ЧЕБЫШЕВСКИЙ СБОРНИК

Том 23. Выпуск 3.

УДК 512.542

 $DOI\ 10.22405/2226\text{--}8383\text{--}2022\text{--}23\text{--}3\text{--}238\text{--}244$

О w-сверхразрешимости конечной группы, факторизуемой взаимно перестановочными подгруппами 1

Н. В. Артеменко, А. А. Трофимук

Артеменко Наталья Витальевна — Брестский государственный университет им. А. С. Пушкина (г. Брест, Беларусь).

 $e ext{-}mail: artemenkonatasha@outlook.com$

Трофимук Александр Александрович — кандидат физико-математических наук, Брестский государственный университет им. А. С. Пушкина (г. Брест, Беларусь). *e-mail: alexander.trofimuk@qmail.com*

Аннотация

Подгруппы A и B называются взаимно перестановочными, если A перестановочна с каждой подгруппой из B, а B перестановочна с каждой подгруппой из A. В статье получены достаточные условия w-сверхразрешимости группы G=AB, факторизуемой взаимно перестановочными сомножителями A и B. Кроме того, установлено строение w-сверхразрешимого корадикала такой группы.

Ключевые слова: конечная группа, w-сверхразрешимая группа, взаимно перестановочные подгруппы, **3**-корадикал.

Библиография: 18 названий.

Для цитирования:

Н. В. Артеменко, А. А. Трофимук. О w-сверхразрешимости конечной группы, факторизуемой взаимно перестановочными подгруппами // Чебышевский сборник, 2022, т. 23, вып. 3, с. 238—244.

CHEBYSHEVSKII SBORNIK

Vol. 23. No. 3.

UDC 512.542

DOI 10.22405/2226-8383-2022-23-3-238-244

On the w-supersolubility of a finite group factorized by mutually permutable subgroups

N. V. Artemenko, A. A. Trofimuk

Artemenko Natalia Vital'evna — Brest State A. S. Pushkin University (Brest, Belarus). Trofimuk Alexander Alexandrovich — candidate of physical and mathematical sciences, Brest State A. S. Pushkin University (Brest, Belarus).

 $e\hbox{-}mail\hbox{:}\ alexander.trofimuk@gmail.com$

¹Работа выполнена в рамках ГПНИ «Конвергенция — 2025» (задание 1.1.02 подпрограммы 11.1 «Математические модели и методы») при финансовой поддержке Министерства образования Республики Беларусь.

Abstract

The subgroups A and B of a group G are called mutually permutable if A permutes with all subgroups of B and B permutes with all subgroups of A. The sufficient conditions of w-supersolubility of a group G = AB that is factorized by two mutually permutable w-supersoluble subgroups A and B were obtained. Besides we found the construction of w-supersoluble residual of such group.

Keywords: finite group, w-supersoluble group, mutually permutable subgroups, \mathfrak{F} -residual. Bibliography: 18 titles.

For citation:

N. V. Artemenko, A. A. Trofimuk, 2022, "On the w-supersolubility of a finite group factorized by mutually permutable subgroups", *Chebyshevskii sbornik*, vol. 23, no. 3, pp. 238–244.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. We use the standard notations and terminology of [1, 2].

A. F. Vasil'ev, T. I. Vasil'eva and V. N. Tyutyanov in [3] proposed the following definition. A subgroup H of a group G is called \mathbb{P} -subnormal in G, if either H = G, or there is a chain subgroups

$$H = H_0 \leqslant H_1 \leqslant \ldots \leqslant H_n = G, |H_i : H_{i-1}| \in \mathbb{P}, \forall i.$$

Besides, a group G is called w-supersoluble [3] (widely supersoluble), if every Sylow subgroup of G is \mathbb{P} -subnormal in G. Denote by wth the class of all w-supersoluble groups. Note that $\mathfrak{U} \subset \mathfrak{wU}$. Here \mathfrak{U} is the class of all supersoluble groups. In [3, Theorem 2.7, Proposition 2.8] proved that wth is a subgroup-closed saturated formation and every group from wth has an ordered Sylow tower of supersoluble type. By [4, Theorem 1], $G \in \mathfrak{wU}$ if and only if every metanilpotent (biprimary) subgroup of G is supersoluble.

In monograph [6, p. 149] presented the following definition: two subgroups A and B of a group G are said to be mutually permutable if A permutes with all subgroups of B and B permutes with all subgroups of A. Asaad and Shaalan established the supersolubility of a group G = AB with mutually permutable subgroups A and B provided that B is nilpotent [7, Theorem 3.2] and in the case that the derived subgroup G' is nilpotent [7, Theorem 3.8].

In the present work, the structure of the w-supersoluble residual of the group G = AB with mutually permutable w-supersoluble subgroups A and B is established. Besides we obtained some sufficient conditions for w-supersolubility of such groups.

2. Preliminaries

In this section, we give some definitions and basic results which are essential in the sequel. A group whose chief factors have prime orders is called *supersoluble*.

Denote by $O_p(G)$, F(G) and $\Phi(G)$ the greatest normal p-subgroup of G, the Fitting and Frattini subgroups of G respectively. We use E_{p^t} to denote an elementary abelian group of order p^t and Z_m to denote a cyclic group of order m. The semidirect product of a normal subgroup A and a subgroup B is written as follows: $A \rtimes B$.

The monographs [1, 9] contain the necessary information of the theory of formations.

A class group \mathfrak{F} is called a formation if the following statements is true:

- (1) if $G \in \mathfrak{F}$ and $N \triangleleft G$, then $G/N \in \mathfrak{F}$.
- (2) if $G/N_1 \in \mathfrak{F}$ and $G/N_2 \in \mathfrak{F}$, then $G/N_1 \cap N_2 \in \mathfrak{F}$.

A formation \mathfrak{F} is said to be saturated if $G/\Phi(G) \in \mathfrak{F}$ implies $G \in \mathfrak{F}$. A formation \mathfrak{F} is called hereditary if, together with each group, \mathfrak{F} contains all its subgroups. The formations of all nilpotent, abelian and groups with abelian Sylow subgroups are denoted by \mathfrak{N} , \mathfrak{A} and \mathcal{A} , respectively.

Let \mathfrak{F} be a formation. Recall that the \mathfrak{F} -residual of G, that is the intersection of all those normal subgroups N of G for which $G/N \in \mathfrak{F}$. We define $\mathfrak{XY} = \{G \in \mathfrak{E} \mid G^{\mathfrak{Y}} \in \mathfrak{X}\}$ and call \mathfrak{XY} the formation product of \mathfrak{X} and \mathfrak{H} . Here \mathfrak{E} is the class of all finite groups.

If H is a subgroup of G, then $H_G = \bigcap_{x \in G} H^x$ is called the core of H in G. If a group G contains a maximal subgroup M with trivial core, then G is said to be primitive and M is its primitivator. A simple check proves the following lemma.

Lemma 8. Let \mathfrak{F} be a saturated formation and G be a group. Assume that $G \notin \mathfrak{F}$, but $G/N \in \mathfrak{F}$ for all non-trivial normal subgroups N of G. Then G is a primitive group.

LEMMA 9 ([2, Theorem II.3.2]). Let G be a soluble primitive group and M is a primitivator of G. Then the following statements hold:

- (1) $\Phi(G) = 1$;
- (2) $F(G) = C_G(F(G)) = O_p(G)$ and F(G) is an elementary abelian subgroup of order p^n for some prime p and some positive integer n;
 - (3) G contains a unique minimal normal subgroup N and moreover, N = F(G);
 - (4) $G = F(G) \times M \text{ and } O_p(M) = 1.$

LEMMA 10 ([5, Proposition 2.2.8, Proposition 2.2.11]). Let \mathfrak{F} and \mathfrak{H} be formations, K be normal in G. Then:

- (1) $(G/K)^{\mathfrak{F}} = G^{\mathfrak{F}}K/K$;
- (2) $G^{\mathfrak{Fh}} = (G^{\mathfrak{H}})^{\mathfrak{F}}$;
- (3) if $\mathfrak{H} \subseteq \mathfrak{F}$, then $G^{\mathfrak{F}} \leqslant G^{\mathfrak{H}}$.

LEMMA 11. If $Y \leq X$ and \mathfrak{F} is a hereditary formation, then $Y^{\mathfrak{F}} \leq X^{\mathfrak{F}}$.

PROOF. Since $X^{\mathfrak{F}}$ is normal in X, it follows that $YX^{\mathfrak{F}}$ is a subgroup of X. Then

$$Y/Y \cap X^{\mathfrak{F}} \simeq YX^{\mathfrak{F}}/X^{\mathfrak{F}} \in \mathfrak{F},$$

because \mathfrak{F} is hereditary. Hence $Y^{\mathfrak{F}} \leq Y \cap X^{\mathfrak{F}} \leq X^{\mathfrak{F}}$. \square

Lemma 12. Let G = AB be the mutually permutable product of w-supersoluble subgroups A and B. If N is a minimal normal subgroup of G, then both AN and BN are w-supersoluble.

PROOF. By [6, Theorem 4.1.15, Lemma 4.3.3(4)], G is soluble and $\{N \cap A, N \cap B\} = \{1, N\}$. If $N \leq A \cap B$, then $AN = A \in \mathfrak{wU}$ and $BN = B \in \mathfrak{wU}$. If $A \cap N = 1 = B \cap N$, then by [6, Lemma 4.3.9], |N| is prime. Then $AN/N \simeq A \in \mathfrak{wU}$ and by [10, Lemma 2.16], $AN \in \mathfrak{wU}$. Similarly $BN \in \mathfrak{wU}$

If $N \leq A$ and $B \cap N = 1$, then $AN = A \in \mathfrak{wU}$. Let N be non-cyclic. Then $N \leq C_G(B)$ by [6, Lemma 4.3.3(5)]. Since $BN = B \times N$, we have $BN \in \mathfrak{wU}$ by [3, Theorem 2.7]. Hence N is cyclic. Since $BN/N \simeq B \in \mathfrak{wU}$, by [10, Lemma 2.16], $BN \in \mathfrak{wU}$. Similarly for $N \leq B$ and $A \cap N = 1$. \square

3. New sign of w-supersolubility

We recall that two subgroups A and B of a group G are said to be mutually sn-permutable if A permutes with all subnormal subgroups of B and B permutes with all subnormal subgroups of A. Some sufficient conditions for w-supersolubility of the group G = AB with mutually sn-permutable w-supersoluble subgroups A and B were obtained in [11]. In particular, they proved that G is w-supersoluble, if $(|A/A^A|, |B/B^A|) = 1$. Besides, if A is nilpotent and B is w-supersoluble, then G

may be not w-supersoluble, see [11, Example 1]. However, this statement is true for the product of such mutually permutable subgroups A and B.

Theorem 1. Let G = AB be the mutually permutable product of w-supersoluble subgroups A and B. Then G is w-supersoluble in each of the following cases:

- (1) B is nilpotent;
- (2) (|G:AF(G)|, |G:BF(G)|) = 1;
- (3) B is normal in G.

PROOF. We prove all three statements at the same time using induction on the order of G.

Since by [3, Proposition 2.8], every w-supersoluble group has an ordered Sylow tower of supersoluble type, then by [7, Corollary 3.6], G has an ordered Sylow tower of supersoluble type. Hence G is soluble.

If N is a non-trivial normal subgroup of G, then AN/N and BN/N are mutually permutable by [6, Lemma 4.1.10], $AN/N \simeq A/A \cap N$ and $BN/N \simeq B/B \cap N$ are w-supersoluble by [3, Theorem 2.7] $(BN/N \simeq B/B \cap N)$ is nilpotent, $BN/N \simeq B/B \cap N$ is siding group).

Since $F(G)N/N \leq F(G/N)$, then $F(G)AN/N \leq F(G/N)AN/N$ and |G/N:F(G/N)AN/N| divides |G:F(G)A|. Similarly |G/N:F(G/N)BN/N| divides |G:F(G)B|.

Hence |G/N:F(G/N)AN/N| and |G/N:F(G/N)BN/N| are coprime.

By induction G/N = (AN/N)(BN/N) is w-supersoluble and G is primitive by Lemma 8. Hence by Lemma 9, $\Phi(G) = 1$, $N = C_G(N) = F(G) = O_p(G)$ is a unique minimal normal subgroup of G. Besides $G = N \rtimes M$, N = P is a Sylow p-subgroup of G for the greatest $p \in \pi(G)$. If N is cyclic, then $G \in \mathfrak{U} \subseteq \mathfrak{wU}$. Hence N is non-cyclic.

1. By [6, Lemma 4.3.3(4)], $\{N \cap A, N \cap B\} = \{1, N\}$. Case $A \cap N = 1 = B \cap N$ is false, because N is the Sylow subgroup of G.

If $N \leq B$, then N = B, because $N = C_G(N)$ and N is the Sylow p-subgroup of G. By Lemma 12, G = AB = AN is w-supersoluble.

If $N \nleq B$, then $B \cap N = 1$ and $N \leq A$. By [6, Lemma 4.3.3(5)], $N \leq C_G(B)$. Hence $B \leq C_G(N) = N$ and G = AB = AN = A, a contradiction.

2. By Lemma 12, AF(G) and BF(G) are w-supersoluble. Since P is normal in G and G is soluble, it follows that there exists a chain of subgroup with prime indices between P and G. Therefore, P is \mathbb{P} -subnormal in G. Let Q be a Sylow q-subgroup of G, $q \neq p$. By hypothesis, q is not divide |G:F(G)A| or |G:F(G)A|. Hence $Q^x \leq F(G)A$ or $Q^y \leq F(G)B$ for some $x,y \in G$. Let $Q^x \leq F(G)A$. Then Q^x is \mathbb{P} -subnormal in F(G)A. Since B is soluble, B has a series $1 = B_0 < B_1 < \ldots < B_k < B_{k+1} < \ldots < B_n = B$ such that $|B_{k+1}:B_k|$ is prime. Because A and B are mutually permutable, we have $F(G)AB_k$ is subgroup for all k. Hence in a chain of subgroups

$$F(G)A \leq F(G)AB_1 \leq \ldots \leq F(G)AB_k \leq F(G)AB_{k+1} \leq \ldots \leq F(G)AB_n = G$$

the indices $|F(G)AB_{k+1}:F(G)AB_k|=|B_{k+1}:B_k|/|B_{k+1}\cap F(G)A|:B_k\cap F(G)A|$ divide the prime numbers. Hence F(G)A is \mathbb{P} -subnormal in G. By [3, Lemma 1.4 (5,8)], Q is \mathbb{P} -subnormal in G and hence G is w-supersoluble, a contradiction.

3. Since N is minimal normal in G, it follows that $N \leq B$. By [6, Lemma 4.3.3(4, 5)], $A \cap N = 1$ and $N \leq C_G(A)$. Hence $G = AB = NB = B \in \mathfrak{wU}$, because $A \leq C_G(N) = N$.

Let N be a minimal normal subgroup of G such that $N \leq B'$. If N is not contained in M, then $G = N \rtimes M$ and |N| is prime. By [10, Lemma 2.16], G is w-supersoluble. Suppose that N is contained in M and N_1 is a subgroup of N of prime order such that N_1 is normal in M. Then N_1 is normal in B and therefore is normal in G. By [10, Lemma 2.16], G is w-supersoluble. The theorem is proved. \square

4. The w-supersoluble residual of the group G = AB with mutually permutable w-supersoluble subgroups A and B

In [12, Theorem 2.1], V.S. Monakhov proved for a group G = AB with mutually permutable supersoluble subgroups A and B that $G^{\mathfrak{U}} = (G')^{\mathfrak{N}}$. The w-supersoluble version of this result is presented in Theorem 2.

In [13], the authors proved that if G is the mutually permutable product of the w-supersoluble subgroups A and B and G^A is nilpotent, then G is w-supersoluble. In first part of Theorem 2 we gave a new proof of this result without theory of formation function.

THEOREM 2. Let G = AB be the mutually permutable product of w-supersoluble subgroups A and B. Then $G^{\text{wl}} = (G^{A})^{\mathfrak{N}}$.

Proof.

Suppose that $G^{\mathcal{A}}$ is nilpotent. Then $(G^{\mathcal{A}})^{\mathfrak{N}} = 1$. Next we check that G is w-supersoluble.

We use induction on the order of G. Let N be a non-trivial normal subgroup of G. Since by Lemma 10,

$$(G/N)^{\mathcal{A}} = G^{\mathcal{A}}N/N \simeq G^{\mathcal{A}}/G^{\mathcal{A}} \cap N,$$

it follows that $(G/N)^{\mathcal{A}}$ is nilpotent and by induction, G/N is w-supersoluble.

Let $W = G^{\mathcal{A}}$. Since wu is saturated by [3, Theorem 2.7], we have that G is primitive by Lemma 8. Hence by Lemma 9, $\Phi(G) = 1$, $N = C_G(N) = F(G) = O_p(G) = W$ is a unique minimal normal subgroup of G. Besides, $G = N \times M$, $M \in \mathcal{A}$, N = P is a Sylow p-subgroup of G, where p is a greatest prime in $\pi(G)$. If N is cyclic, then $G \in \text{wu}$ by [10, Lemma 2.16]. Hence N is non-cyclic.

By [6, Lemma 4.3.3(4)], $\{N \cap A, N \cap B\} = \{1, N\}$. If $A \cap N = 1 = B \cap N$, then we have a contradiction, since N is a Sylow subgroup of G. If $N \leq A$ and $B \cap N = 1$, then by [6, Lemma 4.3.3(5)], $N \leq C_G(B)$. Hence $B \leq C_G(N) = N$ and G = AB = AN = A, a contradiction. Similarly for $N \leq B$ and $A \cap N = 1$.

Hence in the future we consider that $N \leq A \cap B$. Let T be an arbitrary $\{q,r\}$ -subgroup of G. By [6, Theorem 1.1.19], there are Hall $\{q,r\}$ -subgroups $G_{\{q,r\}}$, $A_{\{q,r\}}$, $B_{\{q,r\}}$ in G, A and B respectively such that $G_{\{q,r\}} = A_{\{q,r\}}B_{\{q,r\}}$. Since A and B are mutually permutable, $A_{\{q,r\}}$ and $B_{\{q,r\}}$ are mutually permutable [6, Lemma 4.1.21]. If $G_{\{q,r\}}$ is a proper subgroup of G, then by Lemma 11, $G_{\{q,r\}}^{\mathcal{A}} \leq G^{\mathcal{A}}$ and $G_{\{q,r\}} \in \mathfrak{wU}$ by induction. Then by [4, Theorem 1], T is supersoluble and $G \in \mathfrak{wU}$, a contadiction.

Hence G is biprimary and M is an abelian Sylow q-subgroup for some $q \in \pi(G)$. By [14, Lemma I.1.3], M is cyclic. By Dedekind's identity, $M = (A \cap M)(B \cap M)$. Then $M = A \cap M$ or $M = B \cap M$. Suppose that $M = A \cap M$. Then $M \leq A$. Since $N \leq A$, we have that $G = NM \leq A$ and $G = A \in \mathfrak{wU}$.

If G is w-supersoluble, then $G^{\text{wll}} = 1$ and $G^{\mathcal{A}}$ is nilpotent by [3, Theorem 2.13]. Consequently $G^{\text{wll}} = 1 = (G^{\mathcal{A}})^{\mathfrak{N}}$ and the statement is true.

Further, we assume that G is non-w-supersoluble and $G^{\mathcal{A}}$ is non-nilpotent. Since $\mathfrak{wU}\subseteq\mathfrak{NA}$, it follows that

$$G^{(\mathfrak{N}\mathcal{A})} = (G^{\mathcal{A}})^{\mathfrak{N}} \leqslant G^{\mathbf{w}\mathfrak{U}}$$

by Lemma 10 (2-3). Next we check the converse inclusion. For this we prove that $G/(G^{\mathcal{A}})^{\mathfrak{N}}$ is w-supersoluble. By Lemma 10 (1),

$$(G/(G^{\mathcal{A}})^{\mathfrak{N}})^{\mathcal{A}} = G^{\mathcal{A}}(G^{\mathcal{A}})^{\mathfrak{N}}/(G^{\mathcal{A}})^{\mathfrak{N}} = G^{\mathcal{A}}/(G^{\mathcal{A}})^{\mathfrak{N}}$$

and $(G/(G^{\mathcal{A}})^{\mathfrak{N}})^{\mathcal{A}}$ is nilpotent. The quotients

$$G/(G^{\mathcal{A}})^{\mathfrak{N}} = (A(G^{\mathcal{A}})^{\mathfrak{N}}/(G^{\mathcal{A}})^{\mathfrak{N}})(B(G^{\mathcal{A}})^{\mathfrak{N}}/(G^{\mathcal{A}})^{\mathfrak{N}},$$

$$A(G^{\mathcal{A}})^{\mathfrak{N}}/(G^{\mathcal{A}})^{\mathfrak{N}} \simeq A/A \cap (G^{\mathcal{A}})^{\mathfrak{N}},$$

$$B(G^{\mathcal{A}})^{\mathfrak{N}}/(G^{\mathcal{A}})^{\mathfrak{N}} \simeq B/B \cap (G^{\mathcal{A}})^{\mathfrak{N}},$$

hence the subgroups $A(G^{\mathcal{A}})^{\mathfrak{N}}/(G^{\mathcal{A}})^{\mathfrak{N}}$ and $B(G^{\mathcal{A}})^{\mathfrak{N}}/(G^{\mathcal{A}})^{\mathfrak{N}}$ are w-supersoluble by [3, Theorem 2.7] and are mutually permutable by [6, Lemma 4.1.10]. As shown above, $G/(G^{\mathcal{A}})^{\mathfrak{N}}$ is w-supersoluble and $G^{\text{wff}} \leq (G^{\mathcal{A}})^{\mathfrak{N}}$. \square

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Monakhov V.S. Introduction to the Theory of Final Groups and Their Classes [in Russian]. Minsk: Vysh. Shkola, 2006.
- 2. Huppert B. Endliche Gruppen I. Berlin-Heidelberg-New York: Springer, 1967.
- 3. Vasil'ev A. F., Vasil'eva T. I., Tyutyanov V. N. On the finite groups of supersoluble type // Siberian Math. J. 2010. Vol. 51, № 6. P.1004-1012.
- 4. Monakhov V. S. Three Formations over \(\mu\) // Math. Notes. 2021. Vol. 110, № 3. P.339-346.
- 5. Ballester-Bolinches A., Ezquerro L.M. Classes of Finite Groups. Dordrecht: Springer, 2006.
- Ballester-Bolinches A., Esteban-Romero R., Asaad M. Products of finite groups. Berlin: Walter de Gruyter, 2010.
- 7. Asaad M., Shaalan A. On the supersolubility of finite groups // Arch. Math. 1989. Vol. 53. P. 318-326.
- 8. Perez E. R. On products of normal supersoluble subgroups // Algebra Colloq. 1999. Vol. 6, \mathbb{N}_3 . P.341-347.
- 9. Doerk K., Hawkes T. Finite soluble groups. Berlin-New York: Walter de Gruyter, 1992.
- 10. Skiba A. N. On weakly s-permutable subgroups of finite groups // J. Algebra. 2007. Vol. 315. P.192-209.
- 11. Ballester-Bolinches A., Fakieh W.M., Pedraza-Aguilera M.C. On products of generalised supersoluble finite groups // Mediterr. J. Math. 2019. Vol. 16, № 2. P.46-1-46-7.
- 12. Monakhov V. S. On the supersoluble residual of mutually permutable products // PFMT. 2018. Vol. 34, № 1. P.69-70.
- 13. Vasil'ev A. F., Vasil'eva T. I., Tyutyanov V. N. On the products of ℙ-subnormal subgroups of finite groups // Siberian Math. J. 2012. Vol. 53. P.47-54.
- 14. Weinstein M. (ed.) Between nilpotent and solvable. Passaic: Polygonal Publ. House, 1982.

REFERENCES

- 1. Monakhov, V. S. 2006, Introduction to the Theory of Final Groups and Their Classes [in Russian], Vysh. Shkola, Minsk.
- 2. Huppert, B. 1967, Endliche Gruppen I, Springer, Berlin-Heidelberg-New York.
- 3. Vasil'ev, A. F., Vasil'eva, T. I., Tyutyanov, V. N. 2010, "On the finite groups of supersoluble type", Siberian Math. J., vol. 51, № 6, pp. 1004-1012.

- 4. Monakhov, V. S. 2021, "Three Formations over \(\math{U}'', Math. Notes, vol. 110, № 3, pp. 339-346. \)
- 5. Ballester-Bolinches, A. & Ezquerro, L. M. 2006, Classes of Finite Groups, Springer, Dordrecht.
- 6. Ballester-Bolinches, A., Esteban-Romero, R. & Asaad, M. 2010, Products of finite groups, Walter de Gruyter, Berlin.
- 7. Asaad, M. & Shaalan, A. 1989, "On the supersolubility of finite groups", Arch. Math., vol. 53, pp. 318-326.
- 8. Perez, E. R. 1999, "On products of normal supersoluble subgroups", Algebra Colloq., vol. 6, №3, pp. 341-347.
- 9. Doerk, K. & Hawkes, T. 1992, Finite soluble groups, Walter de Gruyter, Berlin-New York.
- 10. Skiba, A. N. 2007, "On weakly s-permutable subgroups of finite groups", J. Algebra, vol. 315, pp. 192-209.
- 11. Ballester-Bolinches, A., Fakieh, W. M., Pedraza-Aguilera, M. C. 2019, "On products of generalised supersoluble finite groups", *Mediterr. J. Math.*, vol. 16, № 2, pp. 46-1-46-7.
- 12. Monakhov V. S. 2018, "On the supersoluble residual of mutually permutable products", PFMT, vol. 34, \mathbb{N} 1, pp. 69-70.
- 13. Vasil'ev A. F., Vasil'eva T. I., Tyutyanov V. N. 2012, "On the products of ℙ-subnormal subgroups of finite groups", Siberian Math. J., vol. 53, pp. 47-54.
- 14. Weinstein M. (ed.) 1982, Between nilpotent and solvable, Polygonal Publ. House, Passaic.

Получено 21.12.2021 Принято в печать 14.09.2022