g^{p} d\mu\right)^{1/p} \lesssim \left(\left(\frac{s}{t}\right)^{\gamma} \underset{\sigma B(x,s)}{\cancel{f}} g^{p} d\mu\right)^{1/p} \lesssim \left(\frac{s}{t}\right)^{\gamma/p} v(x,s). \tag{11}$$

Введем обозначения

$$I = \left(\int_{\sigma B(x,R)} g^p \, d\mu \right)^{1/p}$$
 и $M = M_{p,2a_d\sigma B} g(x).$

Очевидно, что $I \leqslant M$.

Докажем теперь неравенство

$$|f(x) - I_{B(x,r)}^{(\theta)} f| \lesssim \eta(r) I^{\frac{\alpha p}{\gamma}} M^{1 - \frac{\alpha p}{\gamma}}.$$
 (12)

Пусть для краткости $B_k = B(x, 2^{-k}r), k \geqslant 0$. Тогда по определению θ -точки Лебега с помощью леммы 4 и неравенства (3) получаем

$$|f(x) - I_{B(x,r)}^{(\theta)}f| = \left| \sum_{k=0}^{\infty} \left[I_{B_{k+1}}^{(\theta)} f - I_{B_k}^{(\theta)} f \right] \right| \lesssim \sum_{k=0}^{\infty} \eta(2^{-k}r) v(x, 2^{-k}r) = \Sigma_1 + \Sigma_2, \tag{13}$$

где

$$\Sigma_1 = \sum_{k=0}^n \eta(2^{-k}r)v(x, 2^{-k}r), \ \Sigma_2 = \sum_{k=n+1}^\infty \eta(2^{-k}r)v(x, 2^{-k}r).$$

Выбор числа $n \in \mathbb{N}$ будет указан позже.

Оценим Σ_1 . В силу (11) и (10)

$$\Sigma_1 = \sum_{k=0}^n \eta(2^{-k}r)v(x, 2^{-k}r) \lesssim I \sum_{k=0}^n \eta(2^{-k}r)2^{k\frac{\gamma}{p}} \lesssim 2^{n\frac{\gamma}{p}} I\eta(2^{-n}r).$$
 (14)

Для оценки Σ_2 также воспользуемся (10)

$$\Sigma_2 = \sum_{k=n+1}^{\infty} \eta(2^{-k}r)v(x, 2^{-k}r) \lesssim M \sum_{k=n+1}^{\infty} \eta(2^{-k}r) \lesssim M\eta(2^{-n}r).$$
 (15)

Поэтому, учитывая (14) и (15), видим, что

$$\sum_{k=0}^{\infty} \eta(2^{-k}r)v(x,2^{-k}r) \lesssim \eta(2^{-n}r) \left[2^{n\frac{\gamma}{p}}I + M\right].$$

Если выбрать теперь

$$n = \left\lceil \log_2 \left(\frac{M}{I} \right)^{\frac{p}{\gamma}} \right\rceil + 1,$$

мы приходим к неравенству

$$\sum_{k=0}^{\infty} \eta(2^{-k}r)v(x, 2^{-k}r) \lesssim 2\eta(2^{-n}r)M.$$

Учитывая также то, что $\eta(t)t^{-\alpha}$ почти возрастает, получаем

$$\sum_{k=0}^{\infty} \eta(2^{-k}r) v(x, 2^{-k}r) \lesssim \eta(2^{-n}r) M \lesssim M \eta \left(r \left(\frac{I}{M} \right)^{\frac{p}{\gamma}} \right) \lesssim \eta(r) \left(\frac{I}{M} \right)^{\frac{\alpha p}{\gamma}} M = \eta(r) I^{\frac{\alpha p}{\gamma}} M^{1-\frac{\alpha p}{\gamma}}.$$

Таким образом, для любой θ -точки Лебега доказано неравенство (12).

Далее докажем для любой θ -точки Лебега $x \in B$ неравенство

$$|f(x) - I_B^{(\theta)} f| \lesssim \eta(r) I^{\frac{\alpha p}{\gamma}} M^{1 - \frac{\alpha p}{\gamma}}, \tag{16}$$

которое подобно (12), но шар B(x,r) заменен на B.

Для этого запишем очевидное неравенство

$$|f(x) - I_B^{(\theta)} f| \le |f(x) - I_{B(x,r)}^{(\theta)} f| + |I_{B(x,r)}^{(\theta)} f - I_B^{(\theta)} f|.$$

Первое из слагаемых в правой части неравенства оценивается аналогично (12). Для второго слагаемого мы применим утверждение 2 из леммы 4.

$$|I_{B(x,r)}^{(\theta)} f - I_{B}^{(\theta)} f| \lesssim \left(\int_{B(x,r)} |f(y) - I_{B(x,r)}^{(\theta)} f|^{\theta} d\mu \right)^{1/\theta} + \left(\int_{B} |f(y) - I_{B}^{(\theta)} f|^{\theta} d\mu \right)^{1/\theta} + \left(\int_{B(x,R)} |f(y) - I_{B(x,R)}^{(\theta)} f|^{\theta} d\mu \right)^{1/\theta}.$$

В силу условия (3) последнее неравенство преобразуется так:

$$|I_{B(x,r)}^{(\theta)}f - I_{B}^{(\theta)}f| \lesssim \eta(r) \left(\int_{\sigma B(x,R)} g^p \, d\mu \right)^{1/p} \lesssim \eta(r) I^{\frac{\alpha p}{\gamma}} I^{1 - \frac{\alpha p}{\gamma}} \lesssim \eta(r) I^{\frac{\alpha p}{\gamma}} M^{1 - \frac{\alpha p}{\gamma}}$$

и (16) доказано.

Перейдем теперь непосредственно к доказательству утверждений теоремы 1. Неравенство (5) получается с помощью лемм 2 и 5 и оценки (16) следующим образом:

$$\mu\left(\left\{x\in B:|f(x)-I_B^{(\theta)}f|>\lambda\right\}\right)=\mu\left(\left\{x\in B:|f(x)-I_B^{(\theta)}f|^q>\lambda^q\right\}\right)\leqslant$$

$$\leqslant\mu\left(\left\{x\in B:(\eta\left(r_B\right))^qM^{q\left(1-\frac{p\alpha}{\gamma}\right)}I^{q\frac{p\alpha}{\gamma}}\gtrsim\lambda^q\right\}\right)\leq$$

$$\leq\mu\left(\left\{x\in 2a_d\sigma B:M^p\gtrsim\lambda^q(\eta(r_B))^{-q}I^{-q\frac{p\alpha}{\gamma}}\right\}\right)\lesssim\lambda^{-q}(\eta(r_B))^qI^{q\frac{p\alpha}{\gamma}}\int\limits_{4a_d^2\sigma B}g^pd\mu=$$

$$=\lambda^{-q}(\eta(r_B))^q\mu\left(\sigma B(x,R)\right)\left(\int\limits_{4a_d^2\sigma B}g^pd\mu\right)^{\frac{q\alpha}{\gamma}+1}\lesssim$$

$$\lesssim\mu\left(\sigma B(x,R)\right)\left[\frac{\eta(r_B)}{\lambda}\left(\int\limits_{4a_d^2\sigma B}g^pd\mu\right)^{1/p}\right]^q.$$

Для доказательства (6) обозначим $1/q_0 = 1/p - \alpha/\gamma$ и

$$A = \eta(r_B) \left(\int_{4a_d^2 \sigma B} g^p \, d\mu \right)^{1/p}.$$

Тогда (5) можно переписать в виде

$$\frac{\mu\left(\left\{x \in B : |f - I_B^{(\theta)}f| > \lambda\right\}\right)}{\mu\left(B\right)} \leqslant \min\left\{1, c\left(\frac{A}{\lambda}\right)^{q_0}\right\},\tag{17}$$

где $c = 2a_d\sigma$.

Положим $\lambda_0=c^{1/q_0}A$, и, используя (17), оценим левую часть неравенства (6)

$$\begin{split} & \oint_{B} |f - I_{B}^{(\theta)} f|^{q} d\mu = \int_{0}^{\infty} \lambda^{q-1} \frac{\mu\left(\left\{x \in B : |f - I_{B}^{(\theta)} f| > \lambda\right\}\right)}{\mu\left(B\right)} d\lambda = \\ & = \left(\int_{0}^{\lambda_{0}} + \int_{\lambda_{0}}^{\infty}\right) \lambda^{q-1} \frac{\mu\left(\left\{x \in B : |f - I_{B}^{(\theta)} f| > \lambda\right\}\right)}{\mu\left(B\right)} d\lambda \leqslant \\ & \leqslant \int_{0}^{\lambda_{0}} \lambda^{q-1} d\lambda + \int_{\lambda_{0}}^{\infty} \lambda^{q-1} \frac{\mu\left(\left\{x \in B : |f - I_{B}^{(\theta)} f| > \lambda\right\}\right)}{\mu\left(B\right)} d\lambda \leqslant \end{split}$$

$$\leqslant \lambda_0^q + \int\limits_{\lambda_0}^{\infty} \lambda^{q-1} c \left(\frac{A}{\lambda}\right)^{q_0} d\lambda = cA^q + cA^{q_0} \int\limits_{\lambda_0}^{\infty} \lambda^{q-q_0-1} d\lambda \lesssim$$

$$\lesssim A^q + A^{q_0} A^{q-q_0} = cA^q.$$

Последняя оценка справедлива, так как $q < q_0$ и теорема 1 доказана.

3.2. Случай $\alpha p > \gamma$

В случае $\alpha p > \gamma$ условие $\eta \in \Omega[\alpha, \gamma/p)$ естественно заменить на $\eta \in \Omega[\alpha, \infty)$.

ТЕОРЕМА 2. Пусть $p>0,\ \alpha>\gamma/p,\ \eta\in\Omega[\alpha,\infty),\ \sigma\geqslant 1$. Пусть также функции $f\in L^{\theta}_{\mathrm{loc}}(X),\ g\in L^{p}_{\mathrm{loc}}(X)$ удовлетворяют (σ,η,θ,p) -неравенству Пуанкаре (3). Тогда 1) для любой θ -точки Лебега x и любого r>0

$$|f(x) - I_{B(x,r)}^{(\theta)} f| \lesssim \eta(r) \left(\int_{\sigma B(x,r)} g^p d\mu \right)^{1/p}, \tag{18}$$

2) для любого шара $B \subset X$ и любых θ -точек Лебега $x, y \in B$

$$|f(x) - f(y)| \lesssim \eta(r) \left(\int_{4a_d \sigma B} g^p d\mu \right)^{1/p}, \quad r = d(x, y)$$
(19)

 $(\lesssim$ не зависят от f, g, x, y u r).

Доказательство. Обозначим

$$I = \left(\int_{\sigma B(x,r)} g^p \, d\mu \right)^{1/p} \quad \text{if} \quad v(x,s) = \left(\int_{\sigma B(x,s)} g^p \, d\mu \right)^{1/p}.$$

В силу (13) и (11):

$$|f(x) - I_{B(x,r)}^{(\theta)} f| \lesssim \sum_{k=0}^{\infty} \eta(2^{-k}r) v(x, 2^{-k}r) \lesssim$$

$$\lesssim \eta(r_B) \sum_{k=0}^{\infty} 2^{-\alpha k} v(x, 2^{-k}r_B) \lesssim \eta(r_B) I \sum_{k=0}^{\infty} 2^{-\alpha k} \left(\frac{r_B}{2^{-k}r_B}\right)^{\gamma/p} =$$

$$= \eta(r_B) I \sum_{k=0}^{\infty} 2^{(\gamma/p - \alpha)k}.$$

Последний ряд сходится, так как $\alpha p > \gamma$, и (18) доказано.

Неравенство (19) выводится из (18) точно так же, как из (12) выводилось (16). Теорема 2 доказана.

Отметим, что при условиях теоремы 2 из неравенства (19) вытекает, что если $B \subset X$ произвольный шар и $x,y \in B$ θ -точки Лебега, то

$$|f(x) - f(y)| \lesssim \eta(d(x,y))[d(x,y)]^{-\gamma/p} \lesssim [d(x,y)]^{\alpha - \gamma/p}$$

при условиях теоремы 2. Здесь \lesssim зависит от шара B и функции g. В этом легко убедиться, используя (19) и условие удвоения 2. Последнее неравенство означает, что функция f после изменения на множестве меры нуль (см. лемму 5) становится равномерно непрерывной на любом шаре и ее модуль непрерывности на этом оценивается как $\omega(t,f) \lesssim \eta(t) t^{-\gamma/p}$.

3.3. Случай предельного показателя $\alpha p = \gamma$

ТЕОРЕМА 3. Пусть $p>0,\ \alpha=\gamma/p,\ \eta\in\Omega[\alpha,\infty),\ f\in L^1_{\rm loc}(X),\ \sigma\geqslant 1$. Пусть также функции $f\in L^\theta_{\rm loc}(X),\ g\in L^p_{\rm loc}(X)$ удовлетворяют (σ,η,θ,p) -неравенству Пуанкаре (3). Тогда для любого шара $B\subset X$ справедливы неравенства

$$\oint_{B} \exp\left(\frac{|f - I_{B}^{(\theta)} f|}{\eta(r_{B})} \left(\oint_{4a_{d}^{2}\sigma B} g^{p} d\mu \right)^{-1/p} \right) d\mu \lesssim 1$$
(20)

u

$$\left(\oint_{B} |f - I_{B}^{(\theta)} f|^{q} d\mu \right)^{1/q} \lesssim \eta(r_{B}) \left(\oint_{4a_{\sigma}^{2} \sigma B} g^{p} d\mu \right)^{1/p}, \quad q > 0.$$

$$(21)$$

Доказательство. Пусть $x \in B - \theta$ -точка Лебега функции f. Обозначим для краткости $r = r_B$ и

$$I(x) = \left(\int_{\sigma B(x,R)} g^p \, d\mu \right)^{1/p} \quad \text{if} \quad v(x,s) = \left(\int_{\sigma B(x,s)} g^p \, d\mu \right)^{1/p},$$

где $R = 2a_d r$ и $M = M_{p,2a_d \sigma B} g(x)$.

Оценим разность $|f(x) - I_{B(x,r)}^{(\theta)}|$. Из условия (3) получим

$$|f(x) - I_{B(x,r)}^{(\theta)} f| \lesssim \sum_{k=0}^{\infty} \eta(2^{-k}r) v(x, 2^{-k}r) = \Sigma_1 + \Sigma_2,$$

где

$$\Sigma_1 = \sum_{k=0}^n \eta(2^{-k}r)v(x, 2^{-k}r), \ \Sigma_2 = \sum_{k=n+1}^\infty \eta(2^{-k}r)v(x, 2^{-k}r).$$

Будем оценивать эти суммы по отдельности. Используя условия $\eta \in \Omega[\alpha, \infty)$ и (11)

$$\Sigma_1 = \sum_{k=0}^n \eta(2^{-k}r)v(x, 2^{-k}r) \lesssim \eta(r)v(x, r) \sum_{k=0}^n 2^{-k\gamma/p} 2^{k\gamma/p} \lesssim n\eta(r)v(x, r).$$

В силу очевидного неравенства $v(x,2^{-k}r)\leq M, \forall k$ и условия $\eta\in\Omega[\alpha,\infty)$

$$\Sigma_2 = \sum_{k=n+1}^\infty \eta(2^{-k}r) v(x,2^{-k}r) \lesssim M \sum_{k=n+1}^\infty \eta(2^{-k}r) \lesssim$$

$$\lesssim M\eta(r)\sum_{k=n+1}^{\infty} 2^{-k\frac{\gamma}{p}} \lesssim M\eta(r)2^{-n\frac{\gamma}{p}}.$$

Выберем

$$n = \left[\log_2\left(\frac{M}{I(x)}\right)^{\frac{p}{\gamma}}\right] + 1.$$

Тогда

$$\Sigma_1 + \Sigma_2 \lesssim n\eta(r)v(x,r) + M\eta(r)2^{-n\frac{\gamma}{p}} \lesssim (n+1)\eta(r)I(x).$$

Выбрав некоторое число $0 < \beta < p$, получим следующую оценку

$$|f(x) - I_{B(x,r)}^{(\theta)} f| \lesssim \eta(r) I \log_2 \left(\frac{M}{I}\right)^{\frac{p}{\gamma}} \lesssim \eta(r) I \ln \left(\frac{M}{I}\right)^{\beta}. \tag{22}$$

Далее оценим разность

$$|f(x) - I_B^{(\theta)} f| \le |f(x) - I_{B(x,r)}^{(\theta)} f| + |I_B^{(\theta)} f - I_{B(x,r)}^{(\theta)} f|.$$

Первое из слагаемых справа оценено в (22). Для оценки второго слагаемого используем часть 2) леммы 4 и неравенство (3)

$$|I_B^{(\theta)} f - I_{B(x,r)}^{(\theta)} f| \lesssim \eta(r) \left(\int_{\sigma B(x,R)} g^p \, d\mu \right)^{1/p} = \eta(r) I(x).$$

Мы использовали здесь то, что $B \subset B(x,R)$ и условие (2).

Таким образом, мы получаем, что

$$|f(x) - I_B^{(\theta)} f| \lesssim \eta(r) I \max \left\{ 1, \ln \left(\frac{M}{I(x)} \right)^{\beta} \right\} \lesssim$$

$$\lesssim \eta(r) \left(\int_{4\pi a^2 B} g^p d\mu \right)^{1/p} \max \left\{ 1, \ln \left(\frac{M}{I} \right)^{\beta} \right\}. \tag{23}$$

Далее из оценки (23) получаем неравенство

$$\exp\frac{-|f(x) - I_B^{(\theta)} f|}{\eta(r) \left(\int\limits_{4\sigma a_d^2 B} g^p \, d\mu\right)^{1/p}} \lesssim \max\left\{e, \left(\frac{M}{I(x)}\right)^{\beta}\right\}.$$

Проинтегрировав его по $x \in B$, получаем

$$\oint_{B} \exp \frac{|f(x) - I_{B}^{(\theta)} f|}{\eta(r) \left(\int_{4\sigma a_{d}^{2} B} g^{p} d\mu \right)^{1/p}} d\mu(x) \lesssim \oint_{B} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} (M_{p,2a_{d}\sigma B} g(x))^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)} \right)^{\beta} d\mu(x) \lesssim \frac{1}{\beta} \left(\frac{1}{I(x)}$$

$$\lesssim \frac{1}{\mu(B)} \int_{B} \left(\int_{\sigma B(x,R)} g^{p} d\mu \right)^{-\beta/p} (M_{p,2a_{d}\sigma B}g(x))^{\beta} d\mu(x). \tag{24}$$

В силу очевидного неравенства

$$\int\limits_{\sigma B} g^p \, d\mu \lesssim \int\limits_{\sigma B(x,R)} g^p \, d\mu$$

выполнено следующее

$$\left(\int_{\sigma B(x,R)} g^p \, d\mu \right)^{-\beta/p} \lesssim \left(\int_{\sigma B} g^p \, d\mu \right)^{-\beta/p}.$$

Поэтому в силу (8) неравенство (24) примет вид

$$\oint_{B} \exp \frac{|f(x) - I_{B}^{(\theta)} f|}{\eta(r) \left(\int_{4\sigma a_{d}^{2} B} g^{p} d\mu \right)^{1/p}} d\mu(x) \lesssim$$

$$\lesssim \left(\int_{\sigma B} g^p \, d\mu \right)^{-\beta/p} \frac{1}{\mu(B)} \mu(B)^{1-\beta/p} \left(\int_B g^p \, d\mu \right)^{\beta/p} \lesssim 1,$$

что и доказывает (20).

Наконец, (21) вытекает из уже доказанной экспоненциальной оценки (20) и неравенства

$$\exp|x| = \sum_{k=0}^{\infty} \frac{|x|^k}{k!} \ge \frac{|x|^n}{n!}, \quad n = [q] + 1.$$

Отметим, что (20) — неравенство типа классического неравенства Трудингера [15].

4. Заключение

В работе доказано, что неравенство вида

$$\left(\oint_{B} |f(y) - I_{B}^{(\theta)} f|^{\theta} d\mu(y) \right)^{1/\theta} \leqslant c\eta(r_{B}) \left(\oint_{\sigma_{B}} g^{p} d\mu \right)^{1/p},$$

справедливое для всех шаров B в метрическом пространстве с мерой, удовлетворяющей условию удвоения, обладают свойством самоулучшения — из него вытекает такое же неравенство (с некоторой большей постоянной c), но с заменой θ в левой части на вполне определенный больший показатель q. Здесь $\theta, p > 0$, η — возрастающая функция, $\eta(+0) = 0$ $I_B^{(\theta)} f$ — постоянная наилучшего приближения функции f в пространстве $L^{\theta}(B)$. Такой эффект для $\theta = 1 < p$ был известен.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. P. Hajłasz, P. Koskela Sobolev met Poincaré // Memoirs of Amer. Math. Soc. 2000. V. 145, P. 1–115.
- 2. И. А. Иванишко, В. Г. Кротов Обобщенное неравенство Пуанкаре—Соболева на метрических пространствах // Труды Ин-та математики НАН Беларуси. 2006. Т. 14, №1. С. 51–61.
- 3. Е. В. Игнатьева Неравенство типа Соболева-Пуанкаре на метрических пространствах в терминах шарп-максимальных функций // Матем. заметки. 2007. Т. 81, №1. С. 140—144.

- V. G. Krotov Maximal Functions Measuring Smoothness // Recent Advances in Harmonic Analysis and Applications In Honor of Konstantin Oskolkov, Proc. in Math. and Stat. 2013.
 V. 25. C. 197–223.
- 5. A. P. Calderón Estimates for singular integral operators in terms of maximal functions // Studia Math. 1972. V. 44, P. 167–186.
- 6. A. P. Calderón, R. Scott Sobolev type inequalities for p>0 // Studia Math. 1978. V. 62, P. 75–92.
- 7. R. DeVore, R. Sharpley Maximal functions measuring local smoothness // Memoirs of the Amer. Math. Soc. 1984. V. 47, P. 1–115.
- 8. P. Hajłasz Sobolev spaces on an arbitrary metric spaces // Potential Anal. 1996. V. 5, №4. P. 403–415.
- 9. R. R. Coifman, G. Weiss Analyse harmonique non-commutative sur certain espaces homogenés. // Lecture Notes in Math. 1971. V. 242, P. 1–176.
- 10. J. Heinonen Lectures on Analysis on Metric Spaces. / Berlin: Springer-Verlag. 2001.
- 11. E. Stein Singular integrals and differentiability properties of functions. / Prinston Univ. Press. 1970.
- 12. В. Г. Кротов Количественная форма C-свойства Лузина. // Укр. Матем. Журнал. 2010. №3. С. 388–396.
- 13. В. Г. Кротов Критерии компактности в пространствах L^p , $p \ge 0$. // Матем. Сборник. 2012. №7. С. 129–148.
- 14. В. Г. Кротов, А. И. Порабкович Оценки L^p -осцилляций функций при p>0. // Матем. заметки. 2015. Т. 97, №3. С. 407–420.
- 15. N. Trudinger On embedding into Orlicz spaces and some applications. // J. Math. Mech. 1967. Vol. 17. P. 473-483.

REFERENCES

- 1. Hajłasz, P., Koskela, P. 2000, "Sobolev met Poincaré", Memoirs of Amer. Math. Soc. vol. 145, pp. 1–115.
- 2. Ivanishko, I.A., Krotov, V.G. 2006, "Generalized Poincaré–Sobolev inequality on metric spaces", Inst. of Math. of NAS of Belarus, vol. 14, №1, pp. 51–61.
- 3. Ignat'eva, E.V. 2007, "Sobolev–Poincaré-type inequality on metric spaces in terms of sharp-maximal functions", *Math. Notes*, vol. 81, №1, pp. 121–125.
- 4. Krotov, V.G. 2013, "Maximal Functions Measuring Smoothness", In Recent Advances in Harmonic Analysis and Applications In Honor of Konstantin Oskolkov, Springer Proc. in Math. and Stat., vol. 25, pp. 197–223.
- 5. Calderón, A.P. 1972, "Estimates for singular integral operators in terms of maximal functions", Studia Math. vol. 44, pp. 167–186.
- 6. Calderón, A.P., Scott, R. 1978, "Sobolev type inequalities for p>0", Studia Math. vol. 62, pp. 75–92.

- 7. DeVore, R., Sharpley R. 1984, "Maximal functions measuring local smoothness", *Memoirs of the Amer. Math. Soc.* vol. 47, pp. 1–115.
- 8. Hajłasz, P. 1996, "Sobolev spaces on an arbitrary metric spaces", *Potential Anal.* vol. 5, №4, pp. 403–415.
- 9. Coifman, R.R., Weiss, G. 1971, "Analyse harmonique non-commutative sur certain espaces homogenés", *Lecture Notes in Math* vol. 242, pp. 1–176.
- 10. Heinonen, J. 2001, "Lectures on Analysis on Metric Spaces", Springer-Verlag, Berlin
- 11. Stein, E. 1970, "Singular integrals and differentiability properties of functions", Prinston Univ. Press.
- 12. Krotov, V.G. 2010, "Quantitative form of the Luzin C-property", Ukr. Math. J.. vol. 62, №3, pp. 441–451.
- 13. Krotov, V.G. 2012, "Criteria for compactness in L^p -spaces, $p \ge 0$ ", Sbornik: Mathematics vol. 303, \mathbb{N}^2 7, pp. 1045–1064.
- 14. Krotov, V.G., Porabkovich, A.I. 2015, "Estimates of L^p -oscillations of functions for p > 0", Math. Notes vol. 97, Nº3, pp. 384–395.
- 15. Trudinger, N. 1967, "On embedding into Orlicz spaces and some applications", *J. Math. Mech.* vol. 17, pp. 473–483.

Белорусский государственный университет.

Получено 29.12.2015 г.

Принято в печать 11.03.2016 г.