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1. Introduction

Let n € N, and p € N be a prime number. Given a polynomial P(t) = Y1 ;a;t' € Z[t] with
ap, # 0, deg P = n is the degree of P and H(P) is the height of P, i.e. H(P) = maxo<i<n |a;|-
Denote by P, the class of integer polynomials P of degree at most n and P, the class of integer
polynomials P of degree n. Throughout this paper Q, denotes the p-adic field with p-adic metric
|- |p and Z, = {x € Qp : |z|, < 1} denotes the p-adic integers. A ball K(a;r) in Q, is defined as

Ka;r)={z€Qp: |z —al, <r}.

It has diameter diam(K(a;r)) = r and measure u(K(a;r)) = r, where p is the unique Haar
measure on the locally compact abelian group Q) such that u(Z;) = 1. Let Q be the smallest field
containing @, and all algebraic numbers. In what follows the Vinogradov symbols < and > will be
used to avoid specifying unimportant constants (f < ¢ means that there exists a constant ¢ such
that f < cg with a similar definition for f > g); if f < g and f > g then we write f < g.

Given any w € RT, denote by L, (w) the set of # € K for which the inequality

|P()|p, < H(P)™" (1)

has infinitely many solutions in polynomials P € P«,,. Regarding the set L, (w) Sprindzuk proved
the following statement [16].

THEOREM 1. Let w > n+ 1. Then p(L,(w)) = 0.

There are several generalizations of Sprindzuk’s result by replacing the RHS in (1) with a
monotonically /non-monotonically decreasing function W, see [2], [5]; by replacing the LHS in (1)
with non-degenerate curves/non-degenerate manifolds in higher dimensions, see [1], [14], [15];
by considering simultaneous approximation, see [6],[7],[13]; by considering the inhomogeneous
Diophantine approximation in the LHS in (1), see [3], [4].

Given a natural number ) > 1, consider the class of integral polynomials

Pn(Q) ={P € P,: H(P) < Q}.

Let K = K(0;p™) C Qp be a ball of diameter p" centered at 0. For w € RT denote by L, (Q,w)
the set of x € K for which the inequality

[P(@)lp <@ (2)

has a solution in polynomials P € P,(Q). One of the consequences of the Sprindzuk’s result is
that pu(L,(Q,w)) — 0 for w > n+ 1 as @ — oo. The main goal of this paper is to obtain a
quantitative estimate for the Haar measure of the set L, (Q,w). The first significant contribution
to obtaining an effective estimate for the set L,(Q,w) was made in [10], and it was shown that
(Lo (Q,w)) < Q~(w=n=0/ny(K) for w > n + 1.

We now state the main result of this paper, which consists in improving the known measure
estimate for the set L,,(Q,w) in the case when w > 3n/2 + 2.

THEOREM 2. Let n € N, w € RT with w > 3n/2 + 2. Then, for any positive real number € and
sufficiently large Q, we have

p(Ln(Q,w)) < Q=DM (K)
where the constant wmplied by the Vinogradov symbol depends on n, w, p, € and K.

Moreover, we expect that the following result to be true.
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Conjecture 1. Let n € N, w € Rt with w > n + 1. Then, for sufficiently large Q, we have

Q_(“’_”_l),u(K) for n+l<w<n+2,
,U,(Ln<Q,’U))) < { Qf(wa)/nlu(K) for w>n-+2

where the constant implied by the Vinogradov symbol depends on n, w, p and K.

In relation to a quantitative estimate for an analogue of the set L, (Q,w) in R see [9], [11].

2. Proof of Theorem 2

2.1. Outline of the proof

For the polynomials P of degree n = deg P > 2 we proceed the proof of Theorem by induction
with the following induction hypothesis.

Induction Hypothesis 1. For any positive real number €, there exist a constant f(n,p, K,r,€)
depending on n, p, K, r and € such that for every 1 <m < n —1 one has

wa € K :3P € Pr(Q) st |P(@)]y < Q") 1 >m+1) < f(n,p, K,r,e)Qm " p(K)

for Q sufficiently large.
The base case for m = 1 follows from the following result which was proved in [10].

LEMMA 1. Let Ko = Ko(0;p") C Qp be a ball of diameter p" centered at 0 with v > 0. Define
J(Q) to be the set of points x € Ko for which the inequality |Py(z)|, = |ax + b|, < Q™" holds with
w > 2 for some P € P1(Q). Then u(J(Q)) < Q* ¥u(Ky) for sufficiently large Q.

Next, the proof is divided into two cases: irreducible and reducible polynomials.

2.2, Irreducible polynomials

In this section, we consider only irreducible polynomials P from the class of polynomials P, (Q).
Denote by LIFE(Q,w) a set of points z € K such that there exists an irreducible polynomial
P € P,(Q) satisfying the inequality |P(z)|, < Q™.

2.2.1. Preliminaries

We will consider only leading polynomials, that is those polynomials P € P, which satisfy
|an(P)[ > H(P), lanlp >p~". (3)

It was shown in [16] that if polynomial P does not satisfy the first inequality in (3) then a
transformation S(t) = P(t + m) for some 0 < m < n can be performed followed by an inversion
(if necessary) to obtain T'(t) = t"S(%). Thus, this new polynomial T'(t) = 7' bit' € Z[t] satisfies
|bp| > H(T) =< H(P). These transformations preserve measures (up to a constant) of sets which
satisfy inequality of the form (2).

Consider irreducible polynomials P € P, satisfying (3). Let aq, @, ..., a, be the roots of the
polynomial P in Q. Define the sets

Sp(ag) ={z € Qp: |z — oylp = minjcmen|T — amlp}, 1<i<n.

Further assume without loss of generality that ¢ = 1.

The resultant of P(x) = a, [}~ (z — ;) and Q(x) = by, [[[2, (z — B;) is defined as R(P, Q) =
= ap'b, [licicn icjem (i — B5), and the discriminant of P is defined as D(P) = a2n—2 [Ticicjen
(0 — ).

A number of lemmas for later use are now given.
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LEMMA 2. Let P =", a;t' be a polynomial with rational integer coefficients. If |a,|, > c1,
where c1 1s a constant depending only on n, then

||, < max(1/cq, 1)
for every root a;, 1 =1,2,...,n, of P.

This is Lemma 2 of [3].
Suppose that P € P, satisfies (3). From Lemma 2 therefore

lailp, <p", i=1,2,...,n. (4)
LEMMA 3 (|16, 3|). Let x € Sp(a1). Then
| — alp <|P(2) [P’ ()], for P'(z) # 0,

| — aulp <[P(2)|p|P'(ar) [, for P'(ax) # 0,

and

J
1
[ — anlp < mina<jcn(IP(@)p| P'(a)l, " [ lox — auly)? for P'(as) # 0.
k=2

LEMMA 4. Let K C Qp be a ball and B C K be a measurable set satisfying u(B) >
>m~u(K) >0, m € N. Assume that for all x € B we have |P(x)|, < H(P)~%, where a > 0 and
deg P < n. Then for all x € K we have

|P(2)]p < (pm(n +1))" H(P)™°.
This is Lemma 5 of [§].

LEMMA 5 ([3]). Fiz 6 > 0 and Q > Qo(0). Suppose that n € R and let P, P> € P,(Q).
Further suppose that Py, Py have no roots in common. Let J denote a ball with diameter Q. If
there exists real number T > 0 such that for all x € J

max(| P (z)|p, | P2 (7)]p) < Q77

then
T+ 2max(t —1n,0) < 2n + 6.

This lemma will be used repeatedly throughout the proof to obtain contradictions.

LeMMA 6 ([10]). Let P € P,(Q) be an irreducible polynomial satisfying (3). Then
[P'(an)]p > Q7"

for sufficiently large Q.

In what follows it is often necessary to compare the value of the derivative of P at the root ag
with the derivative of P at © € Sp(a). The following lemma gives a general result.

LeMMmA 7 ([10]). Let wi,wy € R and wy > 2ws. Let © € Sp(aq) N K for some P € P,(Q)
and suppose that |P(x)|, < Q~"'. If |P'(x)|, > p=D*2Q=w2 fhen |P'(a1)|p = |P'(2)|p. On other
hand, if |P'(z)|, < p™=D*2Q~"2 then |P'(an)l, < p=V*/2Q w2,
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2.2.2. Partitioning the roots

Depending on the size of w we consider the partitions of the set A(P) of roots of P € P,(Q).
These partitions are depended of the values of the derivatives of the polynomials at the roots, and
are based on Lemma 6 and Lemma 7, and are detailed below:

1

To1 : Q2 < |P(a)], < prnh) for w>3n/2+2,
(n=2)(w-
Tho11: Q7'7 2 < |P'(a)], < Q2 for 3n/24+2<w<2n+2,
1

Tn-12: Cn,p)Q™t < |Pla)), < Q2 for w>2n+2,

w n—2)(w—2
o p=* 2% < |P'(a)], < Q_l_( T for 3n/24+2<w<2n—2,

n—2)(w—2)

Ths : Cn,p)Q " < [P, < Q122 for max(3n/2+2,2n—2) <uw
<2n+ 2,
Trt1,1: |P'(a)], < pV2Q7%  for 3n/24+2<w < 2n—2,

where C(n, p) arises from Lemma 6, i.e. |P'(a)|, > C(n,p)Q "
Therefore, for each range of w there are the following subdivisions:

for 3n/24+2<w<2n—-2: acTy 1 UT,11UT,1 UTht11,
for max(3n/2+2,2n—-2)<w<2n+2: a€Ty1UT,_11UT,2,
for w>=2n+2: (S T()’l U Tn_172.

Let o(P) denote the set of points for which (2) and |P'(x)|, > p("=D*/2Q=% hold for a fixed
polynomial P € P,(Q). By Lemma 3, one has the equality |P'(a)|, = |P'(z)|, for 2 € Sp(c) and
ac€Ty1UT,_1;UT,;, i=1,2, and the set o0(P) N Sp(a) is contained in o (P, ) which is defined
by the inequality:

o(Pa):={ze KNSp(a) : |z —al, < wa\P/(a)]Zjl}. (5)

Forie {0,n—1,n,n+1} and j € {1,2} define the set L, ; ;(Q,w) of x € K N Sp(«a) for which
the system
[P(2)l, <@, aeTy;

has a solution P € P,(Q).
There follow two auxiliary results and several subsections depending on the sizes of derivatives
at certain roots.

2.2.3. Auxiliary results

The key ingredients of the proof of the theorem for the cases of large, middle and small derivatives
are the following results.
Define the set L, (Q,w,d) of x € K N Sp(«a) for which the system

[P(2)l, < Q7" [P'(a)lp > cQ? (6)
has a solution P € P,(Q).
PROPOSITION 1. Let d < 0. If there exist an integer number k € [0,n — 1] and a real number v

satisfying
w— 2

k
max(—2d,2+g(w—2))<v<w—n+k:—

(7)

n



24 H. B. Bysapuna

then

—1)—(w—-2)/n — R ke ()= 2 tke
23" ke QW= (K) + kf (k,p, K, w, )2 v TheQ= "5 they(K)
ifl<k<n-—1,

2. 3ncalQ—(w—2)/nM(K)
ifk=0

1(Ln(Q,w,d)) <

for w > 3n/2 42 and sufficiently large Q. Here

1)
co = min(cp”, ming<jeneiTp 1,27 R (p(k 4 1)) 7F L),

PROOF. Let ¢y be a constant to be chosen later. For a polynomial P € P, (Q) with « satisfying
(6) define the ball

oo(P,a) ={x €e KNSp(a) : |z —afp < COQ7U|P/(04)‘;1}‘

Denote by Ry(P) the set of roots of the polynomial P satisfying the condition |P'(a)|, > cQ?. Let
00(P) = Uacry(p)oo(P, ). From (5) and (6) it follows that u(oo(P)) < u(K) and o(P) C oo(P)
for —d < v < w, and co < cp”™ and Q > Qo. Also, (o (P)) < ¢y Q" u(o0(P)).

Fix k, k € [0,n — 1]. For each (n — k)-tuple by = (b, ..., bx11) € Z" % such that |b;| < Q for
i=k+1,...,n define the following subclass of P, (Q)

Pn(@ br) ={P = aia’ € Pu(Q): a; =b;if k+1<i<n}.
=0

Note that P,(Q) = Up,Pn(Q,by) and the number of different vectors by does not exceed
(2Q+1)" "

The balls o¢(P, «) are divided into essential and inessential domains for P € P,(Q, by). First,
the essential balls oo(P, «) are considered. By definition

> > u(o0(P,a)) < 2u(K).

PePr(Q,br) aERy(P), oo(P,a) essential

Using this and the fact that the number of different vectors by, does not exceed (2Q + 1)"7*, it
follows that

Z Z ,U,(O'(P)) <2- SnfkcalQ'ufw+n7k <2 3nfkcngf(w72)/n'u(K) (8)
by PePn(Q,by)

foro<w—-—n+k—(w—2)/nand Q > Q.

We now turn to the inessential balls. Suppose that oo(P, ) is innessential so that there exists
P € P,(Q,by), P # P such that u(oo(P, P)) = u(oo(P, 1) Noo(P)) = u(oo(P,«a))/2. Tt can be
readily verified that on oo (P, P)

(@) PO (@) (@ —an)], < pr I NI QU
< @Y, 2<j<n,

J j(nfl)fn2
for v > —2d, d < 0, ¢ < minagjc,ci-Tp -1 . Thus, using the Taylor expansion of P in the

neighbourhood of a, it is easy to obtain |P(z)|, < c¢Q ™", = € oo(P, P). Similar estimate holds for
P on oy(P, P).
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Put R(t) = P(t) — P(t) so that degR = nr < k and H(R) < 2Q. Then, by Lemma 4, in
oo(P, 1) we have
[R(x)l, < (2p(k+1))**1coQ "
— 2k+1+v(p(k,+1))k+lcOQl—v
for Q1 = 2Q. Choose ¢y < 27 ¥ 17V(p(k + 1)) 7*~L. Then |R(z)|, < Q7" in ao(P, ).
First, consider the case when 1 < ng < k < n — 1. Applying the Induction Hypothesis 1 to
polynomials R € Py, (Q1), we obtain

WL (Q1,0)) < fng,p K, v,0)Q 2/ (k)

for v > 3ngr/2 + 2.

Second consider the case when ng < k = 0. From |R(z)|, < Q7" and |R(z)|, > |R(z)| 7! >
> (2Q) 7! since R(z) = af and 1 < |aj] < 2Q), we get a contradiction in (2Q)~! < |R(z)|, < Q7" =
=(2Q) " for v > 1.

Therefore, the measure of the set of  belonging to inessential balls does not exceed

U o Lng(Q1,0) < o my Ly (Q1,0))

ZnR 1f(nkapaK v G)Ql M(K)
kf(k,p, K, v,€)27 & +k€Q_7+k€M(K)
ki (k,p, I, w, €27 55 HheQ = ke (K)

NN

forv>2+% ( —2)and w > 3n/2 + 2.
This, together with (8) gives

M(Ln(Q7w7d)) < (Ubk (Q bk))
23" g QTN + ki f (k,p, K w, €)2
< for1<k<n-1,
237yt QWA (K) for k = 0.

p(K)

O

Now we are going to prove the second result. Let a; € R and b; € Ry for ¢ = 1,2. Define the
set Lp(Q,w,a1,a2) of x € K N Sp(a) for which the system

|P(z)], < Q7Y, b1Q™ < |P'(a)], < b2Q™ <az, w>3n/2+2, w>= —2a; (9)
has a solution P € P,(Q). Let eg < € be a sufficiently small positive real number.

PROPOSITION 2. If there exists real number u satisfying
max(0, —ag + €p,2n +3as + 0+ 3¢p) Su<w+a; — (w—2)/n+e (10)

Jor some values of 0 > 0, then
IU’(LTL(Qaw’ al)a2)) < Q (w=2) /n+E,LL(K)

for sufficiently large Q.

PROOF. Divide the ball K into smaller balls K; with diameter p(K;) = Q. It is clear that
p(K;) < p(K) for w > 0, and p(o(P, o)) < p(K;) for w > —2a;1, u < w + a1 and sufficiently large
Q. We say that a polynomial P belongs to K; if there exists x € K; such that (9) holds.

If there is at most one irreducible polynomial P € P, (Q) that belongs to every ball K; then by
(5) the measure of these x, that satisfy (9), does not exceed

nbl—lewfa1+ulu<K) g nb;lQ*(U)*?)/TH’EM(K) (11)
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foru<w+4a; — (w—2)/n+e.

If at least two irreducible polynomials P; of the form P;(t) = s;P(t) for the same P, s; € Z,
belong to the ball K; then the measure in this case coincides (up to a constant) with the measure
in (11).

Now show that the assumption that at least two irreducible polynomials P; and P, P, # Ps,
without common roots belong to the ball K; will lead to a contradiction. Using Taylor series
expansion, it can be readily verified that on Kj,

|Pi(2)l, < max(b2Q™ "2, maxagjn p" " ITIQ ™)
— bQQ_U+a2<Q_U+a2+€O

fori=1,2, a2 <0, u > —as+¢g and sufficiently large Q). We now use Lemma 5 with 7 = u—ags —¢€g
and 1 = u. Then,
T+ 2max(T — n,0) = u — 3az — 3ep.

From Lemma 5
u— 3ag — 3€g < 2n+ 6

for all 6 > 0 which is a contradiction if u > 2n + 3as + 3¢ + 0 for some values of §. O

2.2.4. Large derivative

This section deals with the case when the derivatives of the polynomials at the roots are large.

PROPOSITION 3. For sufficiently large Q, n > 1 and w > n + 2

1(Lno,1(Q,w)) < Q=" (K).

ProOF. Take d = —1/2 and ¢ = 1 in Proposition 1. Then L, 01(Q,w) C L,(Q,w,—1/2). In
this case we choose k = 0 and v = 2. It is easy to check that the conditions (7) are satisfied for
w 2= n+ 2, and

(Lno1(Q,w)) < 2-37¢y Q™™D " u(K)

j(n—l)—n2
for sufficiently large @, where ¢y = min(minocjcp,p -1 , 2737 ). O

2.2.5. Special cases n =2 and n = 3 for a non-large derivative

This section deals with special cases when the derivatives of the quadratic and cubic polynomials
at the roots are taking non-large values.

Case: n =2

Note that the set LIFH(Q, w) \ L2o1(Q,w) is defined as the set of x € K N Sp(a) for which

|P(2)l, <Q7", C2,p)Q7" < |P(a)l, < Q"

hold for some P € P2(Q). To find the estimate of the measure for the last set we will use
Proposition 2. Take a; = —1, ag = —1/2, by = C(2,p), b = 1 in the Proposition 2. In this
case we choose u = w/2 + e. It easy to check that the conditions (10) are satisfied for w > 5,
€0 < €/4, 0 < e/4, and p(LEER(Q,w) \ L2 1(Q,w)) < Q~(W=2/2+¢y(K) for sufficiently large Q.

Case: n =3

Let LEER(Q,w)\ L3 01(Q,w) = L4(Q, w)UL5(Q, w), where the set L;(Q,w) is defined as the set
of x € KNSp(a) satisfying |P(z)], < Q™*, Q! < |P'(a)], < Q2 for some P € P3(Q); and the
set L4(Q,w) consists of x € K N Sp(a) for which |P(z)], < Q™%, C(3,p)Q~2 < |P'(a)|, < Q71
hold for some P € P3(Q).
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To estimate the measure of the set L5(Q, w) we will use Proposition 1. Take d = —1 and ¢ =1
in Proposition 1. Then L5(Q,w) C L3(Q,w,—1). In this case we choose k = 0 and v = 2. It is easy
to check that the conditions (7) are satisfied for w > 6.5, and

wL5(Q,w)) < 54p° Q™23 (K)

for sufficiently large Q.

To estimate the measure of the set L4(Q,w) we will use Proposition 2. Take a; = —2,
ay = —1, by = C(3,p), b = 1 in the Proposition 2. In this case we choose u = 2w/3 — 4/3 + €.
It easy to check that the conditions (10) are satisfied for w > 13/2, ¢¢ < €/4, 0 < €/4, and
w(LA(Q,w)) < Q~(w=2/3+¢y(K) for sufficiently large Q.

Thus, u(LAER(Q,w) \ L3p1(Q,w)) < Q~(W=2/3+¢,(K) for w > 13/2 and sufficiently large Q.

From now on n > 4.

2.2.6. Middle value derivative

This section deals with the case when the derivatives of the polynomials at the roots are taking
middle values.
Case 1: w > 2n + 2

PROPOSITION 4. Letn > 2 and w > 2n + 2. For sufficiently large Q

1(Lnn—12(Q,w)) < QW= =2, (),

ProOF. Take d=—n+1 and ¢=C(n, p) in Proposition 1. Then L, ,,—12(Q, w) C L, (Q,w, —n+1).

In this case we choose k =n—2 and v = (1”_221&

satisfied for n > 2 and w > 2n + 2, and

. It is easy to check that the conditions (7) are

-1 —(w—2)/n —w=2 4 (p— —w=24 (n—2)e
(Lnn-12(Qw)) <2:3%¢y QMWK+ (n—2) f (n—2,p, K w, €2~ T Q5T (K)
for sufficiently large @), where

i jln=1)—n?

co = min(C(n, p)p", mina<jcn(C(n,p))7-1p" -1 27" =DO=D/n (p(n — 1)) 701,

Case 2: w <2n+2
Define the set L, , 1 1(Q,w) of x € K N Sp(a) for which the system

(n 2)(w—2) (n 3)(w—2)
Q' = <P, <QYT =, 3n/2+42<w< 2n+2 (12)

has a solution P € P,(Q).
Define the set Ly, ; 1(Q,w) of x € K N Sp(a) for which the system

1

n— )(w )
O =" S P(a)], <QF, 3n/2+2 <w < 2n+2 13
p

has a solution P € P,,(Q). Then Ly, ,—11(Q,w) = nn 1 1(Q,w) U nn 1, 1(Q,w).

PROPOSITION 5. Let n > 4. For sufficiently large Q

( n,n— 11(Qa )) <<Q (w= 2/n+€M(K)'
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PrROOF. Take a; = —1 — %, as = —1— %, by = by = 1 in the Proposition 2.

First, we deal with the case n > 5. In this case we choose u = 1 + W + % + €. It
easy to check that the conditions (10) are satisfied for n > 5, w > 3n/2 + 2, ¢g < min(e, 5-),

0 <n—5+ 2 —2¢, and in this case u(L}, ,_;,(Q,w)) < Q~~ 2) e p(K) for sufficiently large Q.

Second, we consider the case when n = 4. In this case we choose u = 2n—3— M + —1—0
Choose €y < min(e, 5-). It easy to check that the conditions (10) are satisﬁed for n = 4,

3n/2+2 <w < 2n+2,and 0 < 6 < n—3 — 1+ and in this case u(L, ,,_; 1(Q,w)) < Q (w=2)/nte,
p(K) for sufficiently large Q. O

PROPOSITION 6. For sufficiently large Q)
p( L, 11(Qw)) < Q=2 =8y ()),

PrROOF. Take d = —1 — W and ¢ = 1 in Proposition 1. Then L}, ;,(Q,w) C

L,(Q,w,—1— W) In this case we choose k =n —3 and v = 2 + w It is easy to
check that the conditions (7) are satisfied for w > 3n/2 + 2, and

3 . —1H—(w-2)/n —w=24 (n—3)e y—2=24(n—3)e
(L 11(Q,w) <28 Q™I Mu(K) +(n—=3)f(n—3,p, K w, €2~ H =@ 5oy (K)
for sufficiently large @), where

'(77,71)7712
co = min(p", mingcjcnp -1, 27RO/ )72y

2.2.7. Small derivative

This section deals with the case when the derivatives of the polynomials at the roots are small.

PROPOSITION 7. Let n > 3. For sufficiently large @
(L1 (Quw)) < Q=2/me (),

PROOF. Take a1 = —w/2, a; = —1 — (n — 2)(w — 2)/(2n), by = p™V*/2 b, = 1 in
the Proposition 2. In this case we choose v = 1 + %&w_m + €p. It easy to check that the
conditions (10) are satlsﬁed forn > 3, w > 3n/2 +2, ¢ < min(e,3), § < n—2— 26, and

(L1 (Q,w)) < Q~(w=2/mte (K for sufficiently large Q. O

PROPOSITION 8. Let n > 3. For sufficiently large Q
:U'(Ln,n,Q(Qyw)) < Qi<w72)/n+EM(K)'

PrROOF. Take a1 = —n+ 1, a2 = =1 — (n — 2)(w — 2)/(2n), by = C(n,p), ba = 1 in the
Proposition 2. In this case we choose u =1+ W + €p. It easy to check that the conditions
(10) are satisfied for n > 3, w > max(3n/2 + 2,2n — 2), g < min(e, 3) 0 < n—2—2¢, and

(L 2(Q,w)) < Q=2 e p(K) for sufficiently large Q. O
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2.2.8. Very small derivative

In this section, we consider the case when the derivative is very small. Recall that Ly, 5, 41.1(Q,w)
is set of z € K N Sp(aq) with oy € Ty,41,1 for which the system

IP(x)], < Q7", |P'(ar)| < p D /2Q /) (14)

has a solution in polynomials P € P,(Q). Define by ¢*(P) the set of solutions of the system (14)
for a fixed polynomial P € P,(Q).
Let oy be any root of a reducible polynomial P € P,(Q). Reorder the other roots of P so that

‘061—062|p < |041—053’p << |041—Ocn’p.
For the polynomial P define the real numbers p; by
|a1_04j‘p:Q_pj7 2<j<n, p2=2p3=...2 pPn. (15)

Let 0 < e < # be sufficiently small, and T = [6;1] + 1. Also, define the integers [;, 2 < j < n, by
the relations

I —1 l;

JT <pj<%, lo=l3>...>1,>0. (16)
Finally, define the numbers ¢; by ¢; = M (1 <i<n-—1). Now for every polynomial P we
define a vector 1 = (lo, ..., l,). The number of different vectors 11is a constant depending on n, p and

e1. Let P, (Q,1) be the class of irreducible polynomials P € P, (Q) satisfying (3) and corresponding
to a vector L.
For k € NU {0}, let P,(Q,1, k) denote the subclass of P, (Q,1) given by

Pa(Q,1k) = {P € Pa(Q,1) : Q¥ < H(P) < Q*H}.

Then we have P,(Q) = UiU]—3 Pn(Q,1, k). For P € P,,(Q, 1, k) satisfying (3) we have the following
estimates
[P'(1)lp >p Q% and [PY ()], <Q @ " D9 1<i<n—1, (17)

which come from (15)-(16) and

n—l

PO () = lla,(P) Z H(al — ).

(1,325 dn—1)C(2,3,..n), Js#jk, Plajs)=0 s=1
Also, by (14) and (17), we get p~ Q™" < |P'(an)]p < p(”_1)2/2Q_w/2, which implies that
Q= w/2 (18)

for sufficiently large Q.
We say that 1 € G_ if the following condition lo/T + ¢1 < n+n?e; holds. Similarly, we say that
1 € G if the condition lo/T + q1 > n + n?e; holds. Then the set Ly n+11(Q,w) can be written as

Ln,n—i—l,l(Qv w) = L;n+171(Q7 w) U L:7n+171(Q7 w),

T—
where LT 1 ,(Q,w) = Ue, Ur=o YUpep, Qi)™ (P):
To establish this case we need to consider the following two propositions.

PROPOSITION 9. For sufficiently large QQ, we have

WLy 1,1(Q,w)) < QDM (),
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Proof. Divide the ball K into smaller balls K; with u(K;) = Q™" with r = n — q1 + ne.
Lemma 5 will now be used to show there cannot exist two irreducible polynomials P; and P
without common roots which satisfy (14). To show this, suppose that P, P» € P,(Q,1, k) belong
to I;, P1 # P». Develop P; as a Taylor series expansion in the neighbourhood K of ay to obtain

|PL(z)l, < maxicjcn |(j)TPY (ar)(z — an)],
< max(Q-IHIVAT maxy o, pIQ-uHA—i)a—ir)
< Qq1+(n—1)61—T — Q—n—el(nz—n—s—l)

for Io/T +q1 < n+ n?e and sufficiently large Q. Obviously, the same estimate holds for P, on
K;. Thus, there exist two polynomials Py and P of height at most Q4 = Q¥ Ve which satisfy

7’(7,761(77.277’1,“'1) 7n+q17n261
|P(x)], < Q, "V on a ball with diameter Q, “*" . Then Lemma 5 can be used with
2_ _ 2 . .
T = % and n = ”(,ﬁi’{ﬁf. Putting these together gives that
o n+2q1+(n%—3n+3)e1
T+ 2max(t —n,0) = Gy
~(18) ntw+(n?—3n+3)ex
(k‘—i—l)El
>w>%n+2 5n/2+2+(n?—3n+3)e1
(k+1)er

SI<kHISIHe <Ide b /2424 (n® —3n+3)er
=

14+e€1
= 5n/2+2+ (n? —11n/2 + Deg(1 + 1)t
>51>0,n>6 5n/2 + 2.

From Lemma 5 this implies that 5n/2+2 < 2n+6 for all § > 0, and it is not difficult to check that
this is a contradiction for § < % + 2. Therefore, at most one polynomial P € P,(Q,1, k) belongs to
each K. Thus, the number of polynomials P € P,(Q,1,k) is Q"u(K). By applying Lemma 7 and
the inequalities (17) and (2), we obtain for P € P,(Q,1, k),

| = aulp <[P(2)|p|Pay)], " < p"Q"F

the latter set is containing the set o*(P) N Sp(a1). Thus, the measure of the set L, 1(Q,w) for
P e P,(Q,Lk), is
< QU (K),

Summing the last estimate over k and 1, we obtain that

671
1Ly i1 (Qw)) < Y L;O}Qn—w—kn?el’u(K)
< Q w=I/ny(K)

for w > %n + 2, n > 1 and sufficiently large Q.

ProposiTION 10. For sufficiently large Q, we have

LS 11(Qw)) < Q™D u(K)
where the constant implied by the Vinogradov symbol depends on n, p, €1 and K.

Proof. Expressing the discriminant D(P) of an irreducible polynomial P € P, (@,1) in the form
ID(P)|p = |a2"’2(P)]p H1<i<j<n o — O‘j’;% and using (16), |ax[, < 1, and [D(P)| < Q™ 2, we

n
obtain
n

dG-DL/T<n-1 (19)

Jj=2
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for sufficiently large @. Using (19) and the definitions of ¢; and the set L:{’HH,I(Q, w), we get

n+n?e 3qa @ +0LT! 3¢

3q2
oty <yt < (/THa/2+57 2 = 1y/T+2q5 < z;j 1)I;/T <n—1 (20)

By (20) and using the definitions of ¢;, we obtain

23/T + g2 < 3q2 < — 2 — n’ey, (21)
which implies I3/T < (n — 2 — ga — n?e1)/2. Therefore, by (20)

I3)T < (n — qo +n%e1)/2 < lo/T. (22)

Next we show that there is no pair P, P of different polynomials in the set P € P,(Q,1, k) with
roots «v, [ respectively, satisfying (22) and the inequality

oy — Bilp < Q(qz—n—(n2—2)61)/2’ (23)

where Pj(o;) = 0 and P>(5;) = 0 for 1 < i < n. Assume that there exists such a pair of polynomials.
Then, by (22) and (23), we have

i — Bjlp, < max(Ja; — aalp, ar — Bilp, |81 — Bilp)
< maX(Q_lm'dx(ivj)/T"‘El , Q(QQ—TL—(N2—2)51)/2)
< Qe—n=(*=2)e)/2 for max(i, ) < 2,
S L@t for max(i ) >3

Considering the resultant R(P;, P2) of the polynomials P; and P», we obtain

[B(PL Py)lp = lan(PL)"|plan(P2)"lp TTici jen [ = Bily

2(]2 2n—2(n *2 €1 lmax 1,7 /T+61
< Q ( ) Hmax(z,j >BC2 9) ’

But since Y, a(.)>3 tmax(ig) /T = > i=3(25 = 1)I;/T > 5¢o it follows that

[R(P Py)ly < Q2 —mre,

Since the polynomials Py and P are irreducible then |R(Py, Py)| < Q*™k+1)et and |R(Py, P2)|, >
> Q~2k+De Thus, the inequality (23) leads to a contradiction for n > 3 and sufficiently large
Q. Therefore we conclude that a ball K(aq;r) with its centre at the point a1, Pi(a;) = 0, and
with diameter r satisfying p="0 < r < p~ 0! (with ro € Z) and not exceeding cQ(QZ_”_(”2_2)€1)/2,
cannot contain a root (31 of any polynomial P, € P,(Q,1 k) (with 1 € G) other than P;. We
cover each of the numbers a; under consideration by the ball K(ai;7). Thus, we see that these
balls are mutually disjoint and have the diameter > Q2= *=2)e1)/2 Therefore the number of
polynomials P; € P,(Q,L k) withl € G} is < Q —q2tn+(n®~2)e1)/2,

By applying Lemma 3, the inequalities (17) and |P(z)|, < Q@™", we obtain for P € P,(Q,1, k),

2 — onlp < (|P(@)|plon — aalp/|P(0n)lp)/? < QU He)/2,

Thus, the measure of the set L:}nH’l(Q,w) for P € P,(Q,1, k) with at least one root satisfying
(23), will be < Q("_w+("2_2)€1)/2. Summing the last estimate over k and 1, we obtain that

/‘(Lr—;n.;_lg(Q;w)) < El T_l (n—w+(n*~2)e1)/2
< Q- (w— 2/n (K)

for w > 3n/2+2,n>4and ¢ < 1/n%
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2.3. Reducible polynomials

Denote by LnRED (Q,w) a set of points x € K such that there exists a reducible polynomial
P € P, (Q) satisfying the inequality |P(z)|, < Q™". Let P € P,(Q) be a reducible polynomial of
the form
P(z) = Pi(z)P2(x), degPr=n1, degPy=n—n3, 1<n; <n-—1,

and the inequality |P(x)|, < Q™" holds for « € K. For a fixed P by A(P) denote the set of z € K
satisfying |P(x)[, < Q".
By Gelfond’s lemma [12],

2 "H(Py)H(P,) < H(P) < 2"H(P\)H(P).

By definition of height, we have H(P;) > 1 so that H(P;) < 2"Q for i = 1,2.

Define LfffD(Q, w) C LEEP(Q, w) (LEED(Q, w) respectively) to be the set of points x € K for
which the inequality |P(z)|, < Q™" holds for some reducible polynomial P € P,(Q) of the form
P(z) = Pi(z)Pa(x) with 1 < H(P1) < Q (Q < H(P1) < 2"Q respectively).

We need to consider two cases.

2.3.1. Case 1: 1 < H(P) < Q.

Let 8 € (0,1) be a sufficiently small positive real number such that % € N and it

satisfies the condition that will be specified later. Let the height of P; be bounded as follows:
Q™ < H(Py) < Qm*18 where 0 < m < %— 1. Then the height of P, satisfies H(Py) < 2"Q'™F,
There exists a € R such that

plz € AP): [Pu(a)lp < (2p(m1 + 1)) 71Q™) = u(A(P))/2. (24)

Then for the complement to (24) we have

plz € MP): [Pi(@)lp = (2p(na + 1)) 71QT) = n(A(P))/2

plx € A(P): [Pa@)]p < (2p(n1 + 1)) F1Q™T) = p(A(P))/2. (25)

In the next step of the proof we will use the Lemma 4. By applying Lemma 4 and the estimates
(24), (25), we have
|Pi(z)l, < Q™ Q™ < H(P) < Q™Y (26)

|Po(@)lp < (2p)" 2 (1 + 1) H (0 —my + 1) MHQTETY H(P) <2"QN™ (27)

for all z € A(P).
Denoteby M} . (Q)asetofpointsz € K suchthatthere exists a polynomial P € Py, (Qm+HA)\
\ Pn, (Q™P) satisfying the inequality (26) for a > 2(m + 1)8 + n1(w — 2)/n — dpye and M2, (Q)

ni,m
a set of points € K such that there exists a polynomial Py € P,_,, (2"Q'"™7) satisfying the
inequality (27) for a < 2(m+1)8+ nq(w —2)/n — dye. Here dp,, = 0 for m > 2, and d,,, = n1/2 for
m=0,1.

Let us estimate the measure of the set Mﬁhm(Q). For convenience we put Qo = Q™TYA and

— Q(mHWT?;ff)T;)/n_dme. Clearly M, ,.(Q) C Ly, (Q2,w1). By the Induction Hypothesis 1

the set Ly, (Q2,w;) has measure at most

w1

*(11:11*2> e —(w=2)
f(nlapa K,UJ1,€)Q2 ! M(K) = f(nlapa K,’wl,ﬁ) ( (m+1)6) " e M(K)
= f(n1,p, K, wy,e)Q (W=2/ntdme/mtmemt)i (|
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for w > 3n((m+1)8 + 2Ulme) + 2, and sufficiently large Q.
Therefore, for w > 3n/2 +2,1<n; <n—1,and Q > Qp, we have
f(n,p,K,w,e)Q 2/nt=0e (K for2<m <1/ —1, dy, =0,
Ly (Q2,w1) < { fln,p, K,w,e)Q~(w=2)/nt(n=1/2);, (k)

form=0,1,d, =n1/2, < (3—¢€)/6.

Now let us estimate the measure of the set M2 . (Q). We set Q3 = 2"Q'~™# and

ni,m

wy = w=Amtbomwo2)/ntdme=B/2 1 the view of the definition of the set M2, (Q), we get

1-mg ni,m
|Py(x)] < Q3™?, H(P2) < Q3

for Q > Qo. Therefore, M2, , (Q) C Ly_n,(Q3,wz). Then by Induction Hypothesis 1, we obtain

ni,m

wo—2

— i t(n—ni)e
p(Ln—ny (Q3,w2)) < f(n—mn1,p, K,wy,e)Qg "™ V(K

5nB—2ndme _
= f(n—n1,p, K, wy, €)2 Toma T 2wy trlnmne,
_w—2+oﬁ 2dm €

n 2(n— n1)+(n nl)(l mﬁ)e (K)

for w > 2+ 37"(1 —mp + Qdm)E) and sufficiently large @. Thus, for w > 3n/2+2, 1 <n; < n-—1,
and @ > Qq, we have

f(n—n1,p, K,ws,¢€)2 —(w=2)Fn(n=1+553)c Q_(w_g)/”“‘(”_l‘*‘ﬁ)f,u([()
fOTngg%—l,dm_O7B\e/5,

f'(n7 p, K, w, 6)2—(11)—2)-&—n(n—1)662—(w—2)/n—|—(n—l)elul(‘[{)

form=0,1, d,, =n1/2, B <e¢/5.

Ln—n1 (Q3,’U)2) <

Combining the conditions imposed on the values of 3, we obtain
0 < 8 < min{e/5, (3 —€)/6}.
Note that Lﬁ?D(Q, w) C Uy~ L Upemet 1 (My, n(Q)UMZ . (Q)). Adding up the measures over

S35 ni,m niy,m

all cases gives that
w—2

u(LEEP(Q,w)) < Q=

HO=Dp(K)

for sufficiently large Q.

2.3.2. Case 2: Q < H(P) < 2"Q.

We proceed as in Case 1. The height of P satisfies H(P>) < 2" and further we proceed as in
Case 1. There exists a € R such that

(@ € MP) s [Pi()]y < 27 (2p(n1 + 1)) ™ 71Q ) = p(A(P))/2. (28)

Then using Lemma 4 and the estimate (28), we get

|Pr(z)][, <27™Q7%, Q< H(P)<2"Q, (29)
|Po(x)|p < 27F2Fmapnt2(ng + 1) H (n — g + 1)V HIQTVT ) H(Ry) < 20 (30)

for all z € A(P).
Denote by M? (Q) a set of points x € K such that there exists a polynomial Py € Py, (2"Q) \
\ Py, (Q) satisfying the inequality (29) for a > 2+n;(w—2)/n and M, (Q) a set of points z € K such
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that there exists a polynomial Py € P,,_y, (2") satisfying the inequality (30) for a < 2+n;(w—2)/n.
Thus

LRED(Q,w) © UP~L, (M2 (Q) U M2 (Q)) .
Clearly,

. . —2
By the Induction Hypothesis 1 the set L, <2”Q, 2+ %) has measure at most

for w > %n + 2, n1 < n— 1 and sufficiently large Q.
To find the measure of the set Mﬁl(Q) we will use direct calculations. Denote by a; a zero
of Py € Pp_p,(2"), and assume that «; is such that |z — aq, is minimal. From the identity

Pa(@)], )—11

|Pa(x)|p = |an—n, |plz — ailp ... |2 — an—n,|p it follows that |z — oy, < ( . This means

that

|an—n1 ‘P

My, (Q) € Upsep, o, 2m) Varea(ry) 00(P2 1)
where 1
oo(Pe,on) :={x e K : |z —aq]p < (| P )‘p’an_m(P2)‘;1)m}_

This, together with the estimates (30), gives
1 w—
oo(Py, o) C{z € K : |x—aq| < (2InH2mw=2pn+2(py) 4 1)yt (p — g 4 1)n "t e Q_T2}

for Py € Py_n, (2"), where |ap_n, (P2)| < 2", |an—n, (P2)|p = |an—n, (P2)|71 = 27" The number of
different polynomials Py € Py, _p,(2") does not exceed (27! + 1)»~™1+1 Thus,

WML Q) < Spep, . om) Saneatry #o0( P a1)) < Q5 (K.

Therefore, since LFFP(Q, w) = LETP(Q, w) U LESP(Q,w) we have u(LEFP(Q,w)) <
1

< Q_MT_ZJ’(”_?)EN(K) for w > %n + 2 and sufficiently large Q.
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