ЧЕБЫШЕВСКИЙ СБОРНИК

Том 23. Выпуск 4.

УДК 511.3

DOI 10.22405/2226-8383-2022-23-4-162-169

Алгебраические сетки и их приложение к численному решению линейных интегральных уравнений¹

Н. М. Добровольский, А. С. Подолян

Добровольский Николай Михайлович — доктор физико-математических наук, профессор, Тульский государственный педагогический университет им. Л. Н. Толстого (г. Тула). e-mail: dobrovol@tsput.ru

Подолян Алена Сергеевна — ассистент, Тульский государственный педагогический университет им. Л. Н. Толстого (г. Тула).

e-mail: alena.balabaeva.93@mail.ru

Аннотация

Получены новые оценки погрешности приближенного решения интегрального уравнения Фредгольма II рода методом итерации с использованием алгебраических сеток.

Kлючевые слова: Интегральное уравнение Фредгольма II рода, метод итерации, алгебраические сетки.

Библиография: 5 названий.

Для цитирования:

Н. М. Добровольский, А. С. Подолян. Алгебраические сетки и их приложение к численному решению линейных интегральных уравнений // Чебышевский сборник, 2022, т. 23, вып. 4, с. 162-169.

CHEBYSHEVSKII SBORNIK

Vol. 23. No. 4.

UDC 511.3

DOI 10.22405/2226-8383-2022-23-4-162-169

Algebraic grids and their application to the numerical solution of linear integral equations 2

N. M. Dobrovol'skii, A. S. Podolyan

Dobrovol'skii Nikolai Mihailovich — doctor of physical and mathematical sciences, professor, Tula State Lev Tolstoy Pedagogical University (Tula).

e-mail: dobrovol@tsput.ru

Podolyan Alyona Sergeevna — assistant, Tula State Lev Tolstoy Pedagogical University (Tula). e-mail: alena.balabaeva.93@mail.ru

 $^{^{-1}}$ Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта

^{№19-41-710004}_р_а. и при финансовой поддержке гранта правительства Тульской области по Договору ДС/294 от 16.11.2021 г.

²Acknowledgments: The reported study was funded by RFBR, project number 19-41-710004_r_a. and with the financial support of a grant from the Government of the Tula region under the Agreement DS/294 dated 16.11.2021.

Abstract

The new error estimation of the error of the approximate solution of the Fredholm integral equation of the second kind by iteration using algebraic grids are obtained.

Keywords: Fredholm integral equation of the second kind, iteration method, algebraic grids.

Bibliography: 5 titles.

For citation:

N. M. Dobrovol'skii, A. S. Podolyan, 2022, "Algebraic grids and their application to the numerical solution of linear integral equations", *Chebyshevskii sbornik*, vol. 23, no. 4, pp. 162–169.

1. Введение

Одним из важных классов интегральных уравнений с теоретической и практической точек зрения является уравнение Фредгольма второго рода, то есть уравнение вида

$$\varphi\left(\vec{t}\right) = \lambda \iint_{G_s} K_s\left(\vec{t}, \vec{u}\right) \varphi\left(\vec{u}\right) d\vec{u} + f\left(\vec{t}\right), \tag{1}$$

где $G_s = [0; 1)^s$.

Характерная особенность уравнения (1) — его линейность: неизвестная функция φ входит в него линейно и на неё воздействует линейный интегральный оператор с ядром K_s (\vec{t}, \vec{u}).

Мы будем исследовать уравнение (1) для случая периодических функций, когда свободный член $f(\vec{t})$ и ядро $K_s(\vec{t},\vec{u})$ этого уравнения принадлежат, соответственно, классам $E_s^{\alpha}(C_1)$ и $E_{2s}^{\alpha}(C_2)^{-3}$. Ясно, что и решение $\varphi(\vec{t})$ будет являться периодической функцией.

Первые работы по применению теоретико-числовых методов для приближенного решения уравнение (1) принадлежат Н. М. Коробову (см. [1], [2]). Современные результаты в этой области получены в работе [3], на которую мы будем опираться в дальнейшем.

Целью данной работы — получить новые оценки погрешности приближенного решения уравнение Фредгольма второго рода методом итерации с применением алгебраических сеток. Как известно, погрешности приближенного интегрирования для алгебраических сеток имеют на классе E_s^{α} наилучший порядок, поэтому переход от параллелепипедальных сеток к алгебраическим дает лучшие порядки убывания погрешности.

2. Необходимые сведения

ОПРЕДЕЛЕНИЕ 1. Для произвольной решетки Λ обобщенной параллелепипедальной сетткой $M(\Lambda)$ называется множество $M(\Lambda) = \Lambda^* \cap G_s$.

$$Cem \kappa a \ M_1(\Lambda) = \Lambda^* \cap [-1; 1)^s.$$

Обобщенной параллелепипедальной сеткой II рода $M'(\Lambda)$ называется множество

$$M'(\Lambda) = \{\vec{x} \mid \vec{x} = \{\vec{y}\}, \vec{y} \in M_1(\Lambda)\}.$$

³Определение классов см. [2] стр. 48 — 49.

Определение 2. Весовой функцией порядка r с константой B называется гладкая функция $\rho(\vec{x})$, удовлетворяющая условиям

$$\sum_{\varepsilon_1, \dots, \varepsilon_s = -1}^{0} \rho(\vec{x} + (\varepsilon_1, \dots, \varepsilon_s)) = 1 \ npu \ \vec{x} \in G_s,$$
(2)

$$\rho(\vec{x}) = 0 \quad npu \quad \vec{x} \notin (-1; 1)^s, \tag{3}$$

$$\left| \int_{-1}^{1} \dots \int_{-1}^{1} \rho(\vec{x}) e^{2\pi i (\vec{\sigma}, \vec{x})} d\vec{x} \right| \leqslant B(\overline{\sigma}_{1} \dots \overline{\sigma}_{s})^{-r} \quad \text{distance} \quad \vec{\sigma} \in \mathbb{R}^{s}.$$
 (4)

Если выполнены условия (2) и (3), то говорим просто о весовой функции $\rho(\vec{x})$.

ОПРЕДЕЛЕНИЕ 3. Квадратурной формулой с обобщенной параллелепипедальной сеткой II типа и весовой функцией $\rho(\vec{x})$ называется формула вида

$$\int_{0}^{1} \cdots \int_{0}^{1} f(\vec{x}) d\vec{x} = (\det \Lambda)^{-1} \sum_{\vec{x} \in M'(\Lambda)} \rho_{\vec{x}} f(\vec{x}) - R_{N'(\Lambda)}[f],$$

$$onumber eta de \qquad
ho_{ec x} = \sum_{ec y \in M_1(\Lambda), \{ec y\} = ec x}
ho(ec y), \quad N'(\Lambda) = |M'(\Lambda)|,$$

 $R_{N'(\Lambda)}[f]$ — погрешность квадратурной формулы.

Для погрешности квадратурной формулы с обобщенной параллелепипедальной сеткой II рода на классе E_s^{α} справедлива оценка

$$R_{N'(\Lambda)}[E_s^{\alpha}(C)] = \sup_{f \in E_s^{\alpha}(C)} |R_{N'(\Lambda)}[f]| \leqslant CB \cdot c_1(\alpha)^s \zeta_H(\Lambda|\alpha),$$

где
$$c_1(\alpha) = 2^{\alpha+1} \left(3 + \frac{2}{\alpha - 1} \right), \quad \zeta_H(\Lambda | \alpha) = \sum_{\vec{x} \in \Lambda} ' (\overline{x}_1 \dots \overline{x}_s)^{-\alpha}.$$

Пусть $\vec{a}=(a_0,a_1,\ldots,a_{s-1})$ — целочисленный вектор такой, что многочлен

$$P_{\vec{a}}(x) = \sum_{\nu=0}^{s-1} a_{\nu} x^{\nu} + x^s \tag{5}$$

неприводим над полем рациональных чисел и все корни Θ_{ν} ($\nu=1,\ldots,s$) многочлена (5) действительные.

Обозначим через $T(\vec{a})$ матрицу степеней алгебраически сопряженных целых алгебраических чисел $\Theta_1, \dots, \Theta_s$ — корней многочлена $P_{\vec{a}}(x)$:

$$T(\vec{a}) = \begin{pmatrix} 1 & \dots & 1 \\ \Theta_1 & \dots & \Theta_s \\ \vdots & \vdots & \vdots \\ \Theta_1^{s-1} & \dots & \Theta_s^{s-1} \end{pmatrix}, \tag{6}$$

а через $\vec{\Theta} = (\Theta_1, \dots, \Theta_s)$ — вектор полного набора алгебраически сопряженных чисел — корней многочлена $P_{\vec{a}}(x)$.

Для любого t>0 решётка $\Lambda(t\cdot T(\vec{a}))$ называется алгебраической. Она имеет вид

$$\Lambda(t \cdot T(\vec{a})) = \left\{ \vec{x} = \left(t \sum_{\nu=1}^{s} \Theta_{1}^{\nu-1} m_{\nu}, \dots, t \sum_{\nu=1}^{s} \Theta_{s}^{\nu-1} m_{\nu} \right) = t \cdot \vec{m} \cdot T(\vec{a}) \middle| \vec{m} \in \mathbb{Z}^{s} \right\}.$$

Совокупность $M \subset G_s$ точек $M_k = (\xi_1(k), \dots, \xi_s(k))$ $(k = 1 \dots N)$ называется $cem \kappa o \check{u} M$ из N узлов, а сами точки — узлами $\kappa bad pamypho \check{u} \phi bpmyn b$. Величины $\rho_k = \rho(M_k)$ называются весами квадратурно $\check{u} \phi b b$ формулы.

Рассмотрим уравнение Фредгольма второго рода, то есть уравнение вида

$$\varphi\left(\vec{t}\right) = \lambda \iint_{G_s} K_s\left(\vec{t}, \vec{u}\right) \varphi\left(\vec{u}\right) d\vec{u} + f\left(\vec{t}\right), \tag{7}$$

где $G_s = [0;1)^s$. Мы будем исследовать уравнение (7) для случая периодических функций, когда свободный член $f(\vec{t})$ и ядро $K_s(\vec{t},\vec{u})$ этого уравнения принадлежат, соответственно, классам $E_s^{\alpha}(C_1)$ и $E_{2s}^{\alpha}(C_2)$. Ясно, что и решение $\varphi(\vec{t})$ будет являться периодической функцией.

Teopema 1. $\Pi ycmv \ q < 1 \ u$

$$|\lambda| \leqslant \frac{q}{\|K_s\left(\vec{t}, \vec{u}\right)\|_{E_s^{\alpha}} (1 + 2\zeta(2\alpha))^s}.$$
(8)

Тогда уравнение Фредгольма (7) имеет единственное решение и для него справедливо представление в виде ряда Неймана

$$\varphi(\vec{t}) = f(\vec{t}) +$$

$$+ \sum_{k=1}^{\infty} \lambda^k \iint_{G_{sk}} K_s(\vec{t}, \vec{u}_1) K_s(\vec{u}_1, \vec{u}_2) \dots K_s(\vec{u}_{k-1}, \vec{u}_k) f(\vec{u}_k) d\vec{u}_1 \dots d\vec{u}_k$$

и справедливо соотношение

$$\varphi(\vec{t}) = f(\vec{t}) + \sum_{k=1}^{n} \lambda^{k} \iint_{G_{sk}} K_{s}(\vec{t}, \vec{u}_{1}) K_{s}(\vec{u}_{1}, \vec{u}_{2}) \dots K_{s}(\vec{u}_{k-1}, \vec{u}_{k}) f(\vec{u}_{k}) d\vec{u}_{1} \dots d\vec{u}_{k} + \frac{q^{n+1} \cdot \Theta \cdot ||f(\vec{t})||_{E_{s}^{\alpha}}}{1 - q}, \quad \text{ide} \quad |\Theta| \leq (1 + 2\zeta(2\alpha))^{s}.$$

Доказательство. См. [3].

Теперь для вычисления кратных интегралов можно применить квадратурные формулы с алгебраическими сетками. Здесь возможно два разных подхода, которые впервые были описаны М. И. Ляминым [5].

3. Выбор чисто-вещественного алгебраического поля — первый подход

Первый подход основан на том, что для каждой размерности sk, где $k=1,2,\ldots,n$, выбирается свой неприводимый полином

$$P_{\vec{a}}(x) = \sum_{\nu=0}^{sk-1} a_{\nu} x^{\nu} + x^{sk}, \tag{9}$$

у которого все корни действительные. В качестве такого многочлена можно взять многочлен

$$P_k(x) = x(x-2)(x-4)\dots(x-2sk+2) - 1.$$

Действительно, согласно задаче 47 из [4] стр. 68 имеем

ТЕОРЕМА 2. Пусть a_1, \ldots, a_n — различные целые числа. Тогда многочлен

$$P_{1,\vec{a}}(x) = (x - a_1) \dots (x - a_n) - 1$$

неприводим над \mathbb{Q} .

Доказательство. См. [4] стр. 251.

 Π ЕММА 1. Пусть n=2m — четное, $a_1 < a_2 < \ldots < a_n$ — различные целые числа и выполнены неравенства

$$\prod_{\nu=1}^{n} \left(a_{\nu} - \frac{a_{2\mu} + a_{2\mu+1}}{2} \right) > 1 \quad (\mu = 1, \dots, m-1),$$

тогда все корни многочлена $P_{1,\vec{a}}(x)$ — вещественные.

Доказательство. Действительно, на промежутках $(-\infty; a_1)$ и $(a_n; \infty)$ многочлен $P_{1,\vec{a}}(x)$ четной степени имеет по одному корню.

На каждом промежутке $(a_{2\mu}; a_{2\mu+1})$ $(\mu = 1, ..., m-1)$ в силу условия имеется два вещественных корня, поэтому наш многочлен имеет ровно n вещественных корней. \square

ЛЕММА 2. Пусть n = 2m + 1 — нечетное, $a_1 < a_2 < \ldots < a_n$ — различные целые числа и выполнены неравенства

$$\prod_{\nu=1}^{n} \left(a_{\nu} - \frac{a_{2\mu-1} + a_{2\mu}}{2} \right) > 1 \quad (\mu = 1, \dots, m),$$

тогда все корни многочлена $P_{1,\vec{a}}(x)$ — вещественные.

Доказательство. Действительно, на промежутке $(a_n; \infty)$ многочлен $P_{1,\vec{a}}(x)$ нечетной степени имеет один корень.

На каждом промежутке $(a_{2\mu-1}; a_{2\mu})$ $(\mu = 1, ..., m)$ в силу условия имеется два вещественных корня, поэтому наш многочлен имеет ровно n вещественных корней. \square

ТЕОРЕМА 3. Пусть натуральное n > 1, $\varepsilon = 2 \left\{ \frac{n}{2} \right\}$, $a_1 < a_2 < \ldots < a_n$ — различные целые числа, для которых выполнено условие

$$\prod_{\nu=1}^{n} \left(a_{\nu} - \frac{a_{2\mu-\varepsilon} + a_{2\mu+1-\varepsilon}}{2} \right) > 1 \quad (\mu = 1, \dots, m + \varepsilon - 1).$$

Тогда многочлен

$$P_{1,\vec{a}}(x) = (x - a_1) \dots (x - a_n) - 1$$

неприводим над \mathbb{Q} и все его корни вещественные.

Доказательство. Утверждение теоремы следует из теоремы 2 и лемм 1 и 2. □

ТЕОРЕМА 4. Если для приближенного вычисления интеграла

$$\iint_{G_{sk}} K_s(\vec{t}, \vec{u}_1) K_s(\vec{u}_1, \vec{u}_2) \dots K_s(\vec{u}_{k-1}, \vec{u}_k) f(\vec{u}_k) d\vec{u}_1 \dots d\vec{u}_k$$

использовать квадратурные формулы, соответствующие решетке $\Lambda(t \cdot T(\vec{a}))$ и многочлену $P_{\vec{a}}(x) = P_k(x)$, то погрешность приближенного решения уравнения Фредгольма второго рода будет

$$||f(\vec{t})||_{E_s^{\alpha}} \cdot O\left(\frac{q^{n+1}}{1-q} + \frac{\ln^{sn-1}t}{t^{s\alpha}}\right).$$

Доказательство. Действительно, погрешность приближенного вычисления интеграла кратности sk по квадратурной формуле с алгебраической сеткой есть величина порядка

$$||f(\vec{t})||_{E_s^{\alpha}} \cdot O\left(\frac{\ln^{sk-1}t}{t^{s\alpha}}\right).$$

Отсюда и из теоремы 1 следует доказываемое утверждение.

4. Выбор чисто-вещественного алгебраического поля — второй подход

Второй подход связан с использованием башни полей Дирихле:

$$\mathbb{Q}\left(\sqrt{2}\right), \mathbb{Q}\left(\sqrt{2}, \sqrt{3}\right), \dots, \mathbb{Q}\left(\sqrt{2}, \sqrt{3}, \dots, \sqrt{p_m}\right),$$

где $p_m - m$ -ое простое число и $2^{m-1} < sn \leqslant 2^m$.

Пусть натуральное l_k выбрано из условия $2^{l-1} < sk \leqslant 2^l$. Рассмотрим чисто-вещественное кольцо целых алгебраических чисел

$$\mathbb{Z}_l = \mathbb{Z}\left[\sqrt{2}, \dots, \sqrt{p_l}\right]$$

и соответствующее чисто-вещественное алгебраическое поле степени 2^l

$$\mathbb{Q}_l = \mathbb{Q}\left(\sqrt{2}, \dots, \sqrt{p_l}\right).$$

Через $\Lambda_l(t)$ обозначим алгебраическую решётку

$$\Lambda_l(t) = \{ \vec{x} = (t\Theta_1, \dots, t\Theta_{2^l}) | \Theta = \Theta_1 \in \mathbb{Z}_l \},$$

где $\Theta_1, \dots, \Theta_{2^l}$ — алгебраически сопряженные числа.

Теорема 5. Если для приближенного вычисления интеграла

$$\iint_{G_{-k}} K_s(\vec{t}, \vec{u}_1) K_s(\vec{u}_1, \vec{u}_2) \dots K_s(\vec{u}_{k-1}, \vec{u}_k) f(\vec{u}_k) d\vec{u}_1 \dots d\vec{u}_k$$

использовать квадратурные формулы, соответствующие решетке $\Lambda_l(t)$, то погрешность приближенного решения уравнения Φ редгольма второго рода будет

$$||f(\vec{t})||_{E_s^{\alpha}} \cdot O\left(\frac{q^{n+1}}{1-q} + \frac{\ln^{2^m-1}t}{t^{2^m\alpha}}\right).$$

Доказательство. Действительно, погрешность приближенного вычисления интеграла кратности sk по квадратурной формуле с алгебраической сеткой, соответствующей решётке $\Lambda_l(t)$ есть величина порядка

$$||f(\vec{t})||_{E_s^{\alpha}} \cdot O\left(\frac{\ln^{2^l-1}t}{t^{2^l\alpha}}\right).$$

Отсюда и из теоремы 1 следует доказываемое утверждение.

Замечание 1. Остановимся на вопросе, как применять сетку для размерности 2^l к вычислению интеграла по кубу размерности sk, где $sk < 2^l$.

Пусть нам дана функция $f(\vec{x})$ из класса E^{α}_{sk} и требуется вычислить интеграл

$$\iint_{G_{\tau^k}} f(\vec{x}) d\vec{x}.$$

Рассмотрим функцию $g(\vec{x}, \vec{y})$, где $\vec{x} \in G_{sk}$, $\vec{y} \in G_{2^l-sk}$, заданную равенством

$$g(\vec{x}, \vec{y}) = f(\vec{x})$$
 для любого $\vec{y} \in G_{2^l - sk}$.

Ясно, что

$$\iint\limits_{G_{sk}} f(\vec{x}) d\vec{x} = \iint\limits_{G_{2l}} g(\vec{x}, \vec{y}) d\vec{x} d\vec{y}, \quad g(\vec{x}, \vec{y}) \in E_{2^l}^{\alpha}.$$

Отсюда следует, как применять сетку большей размерности для вычисления кратного интеграла меньшей размерности.

5. Заключение

При втором способе выбора чисто-вещественного алгебраического поля нам приходится использовать алгебраическую сетку большой размерности для интегрирования функции меньшего числа переменных. Возникает естественный вопрос, а нельзя ли в этом случае улучшить оценку погрешности интегрирования и упростить саму квадратурную формулу с весами и алгебраической сеткой?

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Коробов Н. М. О приближенном решении интегральных уравнений // ДАН СССР. 1959. Т. 128, N 2. С. 235–238.
- 2. Коробов Н. М. Теоретико-числовые методы в приближенном анализе. (второе издание) М.: МЦНМО, 2004.
- 3. Ребров Е. Д., Селиванов С. В. О приближенном решении интегрального уравнения Фредгольма II рода // Известия Тульского государственного университета. Естественные науки. Вып. 2. Тула: Изд-во ТулГУ, 2012. С. 83 92.
- 4. Садовничий В. А., Григорьян А. А., Конягин С. В. Задачи студенческих математических олимпиад. М.: Изд-во Моск. ун-та. 1987. 310 с.
- 5. Лямин М.И. Алгебраические сетки и их приложение к численному решению линейных интегральных уравнений // Алгебра, теория чисел и дискретная геометрия: современные проблемы и приложения: Материалы XIII Международной конференции, посвященной

восьмидесятипятилетию со дня рождения профессора Сергея Сергеевича Рышкова, Тула, 25–30 мая 2015 года / Тульский государственный педагогичекий университет им. Л.Н. Толстого. – Тула: Тульский государственный педагогический университет им. Л.Н. Толстого, 2015. – С. 351-354.

REFERENCES

- 1. Korobov N.M. On the approximate solution of integral equations // DAN USSR. 1959. Vol. 128, N 2. pp. 235–238., [in Russian]
- 2. Korobov N. M. Number-theoretic methods in approximate analysis. (second edition) Moscow: ICNMO, 2004., [in Russian]
- 3. Rebrov E.D., Selivanov S.V. On the approximate solution of the Fredholm integral equation of the II kind // Izvestiya Tula State University. Natural sciences. Issue 2. Tula: TulSU Publishing House, 2012. p. 83 92., [in Russian]
- 4. Sadovnichy V.A., Grigoryan A.A., Konyagin S.V. Problems of student mathematical Olympiads. Moscow: Publishing House of Moscow. un-ta. 1987. 310 p., [in Russian]
- 5. Lyamin M.I. Algebraic grids and their application to the numerical solution of linear integral equations // Algebra, number theory and discrete geometry: modern problems and applications: Materials of the XIII International Conference dedicated to the eighty-fifth anniversary of the birth of Professor Sergei Sergeevich Ryshkov, Tula, May 25-30, 2015 / Tula State Pedagogical University named after L.N. Tolstoy. Tula: Tula State Pedagogical University named after L.N. Tolstoy, 2015. pp. 351-354. [in Russian]

Получено: 17.06.2022

Принято в печать: 8.12.2022