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1. Introduction

Let 𝑛 ∈ N, and 𝑝 ∈ N be a prime number. Given a polynomial 𝑃 (𝑡) =
∑︀𝑛

𝑖=0 𝑎𝑖𝑡
𝑖 ∈ Z[𝑡] with

𝑎𝑛 ̸= 0, deg𝑃 = 𝑛 is the degree of 𝑃 and 𝐻(𝑃 ) is the height of 𝑃 , i.e. 𝐻(𝑃 ) = max06𝑖6𝑛 |𝑎𝑖|.
Denote by 𝒫6𝑛 the class of integer polynomials 𝑃 of degree at most 𝑛 and 𝒫𝑛 the class of integer
polynomials 𝑃 of degree 𝑛. Throughout this paper Q𝑝 denotes the 𝑝-adic field with 𝑝-adic metric
| · |𝑝 and Z𝑝 = {𝑥 ∈ Q𝑝 : |𝑥|𝑝 6 1} denotes the 𝑝-adic integers. A ball 𝐾(𝑎; 𝑟) in Q𝑝 is defined as

𝐾(𝑎; 𝑟) = {𝑥 ∈ Q𝑝 : |𝑥− 𝑎|𝑝 6 𝑟}.

It has diameter 𝑑𝑖𝑎𝑚(𝐾(𝑎; 𝑟)) = 𝑟 and measure 𝜇(𝐾(𝑎; 𝑟)) = 𝑟, where 𝜇 is the unique Haar
measure on the locally compact abelian group Q𝑝 such that 𝜇(Z𝑝) = 1. Let Q*

𝑝 be the smallest field
containing Q𝑝 and all algebraic numbers. In what follows the Vinogradov symbols ≪ and ≫ will be
used to avoid specifying unimportant constants (𝑓 ≪ 𝑔 means that there exists a constant c such
that 𝑓 6 𝑐𝑔 with a similar definition for 𝑓 ≫ 𝑔); if 𝑓 ≪ 𝑔 and 𝑓 ≫ 𝑔 then we write 𝑓 ≍ 𝑔.

Given any 𝑤 ∈ R+, denote by 𝐿𝑛(𝑤) the set of 𝑥 ∈ 𝐾 for which the inequality

|𝑃 (𝑥)|𝑝 < 𝐻(𝑃 )−𝑤 (1)

has infinitely many solutions in polynomials 𝑃 ∈ 𝒫6𝑛. Regarding the set 𝐿𝑛(𝑤) Sprindzuk proved
the following statement [16].

Theorem 1. Let 𝑤 > 𝑛+ 1. Then 𝜇(𝐿𝑛(𝑤)) = 0.

There are several generalizations of Sprindzuk’s result by replacing the RHS in (1) with a
monotonically/non-monotonically decreasing function Ψ, see [2], [5]; by replacing the LHS in (1)
with non-degenerate curves/non-degenerate manifolds in higher dimensions, see [1], [14], [15];
by considering simultaneous approximation, see [6],[7],[13]; by considering the inhomogeneous
Diophantine approximation in the LHS in (1), see [3], [4].

Given a natural number 𝑄 > 1, consider the class of integral polynomials

𝒫𝑛(𝑄) = {𝑃 ∈ 𝒫𝑛 : 𝐻(𝑃 ) 6 𝑄}.

Let 𝐾 = 𝐾(0; 𝑝𝑛) ⊂ Q𝑝 be a ball of diameter 𝑝𝑛 centered at 0. For 𝑤 ∈ R+ denote by 𝐿𝑛(𝑄,𝑤)
the set of 𝑥 ∈ 𝐾 for which the inequality

|𝑃 (𝑥)|𝑝 < 𝑄−𝑤 (2)

has a solution in polynomials 𝑃 ∈ 𝒫𝑛(𝑄). One of the consequences of the Sprindzuk’s result is
that 𝜇(𝐿𝑛(𝑄,𝑤)) → 0 for 𝑤 > 𝑛 + 1 as 𝑄 → ∞. The main goal of this paper is to obtain a
quantitative estimate for the Haar measure of the set 𝐿𝑛(𝑄,𝑤). The first significant contribution
to obtaining an effective estimate for the set 𝐿𝑛(𝑄,𝑤) was made in [10], and it was shown that
𝜇(𝐿𝑛(𝑄,𝑤)) ≪ 𝑄−(𝑤−𝑛−1)/𝑛𝜇(𝐾) for 𝑤 > 𝑛+ 1.

We now state the main result of this paper, which consists in improving the known measure
estimate for the set 𝐿𝑛(𝑄,𝑤) in the case when 𝑤 > 3𝑛/2 + 2.

Theorem 2. Let 𝑛 ∈ N, 𝑤 ∈ R+ with 𝑤 > 3𝑛/2 + 2. Then, for any positive real number 𝜖 and
sufficiently large 𝑄, we have

𝜇(𝐿𝑛(𝑄,𝑤)) ≪ 𝑄−(𝑤−2)/𝑛+𝑛𝜖𝜇(𝐾)

where the constant implied by the Vinogradov symbol depends on 𝑛, 𝑤, 𝑝, 𝜖 and 𝐾.

Moreover, we expect that the following result to be true.
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Conjecture 1. Let 𝑛 ∈ N, 𝑤 ∈ R+ with 𝑤 > 𝑛+ 1. Then, for sufficiently large 𝑄, we have

𝜇(𝐿𝑛(𝑄,𝑤)) ≪
{︂
𝑄−(𝑤−𝑛−1)𝜇(𝐾) 𝑓𝑜𝑟 𝑛+ 1 < 𝑤 6 𝑛+ 2,

𝑄−(𝑤−2)/𝑛𝜇(𝐾) 𝑓𝑜𝑟 𝑤 > 𝑛+ 2

where the constant implied by the Vinogradov symbol depends on 𝑛, 𝑤, 𝑝 and 𝐾.

In relation to a quantitative estimate for an analogue of the set 𝐿𝑛(𝑄,𝑤) in R see [9], [11].

2. Proof of Theorem 2

2.1. Outline of the proof

For the polynomials 𝑃 of degree 𝑛 = deg𝑃 > 2 we proceed the proof of Theorem by induction
with the following induction hypothesis.

Induction Hypothesis 1. For any positive real number 𝜖, there exist a constant 𝑓(𝑛, 𝑝,𝐾, 𝑟, 𝜖)
depending on 𝑛, 𝑝, 𝐾, 𝑟 and 𝜖 such that for every 1 6 𝑚 6 𝑛− 1 one has

𝜇(𝑥 ∈ 𝐾 : ∃𝑃 ∈ 𝒫𝑚(𝑄) 𝑠.𝑡. |𝑃 (𝑥)|𝑝 < 𝑄−𝑟, 𝑟 > 𝑚+ 1) < 𝑓(𝑛, 𝑝,𝐾, 𝑟, 𝜖)𝑄
−(𝑟−2)

𝑚
+𝑚𝜖𝜇(𝐾)

for 𝑄 sufficiently large.

The base case for 𝑚 = 1 follows from the following result which was proved in [10].

Lemma 1. Let 𝐾0 = 𝐾0(0; 𝑝
𝑟) ⊂ Q𝑝 be a ball of diameter 𝑝𝑟 centered at 0 with 𝑟 > 0. Define

𝐽(𝑄) to be the set of points 𝑥 ∈ 𝐾0 for which the inequality |𝑃1(𝑥)|𝑝 = |𝑎𝑥+ 𝑏|𝑝 < 𝑄−𝑤 holds with
𝑤 > 2 for some 𝑃 ∈ 𝒫1(𝑄). Then 𝜇(𝐽(𝑄)) ≪ 𝑄2−𝑤𝜇(𝐾0) for sufficiently large 𝑄.

Next, the proof is divided into two cases: irreducible and reducible polynomials.

2.2. Irreducible polynomials

In this section, we consider only irreducible polynomials 𝑃 from the class of polynomials 𝒫𝑛(𝑄).
Denote by 𝐿𝐼𝑅𝑅𝑛 (𝑄,𝑤) a set of points 𝑥 ∈ 𝐾 such that there exists an irreducible polynomial
𝑃 ∈ 𝒫𝑛(𝑄) satisfying the inequality |𝑃 (𝑥)|𝑝 < 𝑄−𝑤.

2.2.1. Preliminaries

We will consider only leading polynomials, that is those polynomials 𝑃 ∈ 𝒫𝑛 which satisfy

|𝑎𝑛(𝑃 )| ≫ 𝐻(𝑃 ), |𝑎𝑛|𝑝 > 𝑝−𝑛. (3)

It was shown in [16] that if polynomial 𝑃 does not satisfy the first inequality in (3) then a
transformation 𝑆(𝑡) = 𝑃 (𝑡 +𝑚) for some 0 6 𝑚 6 𝑛 can be performed followed by an inversion
(if necessary) to obtain 𝑇 (𝑡) = 𝑡𝑛𝑆(1𝑡 ). Thus, this new polynomial 𝑇 (𝑡) =

∑︀𝑛
𝑖=0 𝑏𝑖𝑡

𝑖 ∈ Z[𝑡] satisfies
|𝑏𝑛| ≫ 𝐻(𝑇 ) ≍ 𝐻(𝑃 ). These transformations preserve measures (up to a constant) of sets which
satisfy inequality of the form (2).

Consider irreducible polynomials 𝑃 ∈ 𝒫𝑛 satisfying (3). Let 𝛼1, 𝛼2, . . . , 𝛼𝑛 be the roots of the
polynomial 𝑃 in Q*

𝑝. Define the sets

𝑆𝑃 (𝛼𝑖) = {𝑥 ∈ Q𝑝 : |𝑥− 𝛼𝑖|𝑝 = min16𝑚6𝑛|𝑥− 𝛼𝑚|𝑝}, 1 6 𝑖 6 𝑛.

Further assume without loss of generality that 𝑖 = 1.
The resultant of 𝑃 (𝑥) = 𝑎𝑛

∏︀𝑛
𝑖=1(𝑥−𝛼𝑖) and 𝑄(𝑥) = 𝑏𝑚

∏︀𝑚
𝑗=1(𝑥− 𝛽𝑗) is defined as 𝑅(𝑃,𝑄) =

= 𝑎𝑚𝑛 𝑏
𝑛
𝑚

∏︀
16𝑖6𝑛

∏︀
16𝑗6𝑚(𝛼𝑖−𝛽𝑗), and the discriminant of 𝑃 is defined as 𝐷(𝑃 ) = 𝑎2𝑛−2

𝑛

∏︀
16𝑖<𝑗6𝑛

(𝛼𝑖 − 𝛼𝑗)
2.

A number of lemmas for later use are now given.
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Lemma 2. Let 𝑃 =
∑︀𝑛

𝑖=0 𝑎𝑖𝑡
𝑖 be a polynomial with rational integer coefficients. If |𝑎𝑛|𝑝 > 𝑐1,

where 𝑐1 is a constant depending only on 𝑛, then

|𝛼𝑖|𝑝 6 max(1/𝑐1, 1)

for every root 𝛼𝑖, 𝑖 = 1, 2, . . . , 𝑛, of 𝑃 .

This is Lemma 2 of [3].

Suppose that 𝑃 ∈ 𝒫𝑛 satisfies (3). From Lemma 2 therefore

|𝛼𝑖|𝑝 < 𝑝𝑛, 𝑖 = 1, 2, . . . , 𝑛. (4)

Lemma 3 ([16, 3]). Let 𝑥 ∈ 𝑆𝑃 (𝛼1). Then

|𝑥− 𝛼1|𝑝 6 |𝑃 (𝑥)|𝑝|𝑃 ′(𝑥)|−1
𝑝 for 𝑃 ′(𝑥) ̸= 0,

|𝑥− 𝛼1|𝑝 6 |𝑃 (𝑥)|𝑝|𝑃 ′(𝛼1)|−1
𝑝 for 𝑃 ′(𝛼1) ̸= 0,

and

|𝑥− 𝛼1|𝑝 6 min26𝑗6𝑛(|𝑃 (𝑥)|𝑝|𝑃 ′(𝛼1)|−1
𝑝

𝑗∏︁
𝑘=2

|𝛼1 − 𝛼𝑘|𝑝)
1
𝑗 for 𝑃 ′(𝛼1) ̸= 0.

Lemma 4. Let 𝐾 ⊂ Q𝑝 be a ball and 𝐵 ⊂ 𝐾 be a measurable set satisfying 𝜇(𝐵) >
> 𝑚−1𝜇(𝐾) > 0, 𝑚 ∈ N. Assume that for all 𝑥 ∈ 𝐵 we have |𝑃 (𝑥)|𝑝 < 𝐻(𝑃 )−𝑎, where 𝑎 > 0 and
deg𝑃 6 𝑛. Then for all 𝑥 ∈ 𝐾 we have

|𝑃 (𝑥)|𝑝 < (𝑝𝑚(𝑛+ 1))𝑛+1𝐻(𝑃 )−𝑎.

This is Lemma 5 of [8].

Lemma 5 ([3]). Fix 𝜃 > 0 and 𝑄 > 𝑄0(𝜃). Suppose that 𝜂 ∈ R+ and let 𝑃1, 𝑃2 ∈ 𝒫𝑛(𝑄).
Further suppose that 𝑃1, 𝑃2 have no roots in common. Let 𝐽 denote a ball with diameter 𝑄−𝜂. If
there exists real number 𝜏 > 0 such that for all 𝑥 ∈ 𝐽

max(|𝑃1(𝑥)|𝑝, |𝑃2(𝑥)|𝑝) < 𝑄−𝜏 ,

then

𝜏 + 2max(𝜏 − 𝜂, 0) < 2𝑛+ 𝜃.

This lemma will be used repeatedly throughout the proof to obtain contradictions.

Lemma 6 ([10]). Let 𝑃 ∈ 𝒫𝑛(𝑄) be an irreducible polynomial satisfying (3). Then

|𝑃 ′(𝛼1)|𝑝 ≫ 𝑄−𝑛+1

for sufficiently large 𝑄.

In what follows it is often necessary to compare the value of the derivative of 𝑃 at the root 𝛼1

with the derivative of 𝑃 at 𝑥 ∈ 𝑆𝑃 (𝛼1). The following lemma gives a general result.

Lemma 7 ([10]). Let 𝑤1, 𝑤2 ∈ R and 𝑤1 > 2𝑤2. Let 𝑥 ∈ 𝑆𝑃 (𝛼1) ∩ 𝐾 for some 𝑃 ∈ 𝒫𝑛(𝑄)
and suppose that |𝑃 (𝑥)|𝑝 < 𝑄−𝑤1. If |𝑃 ′(𝑥)|𝑝 > 𝑝(𝑛−1)2/2𝑄−𝑤2 then |𝑃 ′(𝛼1)|𝑝 = |𝑃 ′(𝑥)|𝑝. On other

hand, if |𝑃 ′(𝑥)|𝑝 6 𝑝(𝑛−1)2/2𝑄−𝑤2 then |𝑃 ′(𝛼1)|𝑝 < 𝑝(𝑛−1)2/2𝑄−𝑤2.
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2.2.2. Partitioning the roots

Depending on the size of 𝑤 we consider the partitions of the set 𝒜(𝑃 ) of roots of 𝑃 ∈ 𝒫𝑛(𝑄).
These partitions are depended of the values of the derivatives of the polynomials at the roots, and
are based on Lemma 6 and Lemma 7, and are detailed below:

𝑇0,1 : 𝑄− 1
2 < |𝑃 ′(𝛼)|𝑝 6 𝑝𝑛(𝑛−1) 𝑓𝑜𝑟 𝑤 > 3𝑛/2 + 2,

𝑇𝑛−1,1 : 𝑄−1− (𝑛−2)(𝑤−2)
2𝑛 < |𝑃 ′(𝛼)|𝑝 6 𝑄− 1

2 𝑓𝑜𝑟 3𝑛/2 + 2 < 𝑤 < 2𝑛+ 2,

𝑇𝑛−1,2 : 𝐶(𝑛, 𝑝)𝑄−𝑛+1 < |𝑃 ′(𝛼)|𝑝 6 𝑄− 1
2 𝑓𝑜𝑟 𝑤 > 2𝑛+ 2,

𝑇𝑛,1 : 𝑝(𝑛−1)2/2𝑄−𝑤
2 < |𝑃 ′(𝛼)|𝑝 6 𝑄−1− (𝑛−2)(𝑤−2)

2𝑛 𝑓𝑜𝑟 3𝑛/2 + 2 < 𝑤 6 2𝑛− 2,

𝑇𝑛,2 : 𝐶(𝑛, 𝑝)𝑄−𝑛+1 < |𝑃 ′(𝛼)|𝑝 6 𝑄−1− (𝑛−2)(𝑤−2)
2𝑛 𝑓𝑜𝑟 max(3𝑛/2 + 2, 2𝑛− 2) < 𝑤

< 2𝑛+ 2,

𝑇𝑛+1,1 : |𝑃 ′(𝛼)|𝑝 6 𝑝(𝑛−1)2/2𝑄−𝑤
2 𝑓𝑜𝑟 3𝑛/2 + 2 < 𝑤 6 2𝑛− 2,

where 𝐶(𝑛, 𝑝) arises from Lemma 6, i.e. |𝑃 ′(𝛼)|𝑝 > 𝐶(𝑛, 𝑝)𝑄−𝑛+1.

Therefore, for each range of 𝑤 there are the following subdivisions:

𝑓𝑜𝑟 3𝑛/2 + 2 < 𝑤 6 2𝑛− 2 : 𝛼 ∈ 𝑇0,1 ∪ 𝑇𝑛−1,1 ∪ 𝑇𝑛,1 ∪ 𝑇𝑛+1,1,
𝑓𝑜𝑟 max(3𝑛/2 + 2, 2𝑛− 2) < 𝑤 < 2𝑛+ 2 : 𝛼 ∈ 𝑇0,1 ∪ 𝑇𝑛−1,1 ∪ 𝑇𝑛,2,
𝑓𝑜𝑟 𝑤 > 2𝑛+ 2 : 𝛼 ∈ 𝑇0,1 ∪ 𝑇𝑛−1,2.

Let 𝜎(𝑃 ) denote the set of points for which (2) and |𝑃 ′(𝑥)|𝑝 > 𝑝(𝑛−1)2/2𝑄−𝑤
2 hold for a fixed

polynomial 𝑃 ∈ 𝒫𝑛(𝑄). By Lemma 3, one has the equality |𝑃 ′(𝛼)|𝑝 = |𝑃 ′(𝑥)|𝑝 for 𝑥 ∈ 𝑆𝑃 (𝛼) and
𝛼 ∈ 𝑇0,1 ∪ 𝑇𝑛−1,𝑖 ∪ 𝑇𝑛,𝑖, 𝑖 = 1, 2, and the set 𝜎(𝑃 ) ∩ 𝑆𝑃 (𝛼) is contained in 𝜎(𝑃, 𝛼) which is defined
by the inequality:

𝜎(𝑃, 𝛼) := {𝑥 ∈ 𝐾 ∩ 𝑆𝑃 (𝛼) : |𝑥− 𝛼|𝑝 < 𝑄−𝑤|𝑃 ′(𝛼)|−1
𝑝 }. (5)

For 𝑖 ∈ {0, 𝑛− 1, 𝑛, 𝑛+1} and 𝑗 ∈ {1, 2} define the set 𝐿𝑛,𝑖,𝑗(𝑄,𝑤) of 𝑥 ∈ 𝐾 ∩𝑆𝑃 (𝛼) for which
the system

|𝑃 (𝑥)|𝑝 < 𝑄−𝑤, 𝛼 ∈ 𝑇𝑖,𝑗

has a solution 𝑃 ∈ 𝒫𝑛(𝑄).

There follow two auxiliary results and several subsections depending on the sizes of derivatives
at certain roots.

2.2.3. Auxiliary results

The key ingredients of the proof of the theorem for the cases of large, middle and small derivatives
are the following results.

Define the set 𝐿𝑛(𝑄,𝑤, 𝑑) of 𝑥 ∈ 𝐾 ∩ 𝑆𝑃 (𝛼) for which the system

|𝑃 (𝑥)|𝑝 < 𝑄−𝑤, |𝑃 ′(𝛼)|𝑝 > 𝑐𝑄𝑑 (6)

has a solution 𝑃 ∈ 𝒫𝑛(𝑄).

Proposition 1. Let 𝑑 6 0. If there exist an integer number 𝑘 ∈ [0, 𝑛− 1] and a real number v
satisfying

max(−2𝑑, 2 +
𝑘

𝑛
(𝑤 − 2)) 6 𝑣 6 𝑤 − 𝑛+ 𝑘 − 𝑤 − 2

𝑛
(7)
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then

𝜇(𝐿𝑛(𝑄,𝑤, 𝑑)) 6

⎧⎪⎪⎨⎪⎪⎩
2 · 3𝑛−𝑘𝑐−1

0 𝑄−(𝑤−2)/𝑛𝜇(𝐾) + 𝑘𝑓(𝑘, 𝑝,𝐾,𝑤, 𝜖)2−
𝑤−2
𝑛

+𝑘𝜖𝑄−𝑤−2
𝑛

+𝑘𝜖𝜇(𝐾)
𝑖𝑓 1 6 𝑘 6 𝑛− 1,

2 · 3𝑛𝑐−1
0 𝑄−(𝑤−2)/𝑛𝜇(𝐾)

𝑖𝑓 𝑘 = 0

for 𝑤 > 3𝑛/2 + 2 and sufficiently large 𝑄. Here

𝑐0 = min(𝑐𝑝𝑛,min26𝑗6𝑛𝑐
𝑗

𝑗−1 𝑝
𝑗(𝑛−1)−𝑛2

𝑗−1 , 2−𝑘−1−𝑣(𝑝(𝑘 + 1))−𝑘−1).

Proof. Let 𝑐0 be a constant to be chosen later. For a polynomial 𝑃 ∈ 𝒫𝑛(𝑄) with 𝛼 satisfying
(6) define the ball

𝜎0(𝑃, 𝛼) = {𝑥 ∈ 𝐾 ∩ 𝑆𝑃 (𝛼) : |𝑥− 𝛼|𝑝 < 𝑐0𝑄
−𝑣|𝑃 ′(𝛼)|−1

𝑝 }.

Denote by 𝑅0(𝑃 ) the set of roots of the polynomial 𝑃 satisfying the condition |𝑃 ′(𝛼)|𝑝 > 𝑐𝑄𝑑. Let
𝜎0(𝑃 ) = ∪𝛼∈𝑅0(𝑃 )𝜎0(𝑃, 𝛼). From (5) and (6) it follows that 𝜇(𝜎0(𝑃 )) 6 𝜇(𝐾) and 𝜎(𝑃 ) ⊆ 𝜎0(𝑃 )

for −𝑑 6 𝑣 < 𝑤, and 𝑐0 6 𝑐𝑝𝑛 and 𝑄 > 𝑄0. Also, 𝜇(𝜎(𝑃 )) 6 𝑐
−1
0 𝑄𝑣−𝑤𝜇(𝜎0(𝑃 )).

Fix 𝑘, 𝑘 ∈ [0, 𝑛 − 1]. For each (𝑛 − 𝑘)-tuple b𝑘 = (𝑏𝑛, . . . , 𝑏𝑘+1) ∈ Z𝑛−𝑘 such that |𝑏𝑖| 6 𝑄 for
𝑖 = 𝑘 + 1, . . . , 𝑛 define the following subclass of 𝒫𝑛(𝑄)

𝒫𝑛(𝑄,b𝑘) = {𝑃 =
𝑛∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 ∈ 𝒫𝑛(𝑄) : 𝑎𝑖 = 𝑏𝑖 𝑖𝑓 𝑘 + 1 6 𝑖 6 𝑛}.

Note that 𝒫𝑛(𝑄) = ∪b𝑘
𝒫𝑛(𝑄,b𝑘) and the number of different vectors b𝑘 does not exceed

(2𝑄+ 1)𝑛−𝑘.

The balls 𝜎0(𝑃, 𝛼) are divided into essential and inessential domains for 𝑃 ∈ 𝒫𝑛(𝑄,b𝑘). First,
the essential balls 𝜎0(𝑃, 𝛼) are considered. By definition∑︁

𝑃∈𝒫𝑛(𝑄,b𝑘)

∑︁
𝛼∈𝑅0(𝑃 ), 𝜎0(𝑃,𝛼) 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙

𝜇(𝜎0(𝑃, 𝛼)) 6 2𝜇(𝐾).

Using this and the fact that the number of different vectors b𝑘 does not exceed (2𝑄 + 1)𝑛−𝑘, it
follows that∑︁

b𝑘

∑︁
𝑃∈𝒫𝑛(𝑄,b𝑘)

𝜇(𝜎(𝑃 )) 6 2 · 3𝑛−𝑘𝑐−1
0 𝑄𝑣−𝑤+𝑛−𝑘 6 2 · 3𝑛−𝑘𝑐−1

0 𝑄−(𝑤−2)/𝑛𝜇(𝐾) (8)

for 𝑣 6 𝑤 − 𝑛+ 𝑘 − (𝑤 − 2)/𝑛 and 𝑄 > 𝑄0.

We now turn to the inessential balls. Suppose that 𝜎0(𝑃, 𝛼) is innessential so that there exists
𝑃 ∈ 𝒫𝑛(𝑄,b𝑘), 𝑃 ̸= 𝑃 such that 𝜇(𝜎0(𝑃, 𝑃 )) = 𝜇(𝜎0(𝑃, 𝛼1) ∩ 𝜎0(𝑃 )) > 𝜇(𝜎0(𝑃, 𝛼))/2. It can be
readily verified that on 𝜎0(𝑃, 𝑃 )

|(𝑗!)−1𝑃 (𝑗)(𝛼)(𝑥− 𝛼1)
𝑗 |𝑝 < 𝑝𝑛

2−𝑗(𝑛−1)𝑐𝑗0𝑐
−𝑗𝑄(−𝑑−𝑣)𝑗

6 𝑐0𝑄
−𝑣, 2 6 𝑗 6 𝑛,

for 𝑣 > −2𝑑, 𝑑 6 0, 𝑐0 6 min26𝑗6𝑛𝑐
𝑗

𝑗−1 𝑝
𝑗(𝑛−1)−𝑛2

𝑗−1 . Thus, using the Taylor expansion of 𝑃 in the
neighbourhood of 𝛼, it is easy to obtain |𝑃 (𝑥)|𝑝 < 𝑐0𝑄

−𝑣, 𝑥 ∈ 𝜎0(𝑃, 𝑃 ). Similar estimate holds for
𝑃 on 𝜎0(𝑃, 𝑃 ).
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Put 𝑅(𝑡) = 𝑃 (𝑡) − 𝑃 (𝑡) so that deg𝑅 = 𝑛𝑅 6 𝑘 and 𝐻(𝑅) 6 2𝑄. Then, by Lemma 4, in
𝜎0(𝑃, 𝛼1) we have

|𝑅(𝑥)|𝑝 < (2𝑝(𝑘 + 1))𝑘+1𝑐0𝑄
−𝑣

= 2𝑘+1+𝑣(𝑝(𝑘 + 1))𝑘+1𝑐0𝑄
−𝑣
1

for 𝑄1 = 2𝑄. Choose 𝑐0 6 2−𝑘−1−𝑣(𝑝(𝑘 + 1))−𝑘−1. Then |𝑅(𝑥)|𝑝 < 𝑄−𝑣
1 in 𝜎0(𝑃, 𝛼1).

First, consider the case when 1 6 𝑛𝑅 6 𝑘 6 𝑛 − 1. Applying the Induction Hypothesis 1 to
polynomials 𝑅 ∈ 𝒫𝑛𝑅(𝑄1), we obtain

𝜇(𝐿𝑛𝑅(𝑄1, 𝑣)) 6 𝑓(𝑛𝑅, 𝑝,𝐾, 𝑣, 𝜖)𝑄
−(𝑣−2)/𝑛𝑅+𝑛𝑅𝜖
1 𝜇(𝐾)

for 𝑣 > 3𝑛𝑅/2 + 2.
Second, consider the case when 𝑛𝑅 6 𝑘 = 0. From |𝑅(𝑥)|𝑝 < 𝑄−𝑣

1 and |𝑅(𝑥)|𝑝 > |𝑅(𝑥)|−1 >
> (2𝑄)−1 since 𝑅(𝑥) = 𝑎′0 and 1 6 |𝑎′0| 6 2𝑄, we get a contradiction in (2𝑄)−1 6 |𝑅(𝑥)|𝑝 < 𝑄−𝑣

1 =
= (2𝑄)−𝑣 for 𝑣 > 1.

Therefore, the measure of the set of 𝑥 belonging to inessential balls does not exceed

𝜇(∪𝑘𝑛𝑅=0𝐿𝑛𝑅(𝑄1, 𝑣)) 6
∑︀𝑘

𝑛𝑅=1 𝜇(𝐿𝑛𝑅(𝑄1, 𝑣))

<
∑︀𝑘

𝑛𝑅=1 𝑓(𝑛𝑘, 𝑝,𝐾, 𝑣, 𝜖)𝑄
− 𝑣−2

𝑛𝑅
+𝑛𝑅𝜖

1 𝜇(𝐾)

6 𝑘𝑓(𝑘, 𝑝,𝐾, 𝑣, 𝜖)2−
𝑣−2
𝑘

+𝑘𝜖𝑄− 𝑣−2
𝑘

+𝑘𝜖𝜇(𝐾)

6 𝑘𝑓(𝑘, 𝑝,𝐾,𝑤, 𝜖)2−
𝑤−2
𝑛

+𝑘𝜖𝑄−𝑤−2
𝑛

+𝑘𝜖𝜇(𝐾)

for 𝑣 > 2 + 𝑘
𝑛(𝑤 − 2) and 𝑤 > 3𝑛/2 + 2.

This, together with (8) gives

𝜇(𝐿𝑛(𝑄,𝑤, 𝑑)) 6 𝜇(∪b𝑘
𝒫𝑛(𝑄,b𝑘))

6

⎧⎨⎩ 2 · 3𝑛−𝑘𝑐−1
0 𝑄−(𝑤−2)/𝑛𝜇(𝐾) + 𝑘𝑓(𝑘, 𝑝,𝐾,𝑤, 𝜖)2−

𝑤−2
𝑛

+𝑘𝜖𝑄−𝑤−2
𝑛

+𝑘𝜖𝜇(𝐾)
𝑓𝑜𝑟 1 6 𝑘 6 𝑛− 1,

2 · 3𝑛𝑐−1
0 𝑄−(𝑤−2)/𝑛𝜇(𝐾)𝑓𝑜𝑟 𝑘 = 0.

2

Now we are going to prove the second result. Let 𝑎𝑖 ∈ R and 𝑏𝑖 ∈ R>0 for 𝑖 = 1, 2. Define the
set 𝐿𝑛(𝑄,𝑤, 𝑎1, 𝑎2) of 𝑥 ∈ 𝐾 ∩ 𝑆𝑃 (𝛼) for which the system

|𝑃 (𝑥)|𝑝 6 𝑄−𝑤, 𝑏1𝑄
𝑎1 < |𝑃 ′(𝛼)|𝑝 6 𝑏2𝑄𝑎2 , 𝑎1 6 𝑎2, 𝑤 > 3𝑛/2 + 2, 𝑤 > −2𝑎1 (9)

has a solution 𝑃 ∈ 𝒫𝑛(𝑄). Let 𝜖0 < 𝜖 be a sufficiently small positive real number.

Proposition 2. If there exists real number u satisfying

max(0,−𝑎2 + 𝜖0, 2𝑛+ 3𝑎2 + 𝜃 + 3𝜖0) 6 𝑢 6 𝑤 + 𝑎1 − (𝑤 − 2)/𝑛+ 𝜖 (10)

for some values of 𝜃 > 0, then

𝜇(𝐿𝑛(𝑄,𝑤, 𝑎1, 𝑎2)) ≪ 𝑄−(𝑤−2)/𝑛+𝜖𝜇(𝐾)

for sufficiently large 𝑄.

Proof. Divide the ball 𝐾 into smaller balls 𝐾𝑖 with diameter 𝜇(𝐾𝑖) = 𝑄−𝑢. It is clear that
𝜇(𝐾𝑖) 6 𝜇(𝐾) for 𝑢 > 0, and 𝜇(𝜎(𝑃, 𝛼)) 6 𝜇(𝐾𝑖) for 𝑤 > −2𝑎1, 𝑢 < 𝑤 + 𝑎1 and sufficiently large
𝑄. We say that a polynomial 𝑃 belongs to 𝐾𝑖 if there exists 𝑥 ∈ 𝐾𝑖 such that (9) holds.

If there is at most one irreducible polynomial 𝑃 ∈ 𝒫𝑛(𝑄) that belongs to every ball 𝐾𝑖 then by
(5) the measure of these x, that satisfy (9), does not exceed

𝑛𝑏−1
1 𝑄−𝑤−𝑎1+𝑢𝜇(𝐾) 6 𝑛𝑏−1

1 𝑄−(𝑤−2)/𝑛+𝜖𝜇(𝐾) (11)
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for 𝑢 6 𝑤 + 𝑎1 − (𝑤 − 2)/𝑛+ 𝜖.
If at least two irreducible polynomials 𝑃𝑖 of the form 𝑃𝑖(𝑡) = 𝑠𝑖𝑃 (𝑡) for the same 𝑃 , 𝑠𝑖 ∈ Z,

belong to the ball 𝐾𝑖 then the measure in this case coincides (up to a constant) with the measure
in (11).

Now show that the assumption that at least two irreducible polynomials 𝑃1 and 𝑃2, 𝑃1 ̸= 𝑃2,
without common roots belong to the ball 𝐾𝑖 will lead to a contradiction. Using Taylor series
expansion, it can be readily verified that on 𝐾𝑖,

|𝑃𝑖(𝑥)|𝑝 6 max(𝑏2𝑄
−𝑢+𝑎2 ,max26𝑗6𝑛 𝑝

𝑛(𝑛−𝑗)+𝑗𝑄−𝑢𝑗)
= 𝑏2𝑄

−𝑢+𝑎2 6 𝑄−𝑢+𝑎2+𝜖0

for 𝑖 = 1, 2, 𝑎2 6 0, 𝑢 > −𝑎2+𝜖0 and sufficiently large 𝑄. We now use Lemma 5 with 𝜏 = 𝑢−𝑎2−𝜖0
and 𝜂 = 𝑢. Then,

𝜏 + 2max(𝜏 − 𝜂, 0) = 𝑢− 3𝑎2 − 3𝜖0.

From Lemma 5

𝑢− 3𝑎2 − 3𝜖0 < 2𝑛+ 𝜃

for all 𝜃 > 0 which is a contradiction if 𝑢 > 2𝑛+ 3𝑎2 + 3𝜖0 + 𝜃 for some values of 𝜃. 2

2.2.4. Large derivative

This section deals with the case when the derivatives of the polynomials at the roots are large.

Proposition 3. For sufficiently large 𝑄, 𝑛 > 1 and 𝑤 > 𝑛+ 2

𝜇(𝐿𝑛,0,1(𝑄,𝑤)) ≪ 𝑄−(𝑤−2)/𝑛𝜇(𝐾).

Proof. Take 𝑑 = −1/2 and 𝑐 = 1 in Proposition 1. Then 𝐿𝑛,0,1(𝑄,𝑤) ⊆ 𝐿𝑛(𝑄,𝑤,−1/2). In
this case we choose 𝑘 = 0 and 𝑣 = 2. It is easy to check that the conditions (7) are satisfied for
𝑤 > 𝑛+ 2, and

𝜇(𝐿𝑛,0,1(𝑄,𝑤)) 6 2 · 3𝑛𝑐−1
0 𝑄−(𝑤−2)/𝑛𝜇(𝐾)

for sufficiently large 𝑄, where 𝑐0 = min(min26𝑗6𝑛𝑝
𝑗(𝑛−1)−𝑛2

𝑗−1 , 2−3𝑝−1). 2

2.2.5. Special cases 𝑛 = 2 and 𝑛 = 3 for a non-large derivative

This section deals with special cases when the derivatives of the quadratic and cubic polynomials
at the roots are taking non-large values.

Case: 𝑛 = 2
Note that the set 𝐿𝐼𝑅𝑅2 (𝑄,𝑤) ∖ 𝐿2,0,1(𝑄,𝑤) is defined as the set of 𝑥 ∈ 𝐾 ∩ 𝑆𝑃 (𝛼) for which

|𝑃 (𝑥)|𝑝 < 𝑄−𝑤, 𝐶(2, 𝑝)𝑄−1 < |𝑃 ′(𝛼)|𝑝 6 𝑄1/2

hold for some 𝑃 ∈ 𝒫2(𝑄). To find the estimate of the measure for the last set we will use
Proposition 2. Take 𝑎1 = −1, 𝑎2 = −1/2, 𝑏1 = 𝐶(2, 𝑝), 𝑏2 = 1 in the Proposition 2. In this
case we choose 𝑢 = 𝑤/2 + 𝜖. It easy to check that the conditions (10) are satisfied for 𝑤 > 5,
𝜖0 < 𝜖/4, 𝜃 6 𝜖/4, and 𝜇(𝐿𝐼𝑅𝑅2 (𝑄,𝑤) ∖ 𝐿2,0,1(𝑄,𝑤)) ≪ 𝑄−(𝑤−2)/2+𝜖𝜇(𝐾) for sufficiently large 𝑄.

Case: 𝑛 = 3
Let 𝐿𝐼𝑅𝑅3 (𝑄,𝑤)∖𝐿3,0,1(𝑄,𝑤) = 𝐿′

3(𝑄,𝑤)∪𝐿′′
3(𝑄,𝑤), where the set 𝐿

′
3(𝑄,𝑤) is defined as the set

of 𝑥 ∈ 𝐾∩𝑆𝑃 (𝛼) satisfying |𝑃 (𝑥)|𝑝 < 𝑄−𝑤, 𝑄−1 < |𝑃 ′(𝛼)|𝑝 6 𝑄−1/2 for some 𝑃 ∈ 𝒫3(𝑄); and the
set 𝐿′′

3(𝑄,𝑤) consists of 𝑥 ∈ 𝐾 ∩ 𝑆𝑃 (𝛼) for which |𝑃 (𝑥)|𝑝 < 𝑄−𝑤, 𝐶(3, 𝑝)𝑄−2 < |𝑃 ′(𝛼)|𝑝 6 𝑄−1

hold for some 𝑃 ∈ 𝒫3(𝑄).
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To estimate the measure of the set 𝐿′
3(𝑄,𝑤) we will use Proposition 1. Take 𝑑 = −1 and 𝑐 = 1

in Proposition 1. Then 𝐿′
3(𝑄,𝑤) ⊆ 𝐿3(𝑄,𝑤,−1). In this case we choose 𝑘 = 0 and 𝑣 = 2. It is easy

to check that the conditions (7) are satisfied for 𝑤 > 6.5, and

𝜇(𝐿′
3(𝑄,𝑤)) 6 54𝑝5𝑄−(𝑤−2)/3𝜇(𝐾)

for sufficiently large 𝑄.

To estimate the measure of the set 𝐿′′
3(𝑄,𝑤) we will use Proposition 2. Take 𝑎1 = −2,

𝑎2 = −1, 𝑏1 = 𝐶(3, 𝑝), 𝑏2 = 1 in the Proposition 2. In this case we choose 𝑢 = 2𝑤/3 − 4/3 + 𝜖.
It easy to check that the conditions (10) are satisfied for 𝑤 > 13/2, 𝜖0 < 𝜖/4, 𝜃 6 𝜖/4, and
𝜇(𝐿′′

3(𝑄,𝑤)) ≪ 𝑄−(𝑤−2)/3+𝜖𝜇(𝐾) for sufficiently large 𝑄.

Thus, 𝜇(𝐿𝐼𝑅𝑅3 (𝑄,𝑤) ∖ 𝐿3,0,1(𝑄,𝑤)) ≪ 𝑄−(𝑤−2)/3+𝜖𝜇(𝐾) for 𝑤 > 13/2 and sufficiently large 𝑄.

From now on 𝑛 > 4.

2.2.6. Middle value derivative

This section deals with the case when the derivatives of the polynomials at the roots are taking
middle values.

Case 1: 𝑤 > 2𝑛+ 2

Proposition 4. Let 𝑛 > 2 and 𝑤 > 2𝑛+ 2. For sufficiently large 𝑄

𝜇(𝐿𝑛,𝑛−1,2(𝑄,𝑤)) ≪ 𝑄−(𝑤−2)/𝑛+(𝑛−2)𝜖𝜇(𝐾).

Proof. Take 𝑑=−𝑛+1 and 𝑐=𝐶(𝑛, 𝑝) in Proposition 1. Then 𝐿𝑛,𝑛−1,2(𝑄,𝑤)⊆𝐿𝑛(𝑄,𝑤,−𝑛+1).

In this case we choose 𝑘 = 𝑛− 2 and 𝑣 = (𝑤−2)(𝑛−1)
𝑛 . It is easy to check that the conditions (7) are

satisfied for 𝑛 > 2 and 𝑤 > 2𝑛+ 2, and

𝜇(𝐿𝑛,𝑛−1,2(𝑄,𝑤))62·32𝑐−1
0 𝑄−(𝑤−2)/𝑛𝜇(𝐾)+(𝑛−2)𝑓(𝑛−2, 𝑝,𝐾,𝑤, 𝜖)2−

𝑤−2
𝑛

+(𝑛−2)𝜖𝑄−𝑤−2
𝑛

+(𝑛−2)𝜖𝜇(𝐾)

for sufficiently large 𝑄, where

𝑐0 = min(𝐶(𝑛, 𝑝)𝑝𝑛,min26𝑗6𝑛(𝐶(𝑛, 𝑝))
𝑗

𝑗−1 𝑝
𝑗(𝑛−1)−𝑛2

𝑗−1 , 2−𝑛+1−(𝑤−2)(𝑛−1)/𝑛(𝑝(𝑛− 1))−𝑛+1).

2

Case 2: 𝑤 < 2𝑛+ 2

Define the set 𝐿′
𝑛,𝑛−1,1(𝑄,𝑤) of 𝑥 ∈ 𝐾 ∩ 𝑆𝑃 (𝛼) for which the system

𝑄−1− (𝑛−2)(𝑤−2)
2𝑛 < |𝑃 ′(𝛼)|𝑝 6 𝑄−1− (𝑛−3)(𝑤−2)

2𝑛 , 3𝑛/2 + 2 < 𝑤 < 2𝑛+ 2 (12)

has a solution 𝑃 ∈ 𝒫𝑛(𝑄).

Define the set 𝐿′′
𝑛,𝑛−1,1(𝑄,𝑤) of 𝑥 ∈ 𝐾 ∩ 𝑆𝑃 (𝛼) for which the system

𝑄−1− (𝑛−3)(𝑤−2)
2𝑛 < |𝑃 ′(𝛼)|𝑝 6 𝑄− 1

2 , 3𝑛/2 + 2 < 𝑤 < 2𝑛+ 2 (13)

has a solution 𝑃 ∈ 𝒫𝑛(𝑄). Then 𝐿𝑛,𝑛−1,1(𝑄,𝑤) = 𝐿′
𝑛,𝑛−1,1(𝑄,𝑤) ∪ 𝐿′′

𝑛,𝑛−1,1(𝑄,𝑤).

Proposition 5. Let 𝑛 > 4. For sufficiently large 𝑄

𝜇(𝐿′
𝑛,𝑛−1,1(𝑄,𝑤)) ≪ 𝑄−(𝑤−2)/𝑛+𝜖𝜇(𝐾).
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Proof. Take 𝑎1 = −1− (𝑛−2)(𝑤−2)
2𝑛 , 𝑎2 = −1− (𝑛−3)(𝑤−2)

2𝑛 , 𝑏1 = 𝑏2 = 1 in the Proposition 2.

First, we deal with the case 𝑛 > 5. In this case we choose 𝑢 = 1 + (𝑛−3)(𝑤−2)
2𝑛 + 1

𝑛 + 𝜖0. It
easy to check that the conditions (10) are satisfied for 𝑛 > 5, 𝑤 > 3𝑛/2 + 2, 𝜖0 < min(𝜖, 1

2𝑛),

𝜃 6 𝑛−5+ 1
𝑛 −2𝜖0, and in this case 𝜇(𝐿

′
𝑛,𝑛−1,1(𝑄,𝑤)) ≪ 𝑄−(𝑤−2)/𝑛+𝜖𝜇(𝐾) for sufficiently large 𝑄.

Second, we consider the case when 𝑛 = 4. In this case we choose 𝑢 = 2𝑛−3− 3(𝑛−3)(𝑤−2)
2𝑛 + 1

𝑛+𝜃.
Choose 𝜖0 < min(𝜖, 1

3𝑛). It easy to check that the conditions (10) are satisfied for 𝑛 = 4,

3𝑛/2+2 < 𝑤 < 2𝑛+2, and 0 < 𝜃 6 𝑛− 11
4 − 1

𝑛+𝜖, and in this case 𝜇(𝐿
′
𝑛,𝑛−1,1(𝑄,𝑤)) ≪ 𝑄−(𝑤−2)/𝑛+𝜖·

· 𝜇(𝐾) for sufficiently large 𝑄. 2

Proposition 6. For sufficiently large 𝑄

𝜇(𝐿′′
𝑛,𝑛−1,1(𝑄,𝑤)) ≪ 𝑄−(𝑤−2)/𝑛+(𝑛−3)𝜖𝜇(𝐾).

Proof. Take 𝑑 = −1− (𝑛−3)(𝑤−2)
2𝑛 and 𝑐 = 1 in Proposition 1. Then 𝐿′′

𝑛,𝑛−1,1(𝑄,𝑤) ⊆
⊆ 𝐿𝑛(𝑄,𝑤,−1− (𝑛−3)(𝑤−2)

2𝑛 ). In this case we choose 𝑘 = 𝑛− 3 and 𝑣 = 2+ (𝑤−2)(𝑛−3)
𝑛 . It is easy to

check that the conditions (7) are satisfied for 𝑤 > 3𝑛/2 + 2, and

𝜇(𝐿′′
𝑛,𝑛−1,1(𝑄,𝑤))62·33𝑐−1

0 𝑄−(𝑤−2)/𝑛𝜇(𝐾)+(𝑛−3)𝑓(𝑛−3,𝑝,𝐾,𝑤, 𝜖)2−
𝑤−2
𝑛

+(𝑛−3)𝜖𝑄−𝑤−2
𝑛

+(𝑛−3)𝜖𝜇(𝐾)

for sufficiently large 𝑄, where

𝑐0 = min(𝑝𝑛,min26𝑗6𝑛𝑝
𝑗(𝑛−1)−𝑛2

𝑗−1 , 2−𝑛−(𝑤−2)(𝑛−3)/𝑛(𝑝(𝑛− 2))−𝑛+2).

2

2.2.7. Small derivative

This section deals with the case when the derivatives of the polynomials at the roots are small.

Proposition 7. Let 𝑛 > 3. For sufficiently large 𝑄

𝜇(𝐿𝑛,𝑛,1(𝑄,𝑤)) ≪ 𝑄−(𝑤−2)/𝑛+𝜖𝜇(𝐾).

Proof. Take 𝑎1 = −𝑤/2, 𝑎2 = −1 − (𝑛 − 2)(𝑤 − 2)/(2𝑛), 𝑏1 = 𝑝(𝑛−1)2/2, 𝑏2 = 1 in

the Proposition 2. In this case we choose 𝑢 = 1 + (𝑛−2)(𝑤−2)
2𝑛 + 𝜖0. It easy to check that the

conditions (10) are satisfied for 𝑛 > 3, 𝑤 > 3𝑛/2 + 2, 𝜖0 < min(𝜖, 13), 𝜃 6 𝑛 − 2 − 2𝜖0, and

𝜇(𝐿𝑛,𝑛,1(𝑄,𝑤)) ≪ 𝑄−(𝑤−2)/𝑛+𝜖𝜇(𝐾) for sufficiently large 𝑄. 2

Proposition 8. Let 𝑛 > 3. For sufficiently large 𝑄

𝜇(𝐿𝑛,𝑛,2(𝑄,𝑤)) ≪ 𝑄−(𝑤−2)/𝑛+𝜖𝜇(𝐾).

Proof. Take 𝑎1 = −𝑛 + 1, 𝑎2 = −1 − (𝑛 − 2)(𝑤 − 2)/(2𝑛), 𝑏1 = 𝐶(𝑛, 𝑝), 𝑏2 = 1 in the

Proposition 2. In this case we choose 𝑢 = 1 + (𝑛−2)(𝑤−2)
2𝑛 + 𝜖0. It easy to check that the conditions

(10) are satisfied for 𝑛 > 3, 𝑤 > max(3𝑛/2 + 2, 2𝑛 − 2), 𝜖0 < min(𝜖, 13), 𝜃 6 𝑛 − 2 − 2𝜖0, and

𝜇(𝐿𝑛,𝑛,2(𝑄,𝑤)) ≪ 𝑄−(𝑤−2)/𝑛+𝜖𝜇(𝐾) for sufficiently large 𝑄. 2
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2.2.8. Very small derivative

In this section, we consider the case when the derivative is very small. Recall that 𝐿𝑛,𝑛+1,1(𝑄,𝑤)
is set of 𝑥 ∈ 𝐾 ∩ 𝑆𝑃 (𝛼1) with 𝛼1 ∈ 𝑇𝑛+1,1 for which the system

|𝑃 (𝑥)|𝑝 < 𝑄−𝑤, |𝑃 ′(𝛼1)| 6 𝑝(𝑛−1)2/2𝑄−𝑤/2 (14)

has a solution in polynomials 𝑃 ∈ 𝒫𝑛(𝑄). Define by 𝜎*(𝑃 ) the set of solutions of the system (14)
for a fixed polynomial 𝑃 ∈ 𝒫𝑛(𝑄).

Let 𝛼1 be any root of a reducible polynomial 𝑃 ∈ 𝒫𝑛(𝑄). Reorder the other roots of 𝑃 so that

|𝛼1 − 𝛼2|𝑝 6 |𝛼1 − 𝛼3|𝑝 6 . . . 6 |𝛼1 − 𝛼𝑛|𝑝.

For the polynomial 𝑃 define the real numbers 𝜌𝑗 by

|𝛼1 − 𝛼𝑗 |𝑝 = 𝑄−𝜌𝑗 , 2 6 𝑗 6 𝑛, 𝜌2 > 𝜌3 > . . . > 𝜌𝑛. (15)

Let 0 < 𝜖1 <
1
𝑛2 be sufficiently small, and 𝑇 = [𝜖−1

1 ] + 1. Also, define the integers 𝑙𝑗 , 2 6 𝑗 6 𝑛, by
the relations

𝑙𝑗 − 1

𝑇
6 𝜌𝑗 <

𝑙𝑗
𝑇
, 𝑙2 > 𝑙3 > . . . > 𝑙𝑛 > 0. (16)

Finally, define the numbers 𝑞𝑖 by 𝑞𝑖 =
𝑙𝑖+1+...+𝑙𝑛

𝑇 (1 6 𝑖 6 𝑛 − 1). Now for every polynomial 𝑃 we
define a vector l = (𝑙2, . . . , 𝑙𝑛). The number of different vectors l is a constant depending on 𝑛, 𝑝 and
𝜖1. Let 𝒫𝑛(𝑄, l) be the class of irreducible polynomials 𝑃 ∈ 𝒫𝑛(𝑄) satisfying (3) and corresponding
to a vector l.

For 𝑘 ∈ N ∪ {0}, let 𝒫𝑛(𝑄, l, 𝑘) denote the subclass of 𝒫𝑛(𝑄, l) given by

𝒫𝑛(𝑄, l, 𝑘) = {𝑃 ∈ 𝒫𝑛(𝑄, l) : 𝑄𝑘𝜖1 6 𝐻(𝑃 ) < 𝑄(𝑘+1)𝜖1}.

Then we have 𝒫𝑛(𝑄) = ∪l∪𝑇−1
𝑘=0 𝒫𝑛(𝑄, l, 𝑘). For 𝑃 ∈ 𝒫𝑛(𝑄, l, 𝑘) satisfying (3) we have the following

estimates
|𝑃 ′(𝛼1)|𝑝 > 𝑝−𝑛𝑄−𝑞1 𝑎𝑛𝑑 |𝑃 (𝑙)(𝛼1)|𝑝 6 𝑄−𝑞𝑙+(𝑛−𝑙)𝜖1 , 1 6 𝑙 6 𝑛− 1, (17)

which come from (15)–(16) and

𝑃 (𝑙)(𝛼1) = 𝑙!𝑎𝑛(𝑃 )
∑︁

(𝑗1,𝑗2,...,𝑗𝑛−𝑙)⊂(2,3,...,𝑛), 𝑗𝑠 ̸=𝑗𝑘, 𝑃 (𝛼𝑗𝑠 )=0

𝑛−𝑙∏︁
𝑠=1

(𝛼1 − 𝛼𝑗𝑠).

Also, by (14) and (17), we get 𝑝−𝑛𝑄−𝑞1 < |𝑃 ′(𝛼1)|𝑝 6 𝑝(𝑛−1)2/2𝑄−𝑤/2, which implies that

𝑞1 > 𝑤/2 (18)

for sufficiently large 𝑄.
We say that l ∈ 𝐺− if the following condition 𝑙2/𝑇 + 𝑞1 6 𝑛+𝑛2𝜖1 holds. Similarly, we say that

l ∈ 𝐺+ if the condition 𝑙2/𝑇 + 𝑞1 > 𝑛+ 𝑛2𝜖1 holds. Then the set 𝐿𝑛,𝑛+1,1(𝑄,𝑤) can be written as

𝐿𝑛,𝑛+1,1(𝑄,𝑤) = 𝐿−
𝑛,𝑛+1,1(𝑄,𝑤) ∪ 𝐿

+
𝑛,𝑛+1,1(𝑄,𝑤),

where 𝐿∓
𝑛,𝑛+1,1(𝑄,𝑤) = ∪l∈𝐺∓ ∪𝑇−1

𝑘=0 ∪𝑃∈𝒫𝑛(𝑄,l,𝑘)𝜎
*(𝑃 ).

To establish this case we need to consider the following two propositions.

Proposition 9. For sufficiently large 𝑄, we have

𝜇(𝐿−
𝑛,𝑛+1,1(𝑄,𝑤)) ≪ 𝑄−(𝑤−2)/𝑛𝜇(𝐾).
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Proof. Divide the ball 𝐾 into smaller balls 𝐾𝑗 with 𝜇(𝐾𝑗) = 𝑄−𝑟 with 𝑟 = 𝑛 − 𝑞1 + 𝑛2𝜖1.
Lemma 5 will now be used to show there cannot exist two irreducible polynomials 𝑃1 and 𝑃2

without common roots which satisfy (14). To show this, suppose that 𝑃1, 𝑃2 ∈ 𝒫𝑛(𝑄, l, 𝑘) belong
to 𝐼𝑗 , 𝑃1 ̸= 𝑃2. Develop 𝑃1 as a Taylor series expansion in the neighbourhood 𝐾𝑗 of 𝛼1 to obtain

|𝑃1(𝑥)|𝑝 6 max16𝑗6𝑛 |(𝑗!)−1𝑃 (𝑗)(𝛼1)(𝑥− 𝛼1)
𝑗 |𝑝

6 max(𝑄−𝑞1+(𝑛−1)𝜖1−𝑟,max26𝑗6𝑛 𝑝
𝑗𝑄−𝑞𝑗+(𝑛−𝑗)𝜖1−𝑗𝑟)

6 𝑄𝑞1+(𝑛−1)𝜖1−𝑟 = 𝑄−𝑛−𝜖1(𝑛2−𝑛+1)

for 𝑙2/𝑇 + 𝑞1 6 𝑛 + 𝑛2𝜖 and sufficiently large 𝑄. Obviously, the same estimate holds for 𝑃2 on
𝐾𝑗 . Thus, there exist two polynomials 𝑃1 and 𝑃2 of height at most 𝑄4 = 𝑄(𝑘+1)𝜖1 which satisfy

|𝑃𝑖(𝑥)|𝑝 < 𝑄
−𝑛−𝜖1(𝑛

2−𝑛+1)
(𝑘+1)𝜖1

4 on a ball with diameter 𝑄
−𝑛+𝑞1−𝑛2𝜖1

(𝑘+1)𝜖1
4 . Then Lemma 5 can be used with

𝜏 = 𝑛+𝜖1(𝑛2−𝑛+1)
(𝑘+1)𝜖1

and 𝜂 = 𝑛−𝑞1+𝑛2𝜖1
(𝑘+1)𝜖1

. Putting these together gives that

𝜏 + 2max(𝜏 − 𝜂, 0) = 𝑛+2𝑞1+(𝑛2−3𝑛+3)𝜖1
(𝑘+1)𝜖1

>(18) 𝑛+𝑤+(𝑛2−3𝑛+3)𝜖1
(𝑘+1)𝜖1

>𝑤>
3
2
𝑛+2 5𝑛/2+2+(𝑛2−3𝑛+3)𝜖1

(𝑘+1)𝜖1

>16𝑘+161+[𝜖−1
1 ]61+𝜖−1

1
5𝑛/2+2+(𝑛2−3𝑛+3)𝜖1

1+𝜖1
= 5𝑛/2 + 2 + (𝑛2 − 11𝑛/2 + 1)𝜖1(1 + 𝜖1)

−1

>𝜖1>0, 𝑛>6 5𝑛/2 + 2.

From Lemma 5 this implies that 5𝑛/2+2 < 2𝑛+ 𝜃 for all 𝜃 > 0, and it is not difficult to check that
this is a contradiction for 𝜃 < 𝑛

2 + 2. Therefore, at most one polynomial 𝑃 ∈ 𝒫𝑛(𝑄, l, 𝑘) belongs to
each 𝐾𝑗 . Thus, the number of polynomials 𝑃 ∈ 𝒫𝑛(𝑄, l, 𝑘) is 𝑄𝑟𝜇(𝐾). By applying Lemma 7 and
the inequalities (17) and (2), we obtain for 𝑃 ∈ 𝒫𝑛(𝑄, l, 𝑘),

|𝑥− 𝛼1|𝑝 6 |𝑃 (𝑥)|𝑝|𝑃 (𝛼1)|−1
𝑝 < 𝑝𝑛𝑄−𝑤+𝑞1 ;

the latter set is containing the set 𝜎*(𝑃 )∩ 𝑆𝑃 (𝛼1). Thus, the measure of the set 𝐿
−
𝑛,𝑛+1,1(𝑄,𝑤) for

𝑃 ∈ 𝒫𝑛(𝑄, l, 𝑘), is
≪ 𝑄𝑛−𝑤+𝑛

2𝜖1𝜇(𝐾).

Summing the last estimate over 𝑘 and l, we obtain that

𝜇(𝐿−
𝑛,𝑛+1,1(𝑄,𝑤)) ≪

∑︀
l

∑︀[𝜖−1
1 ]

𝑘=0 𝑄
𝑛−𝑤+𝑛2𝜖1𝜇(𝐾)

≪ 𝑄−(𝑤−2)/𝑛𝜇(𝐾)

for 𝑤 > 3
2𝑛+ 2, 𝑛 > 1 and sufficiently large 𝑄.

Proposition 10. For sufficiently large 𝑄, we have

𝜇(𝐿+
𝑛,𝑛+1,1(𝑄,𝑤)) ≪ 𝑄−(𝑤−2)/𝑛𝜇(𝐾)

where the constant implied by the Vinogradov symbol depends on 𝑛, 𝑝, 𝜖1 and 𝐾.

Proof. Expressing the discriminant 𝐷(𝑃 ) of an irreducible polynomial 𝑃 ∈ 𝒫𝑛(𝑄, l) in the form
|𝐷(𝑃 )|𝑝 = |𝑎2𝑛−2

𝑛 (𝑃 )|𝑝
∏︀

16𝑖<𝑗6𝑛 |𝛼𝑖 − 𝛼𝑗 |2𝑝 and using (16), |𝑎𝑛|𝑝 6 1, and |𝐷(𝑃 )| ≪ 𝑄2𝑛−2, we
obtain

𝑛∑︁
𝑗=2

(𝑗 − 1)𝑙𝑗/𝑇 6 𝑛− 1 (19)
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for sufficiently large 𝑄. Using (19) and the definitions of 𝑞𝑖 and the set 𝐿
+
𝑛,𝑛+1,1(𝑄,𝑤), we get

𝑛+ 𝑛2𝜖1
2

+
3𝑞2
2

<
𝑞1 + 𝑙2𝑇

−1

2
+
3𝑞2
2
6 (𝑙2/𝑇+𝑞2/2)+

3𝑞2
2

= 𝑙2/𝑇+2𝑞2 6
𝑛∑︁
𝑗=2

(𝑗−1)𝑙𝑗/𝑇 6 𝑛−1 (20)

By (20) and using the definitions of 𝑞𝑖, we obtain

2𝑙3/𝑇 + 𝑞2 6 3𝑞2 < 𝑛− 2− 𝑛2𝜖1, (21)

which implies 𝑙3/𝑇 < (𝑛− 2− 𝑞2 − 𝑛2𝜖1)/2. Therefore, by (20)

𝑙3/𝑇 < (𝑛− 𝑞2 + 𝑛2𝜖1)/2 < 𝑙2/𝑇. (22)

Next we show that there is no pair 𝑃1, 𝑃2 of different polynomials in the set 𝑃 ∈ 𝒫𝑛(𝑄, l, 𝑘) with
roots 𝛼1, 𝛽1 respectively, satisfying (22) and the inequality

|𝛼1 − 𝛽1|𝑝 6 𝑄(𝑞2−𝑛−(𝑛2−2)𝜖1)/2, (23)

where 𝑃1(𝛼𝑖) = 0 and 𝑃2(𝛽𝑖) = 0 for 1 6 𝑖 6 𝑛. Assume that there exists such a pair of polynomials.
Then, by (22) and (23), we have

|𝛼𝑖 − 𝛽𝑗 |𝑝 6 max(|𝛼𝑖 − 𝛼1|𝑝, |𝛼1 − 𝛽1|𝑝, |𝛽1 − 𝛽𝑗 |𝑝)
6 max(𝑄−𝑙max(𝑖,𝑗)/𝑇+𝜖1 , 𝑄(𝑞2−𝑛−(𝑛2−2)𝜖1)/2)

6

{︃
𝑄(𝑞2−𝑛−(𝑛2−2)𝜖1)/2 𝑓𝑜𝑟 max(𝑖, 𝑗) 6 2,

𝑄−𝑙max(𝑖,𝑗)/𝑇+𝜖1 𝑓𝑜𝑟 max(𝑖, 𝑗) > 3.

Considering the resultant 𝑅(𝑃1, 𝑃2) of the polynomials 𝑃1 and 𝑃2, we obtain

|𝑅(𝑃1, 𝑃2)|𝑝 = |𝑎𝑛(𝑃1)
𝑛|𝑝|𝑎𝑛(𝑃2)

𝑛|𝑝
∏︀

16𝑖,𝑗6𝑛 |𝛼𝑖 − 𝛽𝑗 |𝑝
6 𝑄2𝑞2−2𝑛−2(𝑛2−2)𝜖1

∏︀
max(𝑖,𝑗)>3𝑄

−𝑙max(𝑖,𝑗)/𝑇+𝜖1 .

But since
∑︀

max(𝑖,𝑗)>3 𝑙max(𝑖,𝑗)/𝑇 =
∑︀𝑛

𝑗=3(2𝑗 − 1)𝑙𝑗/𝑇 > 5𝑞2 it follows that

|𝑅(𝑃1, 𝑃2)|𝑝 6 𝑄−2𝑛−3𝑞2−𝑛2𝜖1 .

Since the polynomials 𝑃1 and 𝑃2 are irreducible then |𝑅(𝑃1, 𝑃2)| ≪ 𝑄2𝑛(𝑘+1)𝜖1 and |𝑅(𝑃1, 𝑃2)|𝑝 ≫
≫ 𝑄−2𝑛(𝑘+1)𝜖1 . Thus, the inequality (23) leads to a contradiction for 𝑛 > 3 and sufficiently large
𝑄. Therefore we conclude that a ball 𝐾(𝛼1; 𝑟) with its centre at the point 𝛼1, 𝑃1(𝛼1) = 0, and
with diameter 𝑟 satisfying 𝑝−𝑟0 6 𝑟 < 𝑝−𝑟0+1 (with 𝑟0 ∈ Z) and not exceeding 𝑐𝑄(𝑞2−𝑛−(𝑛2−2)𝜖1)/2,
cannot contain a root 𝛽1 of any polynomial 𝑃2 ∈ 𝒫𝑛(𝑄, l, 𝑘) (with l ∈ 𝐺+) other than 𝑃1. We
cover each of the numbers 𝛼1 under consideration by the ball 𝐾(𝛼1; 𝑟). Thus, we see that these
balls are mutually disjoint and have the diameter ≫ 𝑄(𝑞2−𝑛−(𝑛2−2)𝜖1)/2. Therefore the number of
polynomials 𝑃1 ∈ 𝒫𝑛(𝑄, l, 𝑘) with l ∈ 𝐺+ is ≪ 𝑄(−𝑞2+𝑛+(𝑛2−2)𝜖1)/2.

By applying Lemma 3, the inequalities (17) and |𝑃 (𝑥)|𝑝 < 𝑄−𝑤, we obtain for 𝑃 ∈ 𝒫𝑛(𝑄, l, 𝑘),

|𝑥− 𝛼1|𝑝 6 (|𝑃 (𝑥)|𝑝|𝛼1 − 𝛼2|𝑝/|𝑃 ′(𝛼1)|𝑝)1/2 ≪ 𝑄(−𝑤+𝑞2)/2.

Thus, the measure of the set 𝐿+
𝑛,𝑛+1,1(𝑄,𝑤) for 𝑃 ∈ 𝒫𝑛(𝑄, l, 𝑘) with at least one root satisfying

(23), will be ≪ 𝑄(𝑛−𝑤+(𝑛2−2)𝜖1)/2. Summing the last estimate over 𝑘 and l, we obtain that

𝜇(𝐿+
𝑛,𝑛+1,1(𝑄,𝑤)) ≪

∑︀
l

∑︀𝑇−1
𝑘=0 𝑄

(𝑛−𝑤+(𝑛2−2)𝜖1)/2

≪ 𝑄−(𝑤−2)/𝑛𝜇(𝐾)

for 𝑤 > 3𝑛/2 + 2, 𝑛 > 4 and 𝜖1 < 1/𝑛2.
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2.3. Reducible polynomials

Denote by 𝐿𝑅𝐸𝐷𝑛 (𝑄,𝑤) a set of points 𝑥 ∈ 𝐾 such that there exists a reducible polynomial
𝑃 ∈ 𝒫𝑛(𝑄) satisfying the inequality |𝑃 (𝑥)|𝑝 < 𝑄−𝑤. Let 𝑃 ∈ 𝒫𝑛(𝑄) be a reducible polynomial of
the form

𝑃 (𝑥) = 𝑃1(𝑥)𝑃2(𝑥), deg𝑃1 = 𝑛1, deg𝑃2 = 𝑛− 𝑛1, 1 6 𝑛1 6 𝑛− 1,

and the inequality |𝑃 (𝑥)|𝑝 < 𝑄−𝑤 holds for 𝑥 ∈ 𝐾. For a fixed 𝑃 by 𝜆(𝑃 ) denote the set of 𝑥 ∈ 𝐾
satisfying |𝑃 (𝑥)|𝑝 < 𝑄−𝑤.

By Gelfond’s lemma [12],

2−𝑛𝐻(𝑃1)𝐻(𝑃2) 6 𝐻(𝑃 ) 6 2𝑛𝐻(𝑃1)𝐻(𝑃2).

By definition of height, we have 𝐻(𝑃𝑖) > 1 so that 𝐻(𝑃𝑖) 6 2𝑛𝑄 for 𝑖 = 1, 2.
Define 𝐿𝑅𝐸𝐷𝑛,1 (𝑄,𝑤) ⊂ 𝐿𝑅𝐸𝐷𝑛 (𝑄,𝑤) (𝐿𝑅𝐸𝐷𝑛,2 (𝑄,𝑤) respectively) to be the set of points 𝑥 ∈ 𝐾 for

which the inequality |𝑃 (𝑥)|𝑝 < 𝑄−𝑤 holds for some reducible polynomial 𝑃 ∈ 𝒫𝑛(𝑄) of the form
𝑃 (𝑥) = 𝑃1(𝑥)𝑃2(𝑥) with 1 6 𝐻(𝑃1) < 𝑄 (𝑄 6 𝐻(𝑃1) 6 2𝑛𝑄 respectively).

We need to consider two cases.

2.3.1. Case 1: 1 6 𝐻(𝑃1) < 𝑄.

Let 𝛽 ∈ (0, 1) be a sufficiently small positive real number such that 1
𝛽 ∈ N and it

satisfies the condition that will be specified later. Let the height of 𝑃1 be bounded as follows:
𝑄𝑚𝛽 6 𝐻(𝑃1) < 𝑄(𝑚+1)𝛽 where 0 6 𝑚 6 1

𝛽 − 1. Then the height of 𝑃2 satisfies 𝐻(𝑃2) 6 2𝑛𝑄1−𝑚𝛽 .
There exists 𝑎 ∈ R such that

𝜇
(︀
𝑥 ∈ 𝜆(𝑃 ) : |𝑃1(𝑥)|𝑝 < (2𝑝(𝑛1 + 1))−𝑛1−1𝑄−𝑎)︀ = 𝜇(𝜆(𝑃 ))/2. (24)

Then for the complement to (24) we have

𝜇
(︀
𝑥 ∈ 𝜆(𝑃 ) : |𝑃1(𝑥)|𝑝 > (2𝑝(𝑛1 + 1))−𝑛1−1𝑄−𝑎)︀ = 𝜇(𝜆(𝑃 ))/2

or

𝜇
(︀
𝑥 ∈ 𝜆(𝑃 ) : |𝑃2(𝑥)|𝑝 < (2𝑝(𝑛1 + 1))𝑛1+1𝑄−𝑤+𝑎)︀ = 𝜇(𝜆(𝑃 ))/2. (25)

In the next step of the proof we will use the Lemma 4. By applying Lemma 4 and the estimates
(24), (25), we have

|𝑃1(𝑥)|𝑝 < 𝑄−𝑎, 𝑄𝑚𝛽 6 𝐻(𝑃1) < 𝑄(𝑚+1)𝛽, (26)

|𝑃2(𝑥)|𝑝 < (2𝑝)𝑛+2(𝑛1 + 1)𝑛1+1(𝑛− 𝑛1 + 1)𝑛−𝑛1+1𝑄−𝑤+𝑎, 𝐻(𝑃2) 6 2𝑛𝑄1−𝑚𝛽 (27)

for all 𝑥 ∈ 𝜆(𝑃 ).
Denoteby𝑀1

𝑛1,𝑚(𝑄)asetofpoints𝑥 ∈ 𝐾 suchthatthere exists a polynomial 𝑃1 ∈ 𝒫𝑛1(𝑄
(𝑚+1)𝛽)∖

∖ 𝒫𝑛1(𝑄
𝑚𝛽) satisfying the inequality (26) for 𝑎 > 2(𝑚 + 1)𝛽 + 𝑛1(𝑤 − 2)/𝑛 − 𝑑𝑚𝜖 and 𝑀

2
𝑛1,𝑚(𝑄)

a set of points 𝑥 ∈ 𝐾 such that there exists a polynomial 𝑃2 ∈ 𝒫𝑛−𝑛1(2
𝑛𝑄1−𝑚𝛽) satisfying the

inequality (27) for 𝑎 < 2(𝑚+1)𝛽+𝑛1(𝑤− 2)/𝑛− 𝑑𝑚𝜖. Here 𝑑𝑚 = 0 for 𝑚 > 2, and 𝑑𝑚 = 𝑛1/2 for
𝑚 = 0, 1.

Let us estimate the measure of the set 𝑀1
𝑛1,𝑚(𝑄). For convenience we put 𝑄2 = 𝑄(𝑚+1)𝛽 and

𝑤1 = 2(𝑚+1)𝛽+𝑛1(𝑤−2)/𝑛−𝑑𝑚𝜖
(𝑚+1)𝛽 . Clearly 𝑀1

𝑛1,𝑚(𝑄) ⊂ 𝐿𝑛1 (𝑄2, 𝑤1) . By the Induction Hypothesis 1

the set 𝐿𝑛1 (𝑄2, 𝑤1) has measure at most

𝑓(𝑛1, 𝑝,𝐾,𝑤1, 𝜖)𝑄
−(𝑤1−2)

𝑛1
+𝑛1𝜖

2 𝜇(𝐾) = 𝑓(𝑛1, 𝑝,𝐾,𝑤1, 𝜖)
(︀
𝑄(𝑚+1)𝛽

)︀−(𝑤1−2)
𝑛1

+𝑛1𝜖
𝜇(𝐾)

= 𝑓(𝑛1, 𝑝,𝐾,𝑤1, 𝜖)𝑄
−(𝑤−2)/𝑛+𝑑𝑚𝜖/𝑛1+𝑛1𝜖(𝑚+1)𝛽𝜇(𝐾)
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for 𝑤 > 3
2𝑛((𝑚+ 1)𝛽 + 2𝑑𝑚𝜖

3𝑛1
) + 2, and sufficiently large 𝑄.

Therefore, for 𝑤 > 3𝑛/2 + 2, 1 6 𝑛1 6 𝑛− 1, and 𝑄 > 𝑄0, we have

𝐿𝑛1 (𝑄2, 𝑤1) 6

⎧⎨⎩
𝑓(𝑛, 𝑝,𝐾,𝑤, 𝜖)𝑄−(𝑤−2)/𝑛+(𝑛−1)𝜖𝜇(𝐾) 𝑓𝑜𝑟 2 6 𝑚 6 1/𝛽 − 1, 𝑑𝑚 = 0,

𝑓(𝑛, 𝑝,𝐾,𝑤, 𝜖)𝑄−(𝑤−2)/𝑛+(𝑛−1/2)𝜖𝜇(𝐾)
𝑓𝑜𝑟 𝑚 = 0, 1, 𝑑𝑚 = 𝑛1/2, 𝛽 6 (3− 𝜖)/6.

Now let us estimate the measure of the set 𝑀2
𝑛1,𝑚(𝑄). We set 𝑄3 = 2𝑛𝑄1−𝑚𝛽 and

𝑤2 =
𝑤−2(𝑚+1)𝛽−𝑛1(𝑤−2)/𝑛+𝑑𝑚𝜖−𝛽/2

1−𝑚𝛽 . In the view of the definition of the set 𝑀2
𝑛1,𝑚(𝑄), we get

|𝑃2(𝑥)| < 𝑄−𝑤2
3 , 𝐻(𝑃2) 6 𝑄3

for 𝑄 > 𝑄0. Therefore, 𝑀
2
𝑛1,𝑚(𝑄) ⊆ 𝐿𝑛−𝑛1(𝑄3, 𝑤2). Then by Induction Hypothesis 1, we obtain

𝜇(𝐿𝑛−𝑛1(𝑄3, 𝑤2)) < 𝑓(𝑛− 𝑛1, 𝑝,𝐾,𝑤2, 𝜖)𝑄
−𝑤2−2

𝑛−𝑛1
+(𝑛−𝑛1)𝜖

3 𝜇(𝐾)

= 𝑓(𝑛− 𝑛1, 𝑝,𝐾,𝑤2, 𝜖)2
− 𝑤−2

1−𝑚𝛽
+ 5𝑛𝛽−2𝑛𝑑𝑚𝜖

2(𝑛−𝑛1)(1−𝑚𝛽)
+𝑛(𝑛−𝑛1)𝜖·

·𝑄−𝑤−2
𝑛

+ 5𝛽−2𝑑𝑚𝜖
2(𝑛−𝑛1)

+(𝑛−𝑛1)(1−𝑚𝛽)𝜖𝜇(𝐾)

for 𝑤 > 2+ 3𝑛
2 (1−𝑚𝛽+ 5𝛽−2𝑑𝑚𝜖

3(𝑛−𝑛1)
) and sufficiently large 𝑄. Thus, for 𝑤 > 3𝑛/2+2, 1 6 𝑛1 6 𝑛− 1,

and 𝑄 > 𝑄0, we have

𝐿𝑛−𝑛1 (𝑄3, 𝑤2) 6

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓(𝑛− 𝑛1, 𝑝,𝐾,𝑤2, 𝜖)2

−(𝑤−2)+𝑛(𝑛−1+ 1
2(𝑛−1)

)𝜖
𝑄

−(𝑤−2)/𝑛+(𝑛−1+ 1
2(𝑛−1)

)𝜖
𝜇(𝐾)

𝑓𝑜𝑟 2 6 𝑚 6 1
𝛽 − 1, 𝑑𝑚 = 0, 𝛽 6 𝜖/5;

𝑓(𝑛, 𝑝,𝐾,𝑤, 𝜖)2−(𝑤−2)+𝑛(𝑛−1)𝜖𝑄−(𝑤−2)/𝑛+(𝑛−1)𝜖𝜇(𝐾)
𝑓𝑜𝑟 𝑚 = 0, 1, 𝑑𝑚 = 𝑛1/2, 𝛽 6 𝜖/5.

Combining the conditions imposed on the values of 𝛽, we obtain

0 < 𝛽 6 min{𝜖/5, (3− 𝜖)/6}.

Note that 𝐿𝑅𝐸𝐷𝑛,1 (𝑄,𝑤) ⊂ ∪𝑛−1
𝑛1=1 ∪06𝑚6 1

𝛽
−1

(︀
𝑀1
𝑛1,𝑚(𝑄) ∪𝑀2

𝑛1,𝑚(𝑄)
)︀
. Adding up the measures over

all cases gives that

𝜇(𝐿𝑅𝐸𝐷𝑛,1 (𝑄,𝑤)) ≪ 𝑄−𝑤−2
𝑛

+(𝑛− 1
2
)𝜖𝜇(𝐾)

for sufficiently large 𝑄.

2.3.2. Case 2: 𝑄 6 𝐻(𝑃1) 6 2𝑛𝑄.

We proceed as in Case 1. The height of 𝑃2 satisfies 𝐻(𝑃2) 6 2𝑛 and further we proceed as in
Case 1. There exists 𝑎 ∈ R such that

𝜇
(︀
𝑥 ∈ 𝜆(𝑃 ) : |𝑃1(𝑥)|𝑝 < 2−𝑛𝑎(2𝑝(𝑛1 + 1))−𝑛1−1𝑄−𝑎)︀ = 𝜇(𝜆(𝑃 ))/2. (28)

Then using Lemma 4 and the estimate (28), we get

|𝑃1(𝑥)|𝑝 < 2−𝑛𝑎𝑄−𝑎, 𝑄 6 𝐻(𝑃1) 6 2𝑛𝑄, (29)

|𝑃2(𝑥)|𝑝 < 2𝑛+2+𝑛𝑎𝑝𝑛+2(𝑛1 + 1)𝑛1+1(𝑛− 𝑛1 + 1)𝑛−𝑛1+1𝑄−𝑤+𝑎, 𝐻(𝑃2) 6 2𝑛 (30)

for all 𝑥 ∈ 𝜆(𝑃 ).
Denote by 𝑀3

𝑛1
(𝑄) a set of points 𝑥 ∈ 𝐾 such that there exists a polynomial 𝑃1 ∈ 𝒫𝑛1(2

𝑛𝑄) ∖
∖𝒫𝑛1(𝑄) satisfying the inequality (29) for 𝑎 > 2+𝑛1(𝑤−2)/𝑛 and𝑀4

𝑛1
(𝑄) a set of points 𝑥 ∈ 𝐾 such
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that there exists a polynomial 𝑃2 ∈ 𝒫𝑛−𝑛1(2
𝑛) satisfying the inequality (30) for 𝑎 < 2+𝑛1(𝑤−2)/𝑛.

Thus

𝐿𝑅𝐸𝐷𝑛,2 (𝑄,𝑤) ⊂ ∪𝑛−1
𝑛1=1

(︀
𝑀3
𝑛1
(𝑄) ∪𝑀4

𝑛1
(𝑄)
)︀
.

Clearly,

𝑀3
𝑛1
(𝑄) ⊂ 𝐿𝑛1

(︂
2𝑛𝑄, 2 +

𝑛1(𝑤 − 2)

𝑛

)︂
.

By the Induction Hypothesis 1 the set 𝐿𝑛1

(︁
2𝑛𝑄, 2 + 𝑛1(𝑤−2)

𝑛

)︁
has measure at most

𝑓(𝑛1, 𝑝,𝐾,𝑤, 𝜖) (2
𝑛𝑄)−(𝑤−2)/𝑛+𝑛1𝜖 𝜇(𝐾) 6 2−(𝑤−2)+𝑛(𝑛−1)𝜖𝑓(𝑛1, 𝑝,𝐾,𝑤, 𝜖)𝑄

−(𝑤−2)/𝑛+(𝑛−1)𝜖𝜇(𝐾)

for 𝑤 > 3
2𝑛+ 2, 𝑛1 6 𝑛− 1 and sufficiently large 𝑄.

To find the measure of the set 𝑀4
𝑛1
(𝑄) we will use direct calculations. Denote by 𝛼1 a zero

of 𝑃2 ∈ 𝒫𝑛−𝑛1(2
𝑛), and assume that 𝛼1 is such that |𝑥 − 𝛼1|𝑝 is minimal. From the identity

|𝑃2(𝑥)|𝑝 = |𝑎𝑛−𝑛1 |𝑝|𝑥− 𝛼1|𝑝 . . . |𝑥− 𝛼𝑛−𝑛1 |𝑝 it follows that |𝑥− 𝛼1|𝑝 6
(︁

|𝑃2(𝑥)|𝑝
|𝑎𝑛−𝑛1 |𝑝

)︁ 1
𝑛−𝑛1 . This means

that

𝑀4
𝑛1
(𝑄) ⊆ ∪𝑃2∈𝒫𝑛−𝑛1 (2

𝑛) ∪𝛼1∈𝒜(𝑃2) 𝜎0(𝑃2, 𝛼1)

where

𝜎0(𝑃2, 𝛼1) := {𝑥 ∈ 𝐾 : |𝑥− 𝛼1|𝑝 6 (|𝑃2(𝑥)|𝑝|𝑎𝑛−𝑛1(𝑃2)|−1
𝑝 )

1
𝑛−𝑛1 }.

This, together with the estimates (30), gives

𝜎0(𝑃2, 𝛼1) ⊂ {𝑥 ∈ 𝐾 : |𝑥− 𝛼1| 6 (24𝑛+2+𝑛1(𝑤−2)𝑝𝑛+2(𝑛1 + 1)𝑛1+1(𝑛− 𝑛1 + 1)𝑛−𝑛1+1)
1

𝑛−𝑛1𝑄−𝑤−2
𝑛 }

for 𝑃2 ∈ 𝒫𝑛−𝑛1(2
𝑛), where |𝑎𝑛−𝑛1(𝑃2)| 6 2𝑛, |𝑎𝑛−𝑛1(𝑃2)|𝑝 > |𝑎𝑛−𝑛1(𝑃2)|−1 > 2−𝑛. The number of

different polynomials 𝑃2 ∈ 𝒫𝑛−𝑛1(2
𝑛) does not exceed (2𝑛+1 + 1)𝑛−𝑛1+1. Thus,

𝜇(𝑀4
𝑛1
(𝑄)) 6

∑︀
𝑃2∈𝒫𝑛−𝑛1 (2

𝑛)

∑︀
𝛼1∈𝒜(𝑃2)

𝜇(𝜎0(𝑃2, 𝛼1))) ≪ 𝑄−𝑤−2
𝑛 𝜇(𝐾).

Therefore, since 𝐿𝑅𝐸𝐷𝑛 (𝑄,𝑤) = 𝐿𝑅𝐸𝐷𝑛,1 (𝑄,𝑤) ∪ 𝐿𝑅𝐸𝐷𝑛,2 (𝑄,𝑤) we have 𝜇(𝐿𝑅𝐸𝐷𝑛 (𝑄,𝑤)) ≪
≪ 𝑄−𝑤−2

𝑛
+(𝑛− 1

2
)𝜖𝜇(𝐾) for 𝑤 > 3

2𝑛+ 2 and sufficiently large 𝑄.
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