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Abstract

Measure Theory plays an important role in many questions of Mathematics.
The notion of a measure being introduced as a generalization of a notion of the
size of a segment made many of limiting processes be a formal procedure, and
by this reason stood very productive in the questions of Harmonic analysis.
Discovery of Haar measure was a valuable event for the harmonic analysis
in topological groups. It stood clear that many of measures, particularly,
the product of Lebesgue measure in finite dimensional cube [0, 1]" could be
considered as a Haar measure. The product measure has many important
properties concerning projections (see [1,3]). The theorems of Fubini and To-
nelly made it very useful in applications.

In this work we show that the coinsidence of considered measures, observed
in finite dimensional case, impossible for infinite dimensional case, despite
that such a representation was in use without proof. Considering infinite
dimensional unite cube Q = [0,1] x [0,1] X ---, we define in this cube the
Tichonoff metric by a special way despite that it induces the same topology.
This makes possible to introduce a regular measure eliminating difficulties
connected with concentration of a measure, with the progress of a dimension,
around the bound. We use the metric to define a set function in the algebra
of open balls defining their measure as a volume of open balls. By this way we
introduce a new measure in infinite dimensional unite cube different from the
Haar and product measures and discuss some differences between introduced
measure and the product measure.

Main difference between the introduced measure and Haar measure consis-
ted in non invariance of the first. The difference between the new measure
and product measure connected with the property: let we are given with a
infinite family of open balls every of which does not contain any other with
total finite measure; then they have an empty intersection. Consequently, every
point contained in by a finite number of considered balls only.

This property does not satisfied by cylindrical set. For example, let D =
L XIxIx---, Do=Ih xIi xIxIx---,...

k
I=1[0,1),1 = — | ,k=1,2,...
[07 ]7k |:07k+1:|7 <
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It clear that every of these cylindrical sets does contain any other, but their
intersection is not empty (contains zero). This makes two measures currently
different.

Keywords: Measure theory, Lebesgue measure, Haar measure, Borel mea-
sure.

Bibliography: 8 titles.

1. Introduction

Let’s enter in the unite cube
Q={(zn)|0<2, <1,n=1,2,..}

the Tichonoff metric as below:

o0

d(z.y) = Z e " Zn = Yl ; (1)

n=1

here x = (x,),y = (yn) € €. Let’s define the ball of a radius > 0 and a centre
6 € Q by the equality

B(#,r) ={FE € Qld(x,0) <r}.

It is best known that in the cube 2 a product Lebesgue measure may be introdu-
ced (see [1, p. 219]). There is also another construction of a measure called a Haar
measure. The Haar measure is a measure defined in the locally compact topological
groups. It was proven also uniqueness of this measure (see |2, p.241]|). Many of
measures used in various brunches of the mathematics could be considered as a
Haar measure. Particularly, the product of Lebesgue measures in [0, 1]" is a Haar
measure for any natural number n and, hence, is unique in this cube. Really, to prove
this, consider the topological group R". The group Z & --- @ Z is a subgroup, so the
factor group T,, = R"/(Z®- - -® Z) as a compact group is locally compact. Therefore,
the invariant measure in this group is unique. Let A C [0,1]" is a measurable set
in the product Lebesgue meaning in [0, 1]™. Consider the union of intersections (a +
A)N(m +[0,1)™), m € Z™ for any given vector a € R™. Only no more than 2" of
these intersections are non-empty, and the sum of their measures is equal to the
measure of the set A. Therefore, the product measure is invariant in regard to the
transitions 7 — Z + a(modl), z € [0,1)",a € R".

The situation is currently different in the infinite dimensional case. In this case
the number of non-empty intersections (a + A)((m + ), A C ' (here ¥ =
{(wn) |0 < w, < 1}) is non-countable. So, we can not state that the product measure
in ' is invariant in regard to the transitions z — = + a(modl), z € Q' a € Q.
Therefore, in € the product and Haar measures are different. Our goal here is to
define a new measure different from the both mentioned above measures.
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2. Construction of a new measure

DEFINITION 1. Let 0 : N — Nbe any one to one mapping of the set of natural
numbers. If for any n > m there is a natural number m such that o(n) = n, then we
call o a finite permutation. A subset A C § is called to be finite-symmetrical if for
any element 0 = (0,) € A and any finite permutation o one has 060 = (05¢,)) € A.

Let ¥ to denote the set of all finite permutations. We shall define on this
set a product of two finite permutations as a composition of mappings. Then ¥
becomes a group which contains each group of n degree permutations as a subgroup
(we consider each n degree permutation ¢ as a finite permutation in the sense of
definition 1, i. e. we put o(m) = m when m > n). The set 3 is a countable set and
we can arrange its elements in a sequence.

Let w € 2,X(w) = {ow|oc € X} and ¥'(w) to mean the closed set of all limit
points of the sequence ¥(w). For real t we denote {tA} = ({t\,}) whereA = (\,).
Let i to denote the product of linear Lebesgue measures m given on the interval
0, 1:p=mxmx ---.

To construct the measure let’s consider the open ball

B(0,7) = {E € Qld(x,0) <}

in the cube Qy = {x = (z,)||x,| < 1}. Since |z,| < 1 then for the natural
number N we have

o0 [e.e]
E e, < e E e <N,
n=N+1 n=0

Taking arbitrarily small real number ¢ > 0 we get

N N
D e M| <d(@,0) <D e | + e
n=1 n=1

when N > logee™!. Therefore,

Bn (0,7 —¢€) x [0,1] x --- C B(0,7) C By(0,7) x [0,1] x --- |

whereBy (0, 7) denotes the projection of the ball B(0,r) to the subspace of first
N coordinates. Then, for the volume py(7) of the projectionBy(0,r) we have (see

[7] or [8, p.319)):
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ds ds
_9N / du / _gngv/ s
) N1 S S 9

el=ny,=u
1

Mz

and the last integral is an surface integral over the surface M defined by the equation

N
Zel_"un:u, 0<u, <1, 1<k<N,; (2)

here V is a norm of the gradient of the linear function on the left side of the latest
equality, i.e.

V| = V1+e2+- - +e22N,

Defining u; from (2) we get
ds /1 /1
_< du2...duN:1.
/M IV Jo o

p(r) = p(r —e) < a2

So, we have

By taking the greatest N, satisfying the condition N > logee™!, ie. N =
[loges™!] + 1, we may write ¢ < €>~V. Then from the last inequality it is follows
that

pn(r) = pn(r —e) <28 =0,

as N — 0o, or as ¢ — 0. Since By11(0,7) C By(0,7) x [0, 1] then the sequence
(un(r)) is monotonically decreasing. So, it is bounded below by pn,(r/2), with
No= [log 2er~ '] + 1. Therefore, there exists a limit

ll_{% BN<07 r—= 5) = ]\}I_I};O BN(07 T) = :U’O(T>

which we are accepting as a measure of the ball B(0,r).

The measure of the ball in 2 we define as a limit of the measures of intersections
QN By(0,7r) x [0,1] X --- as N — oo, where N defined for given ¢ as above. The
measure of the complement of the ball B(f,r) is defined simply as 1 — u(B(6,r)) or
as a limit of measures of complements [0, 1]\ By (6,7 — ¢), as ¢ — 0.

Consider now a union A | J---|J Ay every component A; of which is some ball
in Q (naturally, with the different centers and radiuses) or it’s complement. The
measure of this union we define as above. Fixing € > 0 we replace the components
A; by cylindrical sets with a tower By(6,r), if it is a ball, or with a tower

[0, 11"\Bn (0,7 —¢),
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if it is a complement of the ball. We get then a union
U Cn(0i,74),

with components Cy(6;, ;) every of which being either By (6,7) or [0, 1]\ By (0, r —
g). The set we have got has an N-dimensional Lebesgue measure. The ¢ is undertaken
less than min7;. As well as above, the error is estimated as a value < ke2". The

demanded mesure we get after of passing to the limit.

Let’s denote by II the algebra generated by the class of open balls in 2. So we
have constructed some finite additive set function pg in II. It is easy to note that
1o is a restriction of a product measure into the II. The algebra Il can uniquely be
extended to the o-algebra = of subsets in Q (see [1-6]). Corresponding continuation
of a set function defined above to the o-algebra = gives in 2 some Borel measure and
we get a measure space (2,Z, pg). So, the introduced Borel measure is a measure
induced by the product measure, but main difference consisted in the definition of a
metric by (1) and in that fact that o-algebra = is mainly narrow than the o- algebra
of cylindrical subsets. The algebra II is a sub algebra of the o- algebra of cylindrical
subsets.

The inner and outer measures pig, and uf are defined by a known way (see [1-5]).
Since each open ball can be enclosed in some cylindrical set with a measure enough
close to the measure of the ball, we have for any subset A€ (2

prox (A) < i (A) < i (A) < g (A)

We call now a subset A to be pg-measurable in €2 if and only if the equality
tox (A) = pg (A) is satisfied. The defined Lebesgue extension of a measure pg is
a regular measure and every pp-measurable subset is measurable in the sense of
product measure.

3. Supplementary basic result

LEMMA 1. Let A C Q be a finite-symmetric subset of zero measure and A = (\,)
1s an unbounded, monotonically increasing sequence of positive real numbers any
finite subfamily of elements of which is linearly independent over the field of rational
numbers. Let B D A be any open, in the Tychonoff metric, subset withu(B) < ¢,

Eo={0<t<1{tA} € AANY{tA} C B}.

Then, we havem(Ey) < coe where ¢ > 0 is an absolute constant, m designates
the Lebesgue measure.

PROOF. Let € be any small positive number. As the numbers ), are linearly
independent, for any finite permutation o, one has ({ti\.}) # ({taAo(n)}) when
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t1 # t9; otherwise we should receive the equality {t;As} = {t2\s} for some natural s
which is invariant for 0. Then one has (t; — t2)A\s = k, k € Z. Further, writing out
the similar equality for natural » > s, we get the relation
kis — kA,

ki/ A —k/As = WY =0
for some integral k; which contradicts the linear independence of the numbers A,,.
Hence, for any pair of various numbers ¢; and t5 one has ({t1\,}) € {({t2Aom)})|0 €
Y.} (the outer brackets denote a set). By the conditions of the lemma 1, there exists
a family of open balls By, By, ... such that each ball does not contain any other one
from this family (the ball contained in by other one can be deleted) and

ACBC [OJBJ,ZM(BJ) < 1.5e.
j=1

Now we take some permutation o € X satisfying the equalities o(1) = ny,...

..,0(k) = ny where natural numbers n; are taken as below. Let B}y to denote the

projection of the ball By, with p(Bj) = &1, into the subspace of first N co-ordinate
axes where the number N is taken so that

[L(B;V) < 2¢7.
Let BYy be enclosed by a union of cubes with edge § and a total measure not exceeding
3e1 having intersections over their boundary only. We put down £ = N and define
numbers nq, ..., n; by using the following constraints
1< Ay Ay < (1/4)0N,]

ny?

Ay < (L/4)0N ) oA < (1/4)0M, . 6 <0.1. (3)

Now we take any cube with the edge 0 and with the centre in some point
(m)1<m<k- Then the point ({t\,,, }) belongs to this cube, if

)

2
Since the interval (o, — /2, a,,, + 0/2) for sufficiently small § has a length < 0.1
then the real numbers ¢\, fractional parts of which lie in this interval have one
and the same integral parts during continuous variation of t. So at m = 1, for some

whole r, one has:
741?—W2<t<r+?+ﬂm. (5)

The measure of a set of such values of ¢ does not exceed the size 6\ ". The number of
such intervals corresponding to different values of r = [t\,,] < \,, does not exceed

A ] +2 < A\ +2.

So, the total measure of intervals satisfying (4) at m = 1is less or equal to
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Ay 4+ 2)0X, 1 < (142010,

Consider now the case m = 2. Taking one of intervals of a view (4), we will have

s+a;—5/2<t<s+a;+5/2’ (©)

with some s = [tA\,,] < A\,. As we consider the conditions (4) for the values m =1
and m = 2 simultaneously, we should estimate a total measure of intervals (6) which
have nonempty intersections with intervals of a kind (5), using conditions (3). Every
interval of a kind (6) is placed only in the one interval with the length X, ! where
the expression t)\,, has one and the same integral part s. The number of intervals
with the length )\;21 having a nonempty intersection with one fixed interval of a kind
(5), does not exceed the size

[OA, Ans] +2 <ON A, + 2.

So, the measure of a set of values of ¢ for which intervals (6) have nonempty
intersections only with one of intervals of a kind (5) is bounded by the value (2 +
ON, Ay )0, ). Since, the number of intervals (5) is no more than A,, + 2 then the
measure of a set of values ¢ for which the condition (4) are satisfied simultaneously
for m = 1 and m = 2 will be less or equal than

(Any 4 2)(24 00, Ay )ON,

It is possible to continue these reasoning considering all of conditions of a kind

Hi—_é/zgtgl—i_i—_'—(s/z’m:l’m,k_

Then we find the following estimation for the measure m(éd) of a set of those t
for which the points ({tA,,, }) located in the given cube with the edge §:

o

m(8) < (2+ Xy )2+ 0N, A0,) -+ (24 A1 A )oN, ! < o H (14 2m™2).

Nkg—1
m=1
Summarising over all such cubes, we receive the final estimation of a kind < 3ce;
for the measure of a set of those ¢ for which ({t\,,, }) € By with the absolute constant

c= ]t +2m™).
m=1
We notice that the sequence A = (),), satisfying the conditions (3) defined
above, depends on §. For each ball By, we fix some sequencel\;, using conditions (3).
Considering all such balls, we designate Ay = {Ax|k =1,2,...}.
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Let’s prove that for any point ¢t € Ej the set X({tA}) is contained in the finite
union J, <n Bi for some n. Really, let at some ¢ € Fj all members of the sequence
Y({tA}) does not contained in the union (J,, By, for any natural n. Two cases
are possible: 1) there will be a point § € X({tA}) belonging to infinite number of
spheresBy; 2) there will be a subsequence of elements 0;,0; € L({tA}) which does
not contained in any finite union of ballsBy. We shall consider both possibilities
separately and shall prove that they lead to the contradiction.

1) Let By,,By,, Bi,, ... be sequence of all balls into which the element # belongs.
We shall denote d the distance from 6 to the bound of By,. As By,is open set, then
d > 0. Let By be any ball of a radius < d/2 from the list above, containing the
pointf. From the told it follows that the ball B; should contained in the ball By, .
But it contradicts the agreement accepted above.

2) Let 6 be some limit point of the sequence (6;). According to the condition
of the lemma 3 § € B, for somes. Let d denotes the distance from 6 to the bound
of B;. As 0 is a limit point, then a ball with the centre in the point § and radius
d/4 contains an infinite set of members of the sequence (éj), say members éjl , ng,
According to 1), each point of this sequence can belong only to finite number of
balls. So, the specified sequence will be contained in a union of infinite subfamily of
balls By. Among them will be found infinitely many number of balls having radius
< d/4. All of them, then, should contained in the ball By. The received contradiction
excludes the case 2) also.

So, for anyt € Ej it will be found such n for which X({tA}) ClJ,,, Bx- From here
it follows that the set Ej can be represented as a union of subsets E, k = 1,2, ...,
where

Ej, = {t € Eo|S(tA) C | ) B}

s<k

So,

Ey=|JEx EiC Bk >1).
k=1
Further, m(Ey) = klim m(FEk), in agree with [4, p. 368]. As the set Fj is a finite
—00
symmetrical, then the measure of a set of values t, interesting us, is possible to

estimate by using of any sequence Ay, since, as it has been shown above, the sets
Y({tA}) for different values of ¢ have empty intersection. So,

m(Ey) < limsupm(E(AN)),
ANeAg

where Ej(A') = {t € Ex[({tA'}) € U, Bs}. Hence,

m(Ey(A)) <) m(EW(A)),

s<k



130 I. Sh. JABBAROV

where E¢)(A') = {t € Eo|({tA'}) € B,}. Applying the inequality found above,
we receive:

m(E,(A") < 6¢(er + -+ + ex).

This result invariable for all A’ = A, beginnig from some natural r = r(k).
Taking limsup, as k — oo, we receive the demanded result. The proof of the lemma
1 is finished. O

4. Main theorem

The projection of the curve ({tA,})n>1in two dimensional plane, i. e. the curve
({tA1}, {tA2}) has zero measure. By the theorem of Fubini, then, the product Lebe-
sgue measure of the curve ({tA,})n>1 is also equal to zero. The following theorem
shows that the introduced measure is different from the product measure.

THEOREM 1. Let the sequence (X\,) be an unbounded sequence of positive real
numbers every finite subfamily of elements of which s linearly independent over the
field of rational numbers. Then the curve ({tA\,}),t € [0,1] is not uo-measurable set
in €.

PROOF. Let’s suppose the converse statement. Let the curve ({tA,}),t € [0, 1] be
measurable. Then it has a zero measure. Therefore, the union U = [J,o; X({tA})
as a set constructed from the curve ({tA,}),t € [0, 1] by an action of the group ¥ of
all finite permutations has zero measure also, since it is a countable union of sets of
zero measure. The set U is a finite-symmetric. Let n be any natural number. If we
take a projection of the set U to 2 by omitting the first n coordinates (restricting
the sequence ({t\,})), we get again the set U,, of zero measure. Really, the set U can
be overlapped by the union of balls with the total measure of not exceeding € > 0.
Restricting the ball B(6y, \) by omitting the first n coordinates, and denoting the
projection by

Sy, we get
Sy = {(en)| S o —00]e < )\}.
n=N+1
Since
S 0 =00V =N |0, — 05
n=N+1 n=1

then denoting the projection of the point 6y by 6, we have Sy = B(6), e \), and
eN X — 0 as A — 0 for any fixed N. From this one deduces the demanded statement.
Consider the sequence of sets V,, = [0,1|" x U, for all natural n. It is obviously
that V,, C V1. Let V = J 2, V,,. We have p (V;,) = 0 for all values of n. Therefore,
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also (V) = 0, and the set V' is finite symmetrical. Then, there will be found some
countable family of balls B, with a total measure not exceeding € the union of which
contains the set V. For every fixed natural n we define the set ¥/ (tA) as a closed set
of all limit points of the sequence ¥, (w) = {ow|oc € EA (1) =1A--- Ao(n) =n}.
Let

B™ = {t|{tA\} € V A Z/:({t/\}) C G BY,n=12 ..

For every t tl/le sequence Z? L ({tA}) is a subseque(il)ce of ;cjlfl)sequence Yo ({tA}).
Therefore, >, ({tA}) €3, ({tA}) and we have B C B . Then, one gets the
inequality m(B) < supm(B™) denoting B = | J,, B™.

n

Let’s estimate m(B™). The set > ({tA}) is a closed set. Clearly, if we will
"truncate"the sequences {tA}, remaining only components {t\;} with indexes grea-
ter than n, and will denote the truncated sequence as {tA} € ), then the set
S ({tA}') also will be closed. Now we consider the products [0, 1]™ x {{tA}'} (exter-
nal brackets designate the set of one element) for every t. We have

{tA} € [0,1]" x {{tA}} C V.

Let (64, ...,0,) € [0,1]" is any point. There exist a neighborhood V' C [0, 1]" of this
point such that (01, ...,6,, {tA}) € V' x W C |, B,, for some neighborhood W of
the point {tA}. We, therefore, supplied every point (6, ...,6,) € [0,1]™ with some
pare of open sets (V/, W). Since the set [0,1]™ is closed, then they can be found a
finite number of open sets V' the union of which contains [0, 1]". The intersection of
corresponding open sets W, being an open set, contains the point {tA}’. Therefore,
for some finite set of indexes R we have

01" x {{tAyy c | Jv x (YW =[0,1" x (W c | B.. (7)
reR

for each considered pointt. It is clear that the set R depends on the point ¢ and
W C (\,cr B, when B, denotes the open set of truncated elements of B,. The
similar to (7) relationship is fair in the case when the point {¢tA} would be replaced
by any limit point @ of the sequence X ({tA}) also, because w € B,. If one denotes
by B’ the union of all open sets of a kind (), . B, corresponding to every possible
values of ¢t and of a limit point w, we shall receive the relation

(tA} € [0,1]" x {{tA}Y} C AC [0,1]" x B' € D B,

for each considered values of ¢ and

{w}el0,1]" x {w} c AcC0,1]" x B’ C G B,,

r=1
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for each limit pointiw. From this it follows the inequality

po ([0,1]" x B') = pui(B') < e,

where p* means an outer measure. The set B’ is open and ¥'({tA}) € B’. Now
we can apply the lemma 1 and receive an estimationm(B™) < 6ce. Thus, we
havem(B) < 6¢e. Since € could be chosen arbitrarily small then there exist ¢ such
that ¢t ¢ B. So, t ¢ B®) for every k = 1,2, .... Consequently, for every k, there is a
limit point wy € Q\ U, B, of the sequence > ({tA}). As the set Q\ J, B, is closed,
the limit point @ = ({tA}) of the sequence (w;) will belong to the set Q\ |, B,.
Therefore, {tA} ¢ |J,-, B, which contradicts the conditions of the theorem. Then
the curve ({tA,}),t € [0,1] could not be pp-measurable. The proof of the theorem
is finished. O

5. Conclusion

The lemma 1 deliveries the first fundamental difference between introduced and
known measures. The main tool in the proof of this lemma is that fact that if we
have some covering of the set Y ¥/, w € by a union of a family of balls with a
finite total measure and none of which containing other then there is a finite number
of balls only containing the set . This is somewhat different property than the
compactness, and the same property is not satisfied by cylindrical sets.

Another difference stands clear after the theorem proved above. But in applica-
tions it is very important that every measurable set in a new meaning is measurable
in the meaning of product measure. In the measure space with the product measure
Suslin sets are wider than o- algebra. According to sed above, in our case these two
sets are coinsident. At last we can state that there exists a cylindrical set being
nonmeasurable in the new meaning. It means that a given cylindrical set could
represented as a union of noncounbable familiy of open balls only.
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