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AnHOTanusa

Mut pacemarpusaem anre6py A°(X) nomuHoMuaIbLHEX BYHKIHMI Ha CHMILTHITHATHHOM KOM-
mrekce X, KOTOpasi siBjisieTcss KoMmmoHeHTo# creneru 0 BBemenuoit CysamBanom dg-aareOpnbi
A*(X) nonunomuanbubix dhopm. Bee paccmarpuBaemble anreOpbl Hajl IIPOU3BOJIBHBIM moJieM k
xapakTepuctuku 0.

Haureit nesbio sBagercsa Bpraucienue koromosoruit ge Pama anre6per A%(X), 1o ecrb Ko-
romosornii yHmBepcaibHoit dg-anre6pnr 2%, (x)" Nwmeercs kanounveckuit mopduszm dg-aaredbp
P: QAO(X) — A*(X). Mu1 nokasbiBaeM, uro Mopdusm P siBasercs kpasunzomopduamom. Ta-
KkuM obpaszom, Koromomnoruu je Pamva anre6psr A%(X) xanorndeckn n3oMopgHbBI KOTOMOJOTHAM
CUMJIMIIAAIBHOrO Komiuiekca X ¢ koadduimenramu B nose k. Bosee roro, mia k = Q, dg-
asrebpa 2%, (x) CHYZKHT MOJIE/IBIO CUMILIMLIUAILHOIO KOMILIEKCa X B CMBICTIE PAIMOHAIBHO
Teopun romoTonmit. Harm pesyabrar nokasbisaet, uto s anrebpst A%(X) BepHo yTBepsKaeHne
TeopeMbl cpaBHenus ['porenauka (10Ka3aHHON UM [IJIs TJIaJIKUX ajuredp).

s nokazareabCTBa Mbl PACCMATPUBAEM PE30JIbBEHTHI exa, aCCOIUUPOBAHHBIE C TOKPbI-
THEM CUMILIANHAATIBHOIO KOMILJIEKCA 3B€3/[aMK BEePIIUH.

Panee Kan — Mwumep mokasanu, ato MopdusMm P CIOPBHEKTHBEH, & TaK>Ke OMUCAJINA €ro
sapo. pyroe onucanme simpa gamu Cymnusan u @enukc — Jxeccan — Ilapas.

Karouesnie caosa: koromomnoruu ne Pama anrebpor, yausepcasibaas dg-aiaredbpa, aaredpa mo-
JIMHOMUAJIbHBIX (yHKIH, dg-aaredpa MOJIMHOMHUAIBHBIX (DOPM, PANMOHAJILHAS TEOPUs [OMO-
TOIUMA.
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Abstract

We consider the algebra A°(X) of polynomial functions on a simplicial complex X. The
algebra A°(X) is the Oth component of Sullivan’s dg-algebra A®(X) of polynomial forms on X.
All algebras are over an arbitrary field k of characteristic 0.

Our main interest lies in computing the de Rham cohomology of the algebra A°(X), that
is, the cohomology of the universal dg-algebra €%, (x)" There is a canonical morphism of dg-
algebras P : Q;‘O(X) — A*(X). We prove that P is a quasi-isomorphism. Therefore, the de
Rham cohomology of the algebra A°(X) is canonically isomorphic to the cohomology of the
simplicial complex X with coefficients in k. Moreover, for k = Q the dg-algebra Q;‘o( X) is a
model of the simplicial complex X in the sense of rational homotopy theory. Our result shows
that for the algebra A°(X) the statement of Grothendieck’s comparison theorem holds (proved
by him for smooth algebras).

In order to prove the statement we consider Cech resolution associated to the cover of the
simplicial complex by the stars of the vertices.

Earlier, Kan—Miller proved that the morphism P is surjective and gave a description of its
kernel. Another description of the kernel was given by Sullivan and Félix—Jessup—Parent.
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1. Introduction

All algebras and dg-algebras are commutative over a field k of characteristic 0. In [15, Section 7|
Sullivan introduces the dg-algebra A®(X) of polynomial forms on a simplicial complex X. The
algebra A%(X) of the degree zero elements of A®(X) is the algebra of polynomial functions on X.
The cohomology of the dg-algebra A®(X) is isomorphic to H*(X, k). One can ask what natural
dg-algebras are weakly equivalent to A*(X). One such candidate is the universal dg-algebra Q% (X)

on the algebra A°(X) of polynomial functions on X. There is a canonical morphism of dg-algebras
P: Q;‘O(X) — A*(X).

The main result is Theorem 1, where we prove that P is a quasi-isomorphism.

In [12] the authors prove that the morphism P is surjective and give a description of its kernel.

In [7] and [14, Appendix G(i)] another description of the kernel is given. In [8, Example 3.8|, Gémez
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establishes that the morphism P is not a quasi-isomorphism, which contradicts our main result,
Theorem 1. We were able to correct the erroneous computation of Gémez in Remark 4.

Grothendieck proved that for a smooth C-algebra A the cohomology groups of the algebraic
de Rham complex €% are isomorphic to the cohomology groups of the space Spec A with complex
analytic topology, see [10, Theorem 1]. The algebra A°(X) is not smooth in general and the result
of Grothendieck does not hold for general algebras, see [1, Example 4.4].

The result of this paper can be used in order to give another proof of the similar result for the
algebra of piecewise polynomial functions on a polyhedron, which is known due to |2, Theorem 51].
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2. Simplicial complexes

DEFINITION 1. We call a set X of finite non-empty subsets of a finite set E a simplicial complex
if for every v € E we have {v} € X and for every s € X and every non-empty subset s' C s we
have s’ € X. We denote by V(X) the set E and call its elements vertices of X. The sets s € X of
cardinality m + 1 are called m-simplices. A simplicial complex Y is a subcomplex of X if for every
s €Y we have s € X.

We denote by T},(X) the set of all sequences u = (uo, ..., up) of vertices of X for p > —1. We
denote by Oju the sequence (ug,...,u;,...,up). For a vertex v we denote by v * u the sequence
(v,up, . .., up). The symmetric group ¥, acts on T, (X).

Consider a sequence of vertices u € T),(X). We denote by Stu the star of u, that is the smallest
subcomplex of X containing all the simplices containing the vertices u;. If p = —1, we have Stu = X.
If the sequence u spans a simplex in X, then Stu is the star of this simplex. If p > 0 and the sequence
u does not span a simplex, we have Stu = &. For a subcomplex Y of X we denote by Styw the
smallest subcomplex of Y containing all the simplices containing the vertices u;. If u ¢ T,(Y') then
Styu = @.

3. Sullivan’s dg-algebra of polynomial forms

For a simplicial complex X we define the dg-algebra A®(X) following Sullivan, see |15, Section 7],
[5], [11], [9]. For an m-simplex a consider the dg-algebra

A (ty,dt, | deg(t,) = 0, deg(dt,) =1, v € a)
(ZUEa ty — 1, Zvéa dtv)

A%(a) =

with the differential t, — dt, for v € a.
For a simplex b such that b C a one has a natural morphism of dg-algebras

0,v ¢b,

: A%(a) — A%(D), ty
b (a) (b) {tv,veb.

Then an element w = (wq)eex of A®*(X) is a collection of elements w, € A®(a) such that for two
simplices b C a one has wy|, = wp.
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We call the algebra A°(X) the algebra of polynomial functions on X. This algebra has another
description as a quotient of a Stanley-Reisner algebra, see [3].
An inclusion of simplicial complexes Y C X gives rise to the restriction morphism of dg-algebras

ly + A*(X) — A*(Y).
LEMMA 1. The above restriction morphism is surjective.

Proor. This fact is quite nontrivial, see [15, Section 7.
g

We introduce the double graded vector space DP4, p,q € Z as follows. For p < —2 set D4 =0
and for p > —1, we define DP-? as the subspace of

H A9(Stu)

u€TH(X)
consisting of families of forms w, € A%(Stu), such that for any o € ¥,,1 we have
Wou = (SgN 0)wy,.

We define the linear map
§ . DP4 _y pptla

For p > —1 and for
W = (Wu)ueTp(X) € D1
we set the value of dw on s € T),41(X) as
p+1 ‘
(dw)s = Z(_l)z‘*’@iS‘St&
i=0

The differential d on A®(Stu) gives rise to a differential d on DP* for each p.

PROPOSITION 1. The map 6 is a differential on D*? for each q € Z. Moreover, the double
graded vector space D*® together with § and d forms a double complex in the sense that dé = 6 d.

PROPOSITION 2. The complex

0 o 1.9 0 0.q ¢ D].q Y

Al X)

15 ezxact.

PROOF. The proof is similar to that of Proposition 4 below and relies on Lemma 1. In this case
one can use the partition of unity ¢,, v € V(X), instead of p,,v € V(X). O



Koromonorun ne Pama anrebpsr momHOMUAIBHBIX (DYHKITHIA. . . 207

A— Oy

.ll. I
| F
. -1-

E: -

4. The dg-algebra of de Rham forms

To a k-algebra A one associates the commutative dg-algebra Q% (|13, Theorem 3.2|) with
QY% = A. Tt has the following universal property: for any dg-algebra E® and any algebra
homomorphism f : A — EY there exists a unique morphism of dg-algebras F : Q% — E* such
that F|4 = f:

The elements of Q% are called algebraic g-forms. The dg-algebra Q% is covariant in the algebra
A. We will simply write 2°(X) for the dg-algebra Q%0 x)-

Inclusion of simplicial complexes Y C X gives rise to the restriction morphism of dg-algebras

ly 1 Q°(X) = Q*(Y).

LEMMA 2. Suppose A and B are k-algebras and ¢ : A — B is a surjective homomorphism of
algebras. Then the induced morphism Q. : Q% — Q% is surjective and its kernel is the ideal of Q%
generated by Ker ¢ and d(Ker ¢).

From this and Lemma 1 it follows that for an inclusion of simplicial complexes ¥ C X the
restriction morphism |y : Q*(X) — Q°*(Y) is surjective.
PROOF. See |2, Lemma 6]. O

Let us introduce the following elements ¢, of A°(X). For a vertex v € V(X) and an m-simplex
a€ X set (ty)e=0if v ¢ aand (t,), =t, € A%a) if v € a.

LEMMA 3. Take a simplicial complex X and a subcomplez Y C X. Suppose w € Q4(Y) is such
that wlgey () = 0 for a vertez v € V(X). Then t2]y w = 0.

Proor. First, if v ¢ V(Y), then t,|y = 0 and the claim follows.

Assume v € V(Y). By Lemma 1 and Lemma 2, the form w lies in the dg-ideal I of Q°(X)
generated by the elements m € A°(X) with the restriction to Sty (v) being zero, therefore
tyly m = 0. It is enough to consider the cases w = m and w = dm. We have t2|y m = 0 and
t%’y dm = tv‘y d(tv’y m) — tv‘y mdtv‘y =0. O

We introduce the double graded vector space CP4, p,q € Z as follows. For p < —2 set CP? =0
and for p > —1, we define CPY as the subspace of

H 09(Stu)
ueTy(X)
consisting of families of forms w,, € Q9(Stu), such that for any o € ¥,,1 we have
Woy = (SN O)wy,.

We define the linear map
§:CPY s cptla,
For p > —1 and for
w = (wu>u€Tp(X) € cP
we set the value of dw on s € T)41(X) as

p+1

(5w)8 = Z(_l)iwﬁis ‘Sts-

=0
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The differential d on Q°®(Stu) gives rise to a differential d on CP* for each p.

PROPOSITION 3. The map d is a differential on C*? for each q € 7Z. Moreover, the double
graded vector space C** together with § and d forms a double complex in the sense that dd = dd.

LEMMA 4. There exist elements p, € AY(X), v € V(X), such that
Z pot? = 1.
veV(X)
ProoF. In A°(X) we have the equality
> oty=1.
veV(X)

Raise both the sides to a big enough power and obtain the needed equality. O

We put p, = pvt?}'

For an inclusion of simplicial complexes ¥ C X we choose a linear map, the distinguished
“extension”,

(=] Q1Y) = Q1(X),
such that [w]|y = w. Such an extension exists by Lemma 1 applied to A°(X) and Lemma 2.

LEMMA 5. For an inclusion of simplicial complezes Y C X and a form w € Q4(Y) we have

> polwlsey @lly =w.
veV(X)
PROOF. As Y, p, =1in A°(X) we have
Z PolWlsty (w)lly —w = Z poly ([wlsty (w)lly —w)-

veV(X) veEV(X)

We have
([wlsty @)1y — w) Isty () = Wlsty (@) — @lsty () = O-

Hence, by Lemma 3 we have p,|y ([w|5ty(v)“Y — w) =0. O

ProroSITION 4. The complez

0 O a , {T[].(,I g (_‘J].q o

29(X)

18 exact.

The proof follows the proof of [4, Proposition 8.5].
PROOF. First, notice that
Stv * u = Stgg (V).

For w € T),(X) and w € Q9(Stu) by Lemma 5 we have

Z pv[W‘Stv*u”Stu = w. (1)

veV(X)
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For w € Q9(Z), where Z is a subcomplex of X such that Stvxu C Z, by Lemma 3, we have
po ([w] = [Wlstvsu]) Istu = O. (2)
We construct a cochain homotopy
K :CP1— P,

For p >0 and w € CP? and w € T,,_1(X) put

(Kw)’w = Z pv[wv*w”Stw-

veV(X)

By Lemma 3 this map does not depend on the choice of the distinguished extension.
Let us check that 6K + Ko = 1. For p > —1 and

w= (Wauer,x) €CPTC [ Q%Stu),

u€Tp(X)
where w,, € Q9(Stu), we have
p ) p )
(6Kw)u = Z(_l)l(Kw)aiu’Stu = Z(_l)l Z pv[wv*aiu”Stuy
i=0 i=0 VeV (X)
and
(Kéw)y = Z Pol(0w)vsu] [stu =
veV(X)
p+1 '
= Z pv[Z(_l)lwai(v*u)‘Stv*u]‘Stu =
veV(X) 1=0
p+1 by (1)
i Y
= Z Pv [Wu|Stv*u”Stu + Z pv[Z(_l) w@¢(u*u)|Stv*u]|Stu =
veV(X) veV(X) i=1
p
Z Z Wv*a u’Stv*u] |Stu
ev(X =0
p .
= Wy — z:(_l)Z Z pv[wv*aiu’Stv*u”Stu-
1=0 veV(X)
Hence,
¢ ; by (2)
((5K + K(S)w)u =Wy + Z(_l)z Z Pu ([Wv*aiu] - [wv*é)iu|Stv*u]) |Stu = Wy-
i=0 VeV (X)
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5. The morphism P : Q*(X) — A*(X)

For a simplicial complex X, by the universal property of Q°(X), there is a canonical morphism
dg-algebras
P:Q*X)— A*(X),

which is the identity in degree 0.

We denote by k[0] the complex with the Oth term %k and the others zero. An element of k gives
rise to a constant function in A°(X), hence, there are morphisms of complexes € : k[0] — Q°(X)
and € : k[0] - A®*(X) such that é= Poe.

PROPOSITION 5. For a sequence u € T,(X), p > 0, the commutative diagram
k[0] —— Q*(Stu)
\\HL lf’
%
A*(Stu)

consists of quasi-isomorphisms.

PROOF. The map € is a quasi-isomorphism by [2, Corollary 47|. The map € is a quasi-isomorphism
by [6, Theorem 10.9]. Hence, the morphism P is a quasi-isomorphism. O

THEOREM 1. The natural map
P:Q%*X)— A*(X)
1S a quasi-isomorphism.

Proor. The morphism P on stars gives rise to the maps m, : C»* — DP-® for each p > 0. We have
the following commutative diagram of non-negative complexes

D— 35 Xy ¢ giple 9 ¢pole

0 —— A*(X) _9 . phs ] Dl § .,

The vertical arrows m,, p > 0 are quasi-isomorphisms by Proposition 5. The first row is exact
by Proposition 4. The second row is exact by Proposition 2.
Hence, the map P is also a quasi-isomorphism. O

BAMEYAHUE 4. As was said in the introduction, the paper [8] suggests that Theorem 1 is false.
Namely, in [8, Example 3.8], one considers the simplicial complex X corresponding to the boundary
of a triangle on the vertices 1, 2, 3. The dg-algebra Q°(X) is generated by the elements t1, to, t3
modulo the dg-ideal generated by t1 + to + t3 — 1 and tytst3. Next, the author considers the form
t2t2dts and claims that this form is not zero. However, this form is zero, which can be seen as
follows: applying the differential d to the equality t1tots = 0 we get

totsdty + titsdts + t1tadts = 0.
Next, we multiply this equality by ¢1t2 and get

0 = titatsdty + titatadty + t3t5dts = titadts.
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