ЧЕБЫШЕВСКИЙ СБОРНИК

Том 23. Выпуск 3.

УДК 517.5

DOI 10.22405/2226-8383-2022-23-3-245-248

Уточнение оценки среднего угла в проблеме Фейеш Тота¹

Д. В. Горбачев, Д. Р. Лепетков

Горбачев Дмитрий Викторович — доктор физико-математических наук, Тульский государственный университет (г. Тула).

e-mail: dvqmail@mail.ru

Лепетков Даниил Русламович — Тульский государственный университет (г. Тула). e-mail: Shipsdays@gmail.com

Аннотация

Рассматривается проблема Фейеш Тота о максимуме E_* среднего значения суммы углов между прямыми в \mathbb{R}^3 с общим центром. Л. Фейеш Тот предположил, что $E_* = \frac{\pi}{3} = 1.047\ldots$ Эта гипотеза до сих пор не доказана. D. Bilyk и R.W. Матгке доказали, что $E_* \leqslant 1.110\ldots$ Мы уточняем эту оценку при помощи экстремальной задачи типа Дельсарта: $E_* \leqslant A_* < 1.08326$. При помощи двойственной проблемы B_* мы показываем, что решение задачи A_* не позволяет доказать гипотезу Фейеш Тота, так как $1.05210 < A_*$.

Ключевые слова: гипотеза Фейеш Тота, единичная сфера, многочлен Лежандра, оценка линейного программирования, задача Дельсарта.

Библиография: 3 названий.

Для цитирования:

Д. В. Горбачев, Д. Р. Лепетков. Уточнение оценки среднего угла в проблеме Фейеш Тота // Чебышевский сборник, 2022, т. 23, вып. 3, с. 245–248.

CHEBYSHEVSKII SBORNIK

Vol. 23. No. 3.

UDC 517.5

DOI 10.22405/2226-8383-2022-23-3-245-248

Refinement of the mean angle estimation in the Feyesh Toth problem²

D. V. Gorbachev, D. R. Lepetkov

Gorbachev Dmitry Viktorovich — doctor of physical and mathematical sciences, Tula State University (Tula).

e-mail: dvqmail@mail.ru

Lepetkov Daniil Ruslamovich — Tula State University (Tula).

e-mail: Shipsdays@gmail.com

¹Исследование выполнено за счет гранта Российского научного фонда № 18-11-00199, https://rscf.ru/project/18-11-00199/.

²This Research was performed by a grant of Russian Science Foundation (project 18-11-00199), https://rscf.ru/project/18-11-00199/.

Abstract

The Fejes Tóth problem about the maximum E_* of the mean value of the sum of angles between lines in \mathbb{R}^3 with a common center is considered. L. Fejes Tóth suggested that $E_* = \frac{\pi}{3} = 1.047\ldots$ This conjecture has not yet been proven. D. Bilyk and R.W. Matzke proved that $E_* \leqslant 1.110\ldots$ We refine this estimate using an extremal problem of the Delsarte type: $E_* \leqslant A_* < 1.08326$. Using the dual problem B_* we show that the solution of the A_* problem does not allow us to prove the Fejes Tóth conjecture, since $1.05210 < A_*$.

Keywords: Fejes Tóth conjecture, unit sphere, Legendre polynomial, linear programming bound, Delsarte problem.

Bibliography: 3 titles.

For citation:

D. V. Gorbachev, D. R. Lepetkov, 2022, "Refinement of the mean angle estimation in the Feyesh Toth problem", *Chebyshevskii sbornik*, vol. 23, no. 3, pp. 245–248.

Пусть в \mathbb{R}^3 задан набор прямых с общим центром. В классической проблеме Фейеш Тота спрашивается, сколь большой может быть сумма углов между прямыми (см. [3,2]). Если число прямых может быть произвольным, то проблема эквивалентна нахождению величины

$$E_* = \sup_{X \subset \mathbb{S}^2} E(X), \quad E(X) = \frac{1}{N^2} \sum_{i,j=1}^N \arccos|x_i x_j|,$$

где $X = \{x_1, \dots, x_N\}$ — всевозможные наборы точек на единичной сфере, xy — скалярное произведение векторов $x, y \in \mathbb{R}^3$.

 Π . Фейеш Тот предположил, что $E_* = \frac{\pi}{3} = 1.047\dots$ и экстремум образуют множества, состоящие из повторов тройки единичных ортов. Эта гипотеза до сих пор не доказана. В работе [3] доказана оценка $E_* \leqslant \frac{3\pi}{8} = 1.178\dots$ Эта оценка была уточнена в работе [2]: $E_* \leqslant 1.110\dots$ Докажем, что

 Π редложение 1.

$$E_* < 1.08326.$$

Для доказательства воспользуемся аналитическими методами из теории кодирования, связанными с оценкой линейного программирования Дельсарта (см., например, [1]). Пусть $P_n(t)$ — ортогональные на отрезке [-1,1] многочлены Лежандра, $P_n(1)=1$,

$$F(t) = \arccos|t| = \sum_{k=0}^{\infty} F_k P_{2k}(t).$$

Заметим, что четные на [-1,1] функции раскладываются по четным многочленам $P_{2k}(t)$, причем $\int_0^1 P_{2k}^2(t)\,dt=\frac{1}{4k+1}$. Отсюда $F_k=(4k+1)\int_0^1 \arccos t\,P_{2k}(t)\,dt$.

Предложение 1 вытекает из следующих утверждений.

ЛЕММА 1 (оценка линейного программирования). Пусть $K - \kappa$ ласс непрерывных на [0,1] четных функций $f(t) = \sum_{k=0}^{\infty} f_k P_{2k}(t)$, для которых $f_0 > 0$, $f_k \leqslant 0$ при $k \geqslant 1$, $F(t) \leqslant f(t)$ при $t \in [0,1]$. Тогда

$$E_* \leqslant A_* = \inf_{f \in K} f_0.$$

ЛЕММА 2 (двойственная оценка). Пусть $L - \kappa$ ласс положительных на [0,1] борелевских мер $\mu(t)$, для которых $\mu_k = \int_0^1 P_{2k}(t) \, d\mu(t)$, $\mu_0 = 1$, $\mu_k \geqslant 0$ при $k \geqslant 1$. Тогда

$$A_* \geqslant B_* = \sup_{\mu \in L} \sum_{k=0}^{\infty} F_k \mu_k.$$

ЛЕММА 3. Имеем

$$1.05210 < B_* \le A_* < 1.08326.$$

Лемма 3 означает, что решение экстремальной задачи A_* не позволяет доказать гипотезу Фейеш Тота. Также отметим, что оценка из работы [2] получена на многочлене второй степени из проблемы A_* .

Доказательство леммы 1. Пусть $X = \{x_1, \dots, x_N\} \in \mathbb{S}^2, f \in K$. Используя свойства функции f и положительную определенность многочленов Лежандра, получаем

$$E(X) = \frac{1}{N^2} \sum_{i,j=1}^{N} \underbrace{F(x_i x_j)}_{\leqslant f(x_i x_j)} \leqslant \frac{1}{N^2} \sum_{i,j=1}^{N} f(x_i x_j) = \frac{1}{N^2} \sum_{i,j=1}^{N} \sum_{k=0}^{\infty} f_k P_{2k}(x_i x_j)$$

$$= f_0 + \frac{1}{N^2} \sum_{k=1}^{\infty} \underbrace{f_k}_{\leqslant 0} \underbrace{\sum_{i,j=1}^{N} P_{2k}(x_i x_j)}_{\geqslant 0} \leqslant f_0.$$

Теперь можно перейти к нижней грани по f. Лемма 1 доказана.

Доказательство леммы 2. Пусть $f \in K$, $\mu \in L$. Тогда

$$0 \leqslant \int_0^1 \underbrace{(f(t) - F(t))}_{\geqslant 0} d\mu(t) = \int_0^1 \sum_{k=0}^{\infty} (f_k - F_k) P_{2k}(t) d\mu(t) = f_0 \underbrace{\mu_0}_{=1} + \sum_{k=1}^{\infty} \underbrace{f_k \mu_k}_{\leqslant 0} - \sum_{k=0}^{\infty} F_k \mu_k,$$

откуда $f_0 \geqslant \sum_{k=0}^{\infty} F_k \mu_k$. Теперь можно перейти к нижней грани по f и верхней грани по μ . Лемма 2 доказана.

Доказательство леммы 3. Приведем примеры многочленов $f \in K$ и $g(t) = \mu'(t)$, $\mu \in L$, которые дадут нужные оценки. Они получены численными экспериментами с помощью дискретизации и линейного программирования, однако их свойства можно проверить непосредственно. Такой подход хорошо известен в теории экстремальных задач Дельсарта. Все вычисления проводились с 10-ю знаками после точки.

Многочлен

$$f(t) = \sum_{k \in \{0,1,3,5,9,11,13\}} f_k P_{2k}(t),$$

где коэффициенты f_k последовательно равны

Для него $\min_{t \in [0,1]} (f(t) - F(t)) \geqslant 0.001$. Отсюда округляя, получаем $A_* \leqslant 1.08326$. Многочлен

$$g(t) = \sum_{k \in \{0,2,4,6,8,10,12,14\}} (4k+1)\mu_k P_{2k}(t),$$

где коэффициенты μ_k последовательно равны

 $1,\ 0.4583469123,\ 0.2734701526,\ 0.1838476292,\ 0.1139628481,\ 0.06729056530,$

0.03222866343, 0.01182221436.

Для него $\min_{t\in[0,1]}g(t)\geqslant 0.0007$, $\sum_{k\in\{0,2,4,6,8,10,12,14\}}F_k\mu_k=1.052101964$, где коэффициенты F_k последовательно равны

 $1,\ 0.07500000000,\ 0.03752480159,\ 0.02353061435,\ 0.01654979769,\ 0.01247489073,\\ 0.009849540645,\ 0.008039378483.$

Отсюда округляя, получаем $B_* \geqslant 1.05210$. Лемма 3 доказана.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Андреев Н.Н., Юдин В.А. Экстремальные расположения точек на сфере // Матем. просв. 1997. Вып. 1. С. 115–125.
- 2. Bilyk D., Matzke R.W. On the Fejes Tóth problem about the sum of angles between lines // Proc. Amer. Math. Soc. 2019. V. 147, no. 1. P. 51–59.
- Fodor F., Vigh V., Zarnócz T. On the angle sum of lines // Arch. Math. (Basel). 2016. V. 106, no. 1. P. 91–100.

REFERENCES

- 1. Andreev, N.N. & Yudin, V.A. 1997. "An extremal location of points on a sphere", *Mat. Pros.*, vol. 3, no. 1, pp. 115–125. (In Russ.)
- 2. Bilyk, D. & Matzke, R.W. 2019. "On the Fejes Tóth problem about the sum of angles between lines", *Proc. Amer. Math. Soc.*, vol. 147, no. 1, pp. 51–59.
- 3. Fodor, F., Vigh, V. & Zarnócz, T. 2016. "On the angle sum of lines", Arch. Math. (Basel), vol. 106, no. 1, pp. 91–100.

Получено 23.08.2022 Принято в печать 14.09.2022