ЧЕБЫШЕВСКИЙ СБОРНИК Том 14 Выпуск 4 (2013)

УДК512.556

ХОРНОВСКИЕ ФОРМУЛЫ И ПИРСОВСКИЕ ЦЕПИ ПОЛУКОЛЕЦ

Р. В. Марков (г. Киров)

Аннотация

В статье описывается построение пирсовской цепи конгруэнций полукольца — аналога пирсовской цепи идеалов кольца, вводятся необходимые определения: кольцо центральных дополняемых идемпотентов, конгруэнция Пирса, пирсовский пучок полуколец, пирсовское представление полуколец, пирсовская цепь конгруэнций, хорновская формула. Из основных результатов статьи можно выделить теорему 1 о равносильности выполнимости хорновской формулы без отрицания на полукольце и его факторах, из дополнительных — применение теоремы 1 для доказательства «переноса» свойств полукольца Безу на его факторы и обратно.

Ключевые слова: полукольцо, пирсовское представление полуколец, центральный дополняемый идемпотент полукольца, пирсовская цепь конгруэнций полукольца, хорновская формула без отрицания, полукольцо Безу.

HORN FORMULS IN PIERCE CHAINS OF SEMIRINGS

R. V. Markov (c. Kirov)

Abstract

This paper describes construction of a pierce chain of congruences of a semiring - analogue of pierce chains of ideals of a ring, necessary definitions are introduced: a ring of central supplemented idempotents, a congruence of Peirce, a pierce sheaf of semirings, a pierce representation of semirings, a pierce chain of congruences, a horn formula. The basic result of paper is the theorem 1 about equivalence of realizability of horn formulas without negation on a semiring and its factors, additional result is an application of the theorem 1 for the proof of "transposition" of properties of a semiring of a Bezout on its factors and is inverse.

Keywords: a semiring, a pierce representation of semirings, a central supplemented idempotent of a semiring, a pierce chain of congruences of a semiring, a horn formula without negation, a semiring of a Bezout.

В фундаментальной работе Пирса [8] построена конструкция пучка колец, названного впоследствии пирсовским пучком, и доказана изоморфность представления произвольного кольца с единицей сечениями этого пучка. Беджесом и Стефенсоном [7] введено полезное понятие пирсовской цепи идеалов кольца. На русском языке элементы теории пирсовских цепей представлены в монографии А. А. Туганбаева [4].

Конструкция пирсовского пучка была перенесена и на некоторые другие алгебраические объекты — ограниченные дистрибутивные решетки, почти-кольца, полукольца. Так, для полуколец, объектов настоящей статьи, пирсовское представление появилось в [5].

В статье автора [3] введено определение пирсовской цепи конгруэнций полукольца. Основной целью данной работы является расширение полученных результатов статьи [3] с помощью применения понятия хорновской формулы. Также получены результаты, описывающие некоторые полукольца в терминах пирсовских цепей конгруэнций.

Более подробно с терминологией теорий пучковых представлений можно познакомиться в монографиях Е. М. Вечтомова [1] и В. В. Чермных [6].

Напомним некоторые определения.

Определение 1. Непустое множество S с бинарными операциями + u \cdot называется **полукольцом**, если выполняются следующие аксиомы:

- $a) \ (S,+) коммутативная полугруппа <math>c$ нейтральным элементом 0;
- $b) \ (S,\cdot) \ \ nonyгруппа \ c \ нейтральным элементом 1;$
- с) Умножение дистрибутивно относительно сложения с обеих сторон;
- d) 0a = 0 = a0 для любого $a \in S$.

Определение 2. Мультипликативный идемпотент e полукольца S называется **центральным** дополняемым идемпотентом, если:

- $a) e ueнmpaльный: (\forall x \in S)(ex = xe);$
- b) $e \partial$ ополняемый: $(\exists e^{\perp} \in S)(e + e^{\perp} = 1 \land ee^{\perp} = 0)$.

Очевидно, что дополнение e^{\perp} к центральному дополняемому идемпотенту e является центральным дополняемым идемпотентом и задается однозначно.

Обозначим через BS множество всех центральных дополняемых идемпотентов. Множество (BS, \oplus, \cdot) с введенной операцией сложения $e \oplus f = ef^{\perp} + e^{\perp}f$ и полукольцевым умножением образует булево кольцо.

Множество MaxBS всех максимальных идеалов булева кольца BS называется **пирсовским спектром** полукольца S.

Пусть $M \in MaxBS$. Введем отношение δ_M на полукольце S такое, что

$$a \equiv b(\delta_M) \Leftrightarrow ae^{\perp} = be^{\perp}$$

для некоторого центрального дополняемого идемпотента $e \in M$. Показано (в [3]), что δ_M является конгруэнцией, названной конгруэнцией Пирса.

Также (в [3]) доказывается, что дизъюнктное объединение $\mathbf{P}(S) = \dot{\cup} \{S/\delta_M : M \in MaxBS\}$ над MaxBS является пучком полуколец, называемым **пирсовским пучком полуколец**.

Для каждого $M \in MaxBS$ факторполукольцо S/δ_M называется **пирсовским слоем** пучка P(S) в точке M.

Известно, что неразложимость полукольца в нетривиальную прямую сумму идеалов равносильна отсутствию в полукольце центральных дополняемых идемпотентов кроме нуля и единицы.

Определение 3. Если S/ρ — неразложимое факторполукольцо полукольца S, и для любой конгруэнции $\rho' \leqslant \rho$ факторполукольцо S/ρ' не является неразложимым, то S/ρ называется максимальным неразложимым фактором (ті-фактором) полукольца S.

Определение 4. Пусть α — ординал и ρ_{α} — конгруэнция на полукольце S, определяемая следующим образом:

- a) $Ecnu \alpha = 0$, $mo \rho_{\alpha} = 0$;
- b) Если α непредельный ординал, то S/ρ_{α} некоторый пирсовский слой полукольца $S/\rho_{\alpha-1}$;
- c) Если α предельный ординал, то $\rho_{\alpha} = \vee_{\beta < \alpha} \rho_{\beta}$;

Для некоторой конгруэнции ρ_{γ} верно равенство $\rho_{\gamma} = \rho_{\gamma+1}$. Множество $P(S) = \{\rho_{\alpha} : 0 \leqslant \alpha \leqslant \gamma\}$ назовем **пирсовской цепью** полукольца S. Конгруэнция ρ_{γ} — **наибольшая конгруэнция** пирсовской цепи.

Из определения следует, что полукольцо S может иметь несколько пирсовских цепей.

ПРЕДЛОЖЕНИЕ 1. [3] Для любого неразложимого факторполукольца S/ρ существует такой ті-фактор S/δ , что $\delta \leqslant \rho$. В частности, каждое неразложимое факторполукольцо полукольца S — гомоморфный образ некоторого ті-фактора полукольца S.

Идеал A полукольца S назовем **регулярным**, если он порожден некоторым множеством дополняемых идемпотентов.

ПРЕДЛОЖЕНИЕ 2. [3] Пусть A- собственный регулярный идеал, $\rho-$ конгруэнция, порожденная $A, h: S \to S/\rho-$ естественный эпиморфизм. Если S/ρ не является пирсовским слоем полукольца S, то существует такой центральный дополняемый идемпотент $e \in S$, что A+eS и $A+e^{\perp}S-$ собственные регулярные идеалы в S, строго содержащие идеал A,

$$S = (A + eS) + (A + e^{\perp}S),$$

$$A = (A + eS)(A + e^{\perp}S) = (A + e^{\perp}S)(A + eS) = (A + eS) \cap (A + e^{\perp}S),$$

$$h(S) \cong h(eS) \oplus h(e^{\perp}S).$$

ОПРЕДЕЛЕНИЕ 5. Хорновской формулой [2] называется предваренная формула, у которой бескванторная часть есть конзюнкция членов, каждый из которых есть или простейшая формула, т. е. атомарная формула вида $P(x_1, \ldots, x_s)$ или f = g, где P — сигнатурный предикатный символ, f, g — термы, или дизъюнкция одной простейшей формулы указанного вида и нескольких отрицаний простейших формул, или дизъюнкция отрицаний простейших формул.

Пусть $a_1, \ldots, a_m \in S$, отображение $h_\rho: S \to S/\rho$ — естественный эпиморфизм,

$$X = (\forall x_1, \dots, x_m)(\exists y_1, \dots, y_n)(f_1^{m+n} = g_1^{m+n} \land \dots \land \land (f_i^{m+n} = g_i^{m+n} \lor f_{i+1}^{m+n} \neq g_{i+1}^{m+n} \lor \dots \lor f_k^{m+n} \neq g_k^{m+n}))$$

- хорновская формула. Построим $\sigma_{S/\rho}$ интерпретацию формулы X с носителем S/ρ :
 - $f_i, g_i \ (i = 1, ..., k)$ фиксированные многочлены с целыми неотрицательными коэффициентами от некоммутирующих переменных $x_1, ..., x_m, y_1, ..., y_n$, свободные члены которых равны 0;
 - $x_i = h_\rho(a_i) \in S/\rho, y_j = \overline{b_j} \in S/\rho.$

Определение 6. Конгруэнцию ρ назовем **специальной**, если формула X истинна в интерпретации $\sigma_{S/\rho}$.

Обозначим через \mathcal{E} множество всех неспециальных конгруэнций (относительно элементов и многочленов, указанных в предыдущем определении), через \mathcal{E}^* — подмножество в \mathcal{E} , состоящее из всех неспециальных конгруэнций, порожденных регулярными идеалами.

ЛЕММА 1. Если нулевая конгруэнция лежит в \mathcal{E}^* , то и \mathcal{E} , и \mathcal{E}^* содержат максимальные элементы.

ДОКАЗАТЕЛЬСТВО. Рассмотрим произвольную возрастающую цепь конгруэнций $\{\rho_{\alpha}: \alpha \in I\} \subseteq \mathcal{E}$ и покажем, что $\rho = \bigvee_{\alpha} \rho_{\alpha} \in \mathcal{E}$.

Для любого $\alpha \in I$ обозначим через $\rho_{\alpha}(\bar{a}) = \{s \in S : s \equiv a(\rho_{\alpha})\}$ и $\bar{a} = \bigcup_{\alpha \in I} \rho_{\alpha}(a)$. Если $\bar{a} \cap \bar{b} \ni s$, то $s \equiv a(\rho_{\alpha_{1}}), s \equiv b(\rho_{\alpha_{2}})$ для некоторых $\alpha_{1}, \alpha_{2} \in I$. Тогда $\bar{a} = \bar{b}$, откуда получаем разбиение полукольца S на классы вида \bar{a} и соответствующее бинарное отношение $\bar{\rho}$. Стандартно проверяется, что $\bar{\rho}$ — конгруэнция на S, очевидно являющаяся верхней гранью конгруэнций $\rho_{\alpha}, \alpha \in I$.

Если $\overline{\rho}$ является специальной, то истинна хорновская формула X с интерпретацией $\sigma_{S/\overline{\rho}}$. Тогда по определению $\overline{\rho}$ формула X истинна в интерпретации

 $\sigma_{S/\rho_{j_i}}$ для некоторых $\rho_{j_i}, j_i \in I$. Выбрав максимум j из $j_i, i = 1, ..., k$, получим, что $\rho_j \in \mathcal{E}$ является специальной, противоречие. Тогда точная верхняя грань ρ не является специальной, поскольку $S/\overline{\rho}$ совпадает с факторполукольцом S/ρ .

Рассмотрим ситуацию с \mathcal{E}^* . Заметим, что регулярный идеал, порождающий конгруэнцию, является её классом нуля, однозначно определяет её и ей определяется. Поскольку объединение любой возрастающей цепи регулярных идеалов является регулярным идеалом, то точная верхняя грань возрастающей цепи конгруэнций из \mathcal{E}^* лежит в \mathcal{E}^* . По лемме Цорна \mathcal{E}^* содержит максимальный элемент.

ТЕОРЕМА 1. Пусть S- полукольцо, X- хорновская формула без неравенств с конъюнктивными вхождениями с интерпретацией σ . Равносильны условия:

- a) X истинна в интерпретации σ_S ;
- b) X истинна в σ_{S/ρ_1} , где S/ρ_1 факторполукольцо S;
- c) X истинна в σ_{S/ρ_2} , где S/ρ_2 пирсовский слой S;
- d) X истинна в σ_{S/ρ_3} , где S/ρ_3 неразложимый фактор S;
- e) X истинна в σ_{S/ρ_4} , где S/ρ_4 mi-фактор S.

Доказательство.

I. Сначала рассмотрим только те хорновские формулы, в которых не используются неравенства.

Очевидны импликации $(1) \Rightarrow (2) \Rightarrow (3)$, $(2) \Rightarrow (4) \Rightarrow (5)$. Импликация $(5) \Rightarrow (4)$ верна потому, что каждое неразложимое факторполукольцо изоморфно факторполукольцу некоторого mi-фактора.

- $(3)\Rightarrow (1)$. Допустим, (1) не верно. Тогда нулевая конгруэнция лежит в \mathcal{E}^* и, по лемме 1, в \mathcal{E}^* существует максимальный элемент ρ . Покажем, что S/ρ является пирсовским слоем. Предположим, что это не так. Тогда, по предложению 2, существует такой дополняемый идемпотент $e\in S$, что $A=0_{\rho}+eS$ и $B=0_{\rho}+e^{\perp}S$ собственные регулярные идеалы в S, строго содержащие 0_{ρ} и $S/\rho\cong S/\rho_A\times S/\rho_B$. Через ρ_A и ρ_B обозначены A-регулярная и B-регулярная конгруэнции соответственно. Конгруэнции ρ_A и ρ_B строго больше ρ , поэтому не лежат в \mathcal{E}^* . Тогда конгруэнции ρ_A и ρ_B являются специальными, поэтому и ρ специальна. Противоречие показывает, что S/ρ пирсовский слой. Таким образом, если не верно (1), то не выполняется (3).
- $(4) \Rightarrow (1)$. Допустим, (1) не верно. В этом случае нулевая конгруэнция лежит в \mathcal{E} и, по лемме 1, в \mathcal{E} существует максимальный элемент ρ . Достаточно показать, что S/ρ неразложимое полукольцо. Предположим, что S/ρ разложимо и $S/\rho \cong S/\rho_1 \times S/\rho_2$ для некоторых конгруэнций ρ_a и ρ_b . Поскольку $\rho < \rho_a$

и $\rho < \rho_b$, то $\rho_a, \rho_b \notin \mathcal{E}$. Непосредственно проверяется, что ρ — специальная конгруэнция, противоречие.

II. Теперь выберем хорновские формулы, включающие в себя только неравенства.

Выполнимость импликаций(*): $(5) \Rightarrow (4) \Rightarrow (2)$, $(3) \Rightarrow (2) \Rightarrow (1)$ показывается от противного. Если не верны цепочки (*), значит не верны (**): $(1') \Rightarrow (2') \Rightarrow (3')$, $(2') \Rightarrow (4') \Rightarrow (5')$, в которых вместо формулы X используется отрицание \overline{X} . Легко заметить, что формула \overline{X} попадает под пункт I теоремы, поскольку не содержит неравенств, следовательно импликации (**) выполняются. Противоречие.

Выполнимость импликаций $(4) \Rightarrow (5), (1) \Rightarrow (3), (1) \Rightarrow (4)$ показывается аналогично.

III. Осталось рассмотреть формулы, включающие в себя равенства и неравенства.

По определению 5, неравенства в хорновскую формулу могут быть включены двумя способами: дизъюнктивно с равенством или коньюнктивно с ним.

Поскольку для равенств теорема доказана в пункте I, то для дизъюнктивного случая очевидно, что истинность неравенств в формуле не влияет на истинность всей формулы. Для случая конъюнктивного вхождения неравенства могут повлиять на истинность формулы, как в следующем примере.

Существование в полукольце нетривиальных центральных дополняемых идемпотентов описывается, согласно определению 2, следующей хорновской формулой:

$$X = \forall e \ \exists f \ ee = e \wedge ef = 0 \wedge e + f = 1 \wedge e \neq 0 \wedge e \neq 1,$$

которая, очевидно, не верна в любом неразложимом факторполукольце. Отсюда следует невыполнимость импликаций $(1) \Rightarrow (2) \Rightarrow (3), (2) \Rightarrow (4) \Rightarrow (5)$ для данного случая.

ЗАМЕЧАНИЕ 2. Хотя эквивалентность условий теоремы 1 для случая конъюнктивных вхождений неравенств опровергнута, импликации $(5) \Rightarrow (4) \Rightarrow (2), (3) \Rightarrow (2) \Rightarrow (1)$ для него выполняются. Это очевидно следует из наличия гомоморфизма полуколец и их факторов.

Проиллюстрируем применение этой конструкции на примерах.

Определение 7. Полукольцо S называется **правым полукольцом Безу**, если каждый конечно порожденный правый идеал из S является главным правым идеалом.

ЛЕММА 2. Для полукольца S равносильны условия:

a) Полукольцо S является полукольцом Безу;

b) Верна хорновская формула H:

$$\forall m, n \; \exists a, b, c, d \; f_1(m, n, a, c) = g_1(m, n, a, c) \land f_2(m, n, a, d) = g_2(m, n, a, d)$$
 в интерпретации σ_S :
$$f_1(m, n, a, c) = m, \; g_1(m, n, a, c) = mac + nbc,$$

$$f_2(m, n, a, d) = n, \; g_2(m, n, a, d) = mad + nbd,$$
 $m, n, a, b, c, d \in S$.

ДОКАЗАТЕЛЬСТВО. (1) \Rightarrow (2). Пусть $m, n \in S$. Правый идеал mS + nS является главным правым идеалом zS для некоторого $z \in S$. Тогда z = ma + nb для некоторых $a, b \in S$. С другой стороны, m = zc, n = zd для некоторых $c, d \in S$, откуда верно (2).

 $(2)\Rightarrow (1)$. Покажем, что правый идеал mS+nS является главным правым идеалом. Рассмотрим произвольный элемент $ms_1+ns_2\in mS+nS$. По условию $ms_1+ns_2=macs_1+nbcs_1+nbds_2+mads_2=(ma+nb)(cs_1+ds_2)\in zS$, где z=ma+nb. Очевидно, $zS\subseteq mS+nS$.

ТЕОРЕМА 2. Для полукольца S равносильны условия:

- a) S npasoe nonyкольцо Besy;
- b) Все пирсовские слои полукольца S правые полукольца Безу;
- c) Все неразложимые факторы полукольца S правые полукольца Безу;
- d) Все ті-факторы для S правые полукольца Безу.

Доказательство. $(1) \Rightarrow (2)$, $(1) \Rightarrow (3)$ следуют из того, что каждое факторполукольцо правого полукольца Безу — правое полукольцо Безу. $(3) \Rightarrow (4)$ очевидно.

По той же причине, с помощью предложения 1, следует $(4) \Rightarrow (3)$.

 $(2)\Rightarrow (1)$. Пусть $h(S)=S/\rho$ — произвольный пирсовский слой полукольца S, $h:S\to S/\rho$ — естественный эпиморфизм. Поскольку h(S) — правое полукольцо Безу, то верна формула H в интерпретации $\sigma_{S/h(S)}$. По теореме 1, формула H верна и в интерпретации σ_S . По лемме 2, S — правое полукольцо Безу.

$$(3) \Rightarrow (1)$$
 доказывается аналогично.

Определение 8. Полукольцо S называется **симметрическим**, если для любых элементов $a, b, b', c \in S$, выполняется $abc = ab'c \iff acb = acb'$.

В виде хорновской формулы определение 8 примет следующий вид:

$$X = \forall a, b, b', c \ (f_1(a, b, b', c) \neq g_1(a, b, b', c) \lor f_2(a, b, b', c) = g_2(a, b, b', c)) \land$$
$$\land (f_1(a, b, b', c) = g_1(a, b, b', c) \lor f_2(a, b, b', c) \neq g_2(a, b, b', c)).$$

в интерпретации σ_S :

 $f_1(a, b, b', c) = abc$, $g_1(a, b, b', c) = ab'c$, $f_2(a, b, b', c) = acb$, $g_2(a, b, b', c) = acb'$, $a, b, b', c \in S$.

Формула X очевидно удовлетворяет условиям теоремы 1, следовательно верна

ТЕОРЕМА 3. Для полукольца S равносильны условия:

- $a) \ S c u м м e m p u ч e c к o e n o n y к o n ь u o;$
- b) Все пирсовские слои полукольца S симметрические полукольца;
- c) Все неразложимые факторы полукольца S- симметрические полукольца;

d) Все ті-факторы для S- симметрические полукольца.

Доказательство. Аналогично доказательству теоремы 2.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Вечтомов Е. М. Функциональные представления колец. М.: МПГУ, 1993.
- 2. Мальцев А. И. Алгебраические системы. М.: Наука, 1970. 392 с.
- 3. Марков Р. В. Пирсовские цепи полуколец // Вестник Сыктывкарского университета. 2013. №16.
- 4. Туганбаев А. А. Теория колец. Арифметические модули и кольца. М.: МЦ-НМО, 2009.
- 5. Чермных В. В. Пучковые представления полуколец // Успехи мат. наук. 1993. Т. 48, № 5. С. 185–186.
- 6. Чермных В. В. Функциональные представления полуколец. Киров: Изд-во ВятГГУ, 2010.
- 7. Burgess W. D., Stephenson W. Rings all of whose Pierce stalks are local // Canad. Math. Bull. 1979. Vol. 22, № 2. P. 159–164.
- 8. Pierce R. S. Modules over commutative regular rings // Mem. Amer. Math. Soc. 1967. Vol. 70. P. 1–112.

Вятский государственный гуманитарный университет Поступило 14.09.2013