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AnHOTanusa

YunrbiBast cuncok L(v) Jyisi KaxkJ0i# BepimMHbL U, Mbl 1oBOpUM, 4T0 rpad G siBisiercss L-
PaCKpAIITMBAEMbIM, €CJTH CYIIEeCTBYET MpaBUIbHAS PACKPACKA BepimuHbI (3, T11€ KaXK Jasi BEPIINHA,
v Geper cBoii Ber u3 L(v). [pad gBisercsa ogHO3HAYIHO PACKPAIIUBAEMbIM CIIUCKOM K, ecjiu Cy-
niecTByer npucsoenue cnucka L takoe, uro |L(v)| = k ayis Kaxa0ii Bepiunbl v, u rpad umeer
poBHO oxny packpacky L ¢ srumu cnuckamu. Eciu rpad G He siBJisieTcss OJHOZHAYHO PaCKpa-
LIMBAEMbIM CLUCKOM k, Mbl Takxke rosopum, uro G obsaugaer csoiicrsom M (k). Haumenbiuee
nesoe 4ucyo k, Takoe, uro G obmamaer cpoiicreom M (k), HaswiBaercss m-unciom G, 0603Ha-
gaeMbiM m(G). B 9T0i1 crarbe cHaYasa Mbl 0XapaKTEPU3yeM CBOWCTBO MOJIHBIX TPEXCTOPOHHUX
rpadoB, KOrjga 3TO OJHO3HAYHO Kk-CIUCOK PACKPAIUBAEMBIX I'DadOB, HAKOHEI[, MbI TOKAYKEM,
910 M(K29.m) = M(Ka3,) = m(Koap) =m(Ks333) =4 3a kaxaete m > 9,n > 5,p > 4.

Kmouesvie crosa: Packpacka sepluun (pacKkpacka), PACKPACKa CIIUCKA, OJHO3HAYHO PACKPa-
IIIUBAEMBIH CITUCOK rpaddOB, MOHBINH I-YACTHIHBIH rpad.
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Abstract

Given a list L(v) for each vertex v, we say that the graph G is L-colorable if there is a proper
vertex coloring of G where each vertex v takes its color from L(v). The graph is uniquely k-list
colorable if there is a list assignment L such that |L(v)| = k for every vertex v and the graph
has exactly one L-coloring with these lists. If a graph G is not uniquely k-list colorable, we also
say that G has property M (k). The least integer k such that G has the property M (k) is called
the m-number of G, denoted by m(G). In this paper, first we characterize about the property of
the complete tripartite graphs when it is uniquely k-list colorable graphs, finally we shall prove
that m(K22m) = m(Ka3n) =m(Kea,p) =m(Ks33) =4 for every m > 9,n > 5,p > 4.

Keywords: Vertex coloring (coloring), list coloring, uniquely list colorable graph, complete
r-partite graph.
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1. Introduction

All graphs considered in this paper are finite undirected graphs without loops or multiple edges.
If G is a graph, then V(G) and E(G) (or V and E in short) will denote its vertex-set and its
edge-set, respectively. The set of all neighbours of a subset S C V(G) is denoted by Ng(S) (or
N(S) in short). Further, for W C V(G) the set W N Ng(S) is denoted by Ny (S). The subgraph
of G induced by W C V(G) is denoted by G[W]. The empty and complete graphs of order n are
denoted by O,, and K,, respectively. Unless otherwise indicated, our graph-theoretic terminology
will follow |2].

A graph G = (V,E) is called r-partite graph if V admits a partition into r classes
V =ViuUVWVoU...UV, such that the subgraphs of G induced by V;, i = 1,...,r, is empty, if
r = 2 then G is called bipartite graph, if r = 3 then G is called tripartite graph. An r-partite
graph in which every two vertices from different partition classes are adjacent is called complete
r-partite graph and is denoted by Ky, | |vz),...,|v;| - The complete r-partite graph Ky, jv5),...|v;| With
Vil = |Va] = ... =|V,| = s is denoted by K.

Let Gy = (V1, E1), G2 = (Va, E3) be two graphs such that V; NV = (). Their union G = G1UG»
has, as expected, V(G) = V1 UV, and E(G) = Ey U Es. Their join defined is denoted Gy + G2 and
consists of G1 U G9 and all edges joining V7 with V.

Let G = (V, E) be a graph and \ is a positive integer.

A A-coloring of G is amapping f : V(G) — {1,2,..., A} such that f(u) # f(v) for any adjacent
vertices u,v € V(G). The smallest positive integer A such that G has a A-coloring is called the
chromatic number of G and is denoted by x(G). We say that a graph G is n-chromatic if n = x(G).

Let (L(v))yev be a family of sets. We call a coloring f of G with f(v) € L(v) for allv € V is a
list coloring from the lists L(v). We will refer to such a coloring as an L-coloring. The graph G is
called A-list-colorable, or A-choosable, if for every family (L(v))yey with |L(v)| = X for all v, there
is a coloring of G from the lists L(v). The smallest positive integer A such that G has a A-choosable
is called the list-chromatic number, or choice number of G and is denoted by ch(G). The idea of
list colorings of graphs is due independently to V. G. Vizing [14] and to P. Erdés, A. L. Rubin, and
H. Taylor |7].

Let G be a graph with n vertices and suppose that for each vertex v in G, there exists a list of
k colors L(v), such that there exists a unique L-coloring for G, then G is called a uniquely k-list
colorable graph or a UELC graph for short. If a graph G is not uniquely k-list colorable, we also
say that G has property M (k). So G has the property M (k) if and only if for any collection of lists
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assigned to its vertices, each of size k, either there is no list coloring for G or there exist at least
two list colorings. The least integer k such that G has the property M (k) is called the m-number of
G, denoted by m(G). The idea of uniquely colorable graph was introduced independently by Dinitz
and Martin |6] and by Mahmoodian and Mahdian [10].

For example, one can easily see that the graph K 12 has the property M(3) and it is U2LC, so
m(KLLg) = 3.

The list coloring model can be used in the channel assignment. The fixed channel allocation
scheme leads to low channel utilization across the whole channel. [t requires a more effective channel
assignment and management policy, which allows unused parts of channel to become available
temporarily for other usages so that the scarcity of the channel can be largely mitigated [15]. It is
a discrete optimization problem. A model for channel availability observed by the secondary users
is introduced in [15]. The research of list coloring consists of two parts: the choosability and the
unique list colorability. In 9], we characterized uniquely list colorability of the graph G = K5+ K,,.

In this paper, first we characterize about the property of the complete tripartite graphs when it
is uniquely k-list colorable graphs (Section 2), finally we shall prove that m(Kz2,m) = m(Ka3,) =
=m(Kaup) = m(K3z33) =4 for every m > 9,n > 5,p > 4 (Section 3).

2. Property of the complete tripartite graphs when it is k-list
colorable

We need the following Lemmas 1-6 to prove our results.
LemMA 1 ([10]). Fach UKLC graph is also a U(k — 1)LC graph.
LemMMA 2 ([10]). The graph G is UKLC if and only if k < m(G).

LemMA 3 ([10]). A connected graph G has the property M (2) if and only if every block of G is
either a cycle, a complete graph, or a complete bipartite graph.

LEMMA 4 ([10]). For every graph G we have m(G) < E(G)| + 2.
LeMMmA 5 ([10]). Every UkLC graph has at least 3k — 2 vertices.

LeEMMA 6 ([10]). A connected graph G has the property M (2) if and only if every block of G is
either a cycle, a complete graph, or a complete bipartite graph.

THEOREM 1. Let G = Ky, np be a UKLC graph with k > 2. Then
(i) max{m,n,p} > 2;
(i) If k > 3 then min{m,n,p} > 2;

2+n?4p?—(mintp)+4
(i1) k < TP P

(iv) k < {%ﬂ)ﬂ 7

PROOF. (i) For suppose on the contrary that max{m,n,p} = 1. Then m =n=p =1, s0 G is
a complete graph K3. By Lemma 3, G has the property M (2), a contradiction.

(ii) For suppose on the contrary that min{m,n,p} = 1. Without loss of generality, we may
assume that min{m,n,p} = m = 1. Let V(G) = V1 UV, U V3 is a partition of V(G) such that
[Vi| = m,|Va| = n,|V3| = p, V1 = {a} and for every i = 1,2, 3 the subgraphs of G induced by V}, is
empty graph.

Since G is a UkKLC graph, there exists a list of k colors L(v) for each vertex v, such that there
exists a unique L-coloring f for G. Set graph H = G — V7, it is not difficult to see that H is complete
bipartite graph K, ,. We assign the following lists L'(v) for the vertices v of H:
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If f(a) € L(v) then L'(v) = L(v) \ {f(a)}.

If f(a) ¢ L(v) then L'(v) = L(v) \ {b}, where b € L(v) and b # f(v).
It is clear that |L'(v)| = k—1 > 2 for every v € V(H). By Lemma 3, H has the property M(2). So
by Lemma 1, H has the property M (k —1). It follows that with lists L' (v), there exists at least two
list colorings for the vertices v of H. So it is not difficult to see that with lists L(v), there exists at
least two list colorings for the vertices v of G, a contradiction.

(iii) It is not difficult to see that |E(G)| = m2+n+p 22_(m+n+p ) By Lemma 4, we have

m?+n?+p*— (m+n+p)+4
5 :

m(@) < |B@)|+2=

2,.2,.2
By Lemma 2, we have k < ™22 2(m+n+p)+4.

(iv) Assertion (iii) follows immediately from Lemma 5.

Let G = Ky np be a UELC graph with V/(G) = Vi UVL U V3, G[Vi] = Oy, G[V2] = Oy, G[V3] =
=0p2<m<n<p k>3 Set

‘/1 - {U]_,UQ,...,Um},‘/Q :{Ul)UQ)"'aUn}v‘/é - {U)17U)Q,...,’U)p}.

Suppose that, for the given k-list assignment L:

Ly, ={a;1,ai2,...,0a,;} for every i =1,...,m,

L,UZ. = {b@l, bi,g, e 7bi,k’} for every 1= 1, e,y

Ly, ={cia,ci2,....cip} forevery i =1,...,p,
there is a unique k-list color f:

f(u;) = a;q for every i =1,...,m,

f(vi) =bi1 foreveryi=1,...,n,
f(w;) =¢iq for every i =1,...,p.

THEOREM 2. (i) a;1 # bj1 for everyi=1,...,m,j=1,...,n;
(ii) a;1 # cjq1 foreveryi=1,....m,j=1,...,p;

(7i1) b1 # cjq1 for everyi=1,...,n,j=1,...,p;

(iv) ai1 ¢ {aj2,a;3,...,a5,} for everyi,j =1,2,...,m;

(v) big & {bj2,bj3,...,bjk} for everyi,j=1,2,...,n;

(vi) cin1 € {cj2,¢j3,--.,cjk} for every i,j =1,2,... p.

PROOF. (i) Since G = K, is a complete tripartite graph, u; is adjacent to v; for every
i=1,...,m,j =1,...,n. So it is not difficult to see that a;1 = f(u;) # f(vj) = bj1 for every
1=1,....m,5=1,...,n.

(ii) Similar proofs (i).

(iii) Similar proofs (i).

(iv) If ¢ = j, then it is obvious that the conclusion is true. If i # j, then we suppose that there
exists g, jo such that ig,jo = 1,...,m;ip # jo and a1 € {ajy2,@j0,3,---, @5k} It is clear that
@iy # ajy,1- Let f’ be the coloring of G such that

(a) f/(ujo) = Qig,1;

(b) f'(u;) = a;1 for every i € {1,...,m},i # jo;

(¢) f'(vi) =bi1 foreveryi=1,...,n;

(d) f'(wi) =ci for every i =1,...,p.

Then f’ is a k-list coloring for G and f’ # f, a contradiction.

(v) Similar proofs (iii).

(vi) Similar proofs (iii).

Set f(v) = L(v) \ {f(v)} for every v € V(G).
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THEOREM 3. (i) |f(Vi)| > k — 2 for every i = 1,2,3;

(i) Uyev, f(v ) C f(V; UV) for every i, j,t € {1,2,3} and i,j,t are doubles a distinction;

(it)) Upev(c)f(v) € f(V(G));

(iv) There exists v € V; UV; such that f(v) C f(V;) for every i,j,t € {1,2,3} and 4,j,t are
doubles a distinction.

PROOF. (i) For suppose on the contrary that |f(V1)| =t < k —2,. Set H = G — V1, it is not
difficult to see that H is complete bipartite graph K, ,. We assign the following lists L'(v) for the
vertices v of H:

If f(V4) C L(v) then L'

If there exists A C f(V4

L'(v

—~

) =L(v) \ f(V).
such that AN L(v) = 0, then
) =

( )\{dlad27"'7dt—‘A|7617€27"' 76|A|}7

v

~—

where
dy,ds, ... )dt—|A\ S L(U) \ A e1,eq,... 1 €lA| € L(U)

and f(v) ¢ {e1,e2,... €14}
It is clear that |L/(v)| = k —t > 2 for every v € V(H). By Lemma 3, H has the property M(2). So
by Lemma 1, H has the property M (k — t). It follows that with lists L'(v), there exist at least two
list colorings for the vertices v of H. So it is not difficult to see that with lists L(v), there exist at
least two list colorings for the vertices v of G, a contradiction. Thus, |f(V1)| > k — 2.

By the same method of proof as above, we can also prove that |f(V2)| > k—2 and |f(V3)| > k—2.

(ii) For suppose on the contrary that Uyev; f(v) € f(VaUV3). Then there exists i, jo such that
@iy jo ¢ f(V2aUV3) with 1 <ig <m,2 < jo < k. Let f’ be the coloring of G such that

(a) f'(uiy) = Qig,jo >

(b) f'(u;) = a; for every i € {1,...,m},i # io;

(c) f'(vi) =bi;1 forevery i =1,...,n;

(d) f'(wi) =cip for every i =1,...,p.
Then f’ is a k-list coloring for G' and f’ # f, a contradiction. Thus,

UUGVlf(U) - f(‘/Q U ‘/3)

By the same method of proof as above, we can also prove that U,ey, f(v) € f(Vi U V3) and
Uvery f(v) € f(V1 U V2).

(iii) For suppose on the contrary that Uycy () f(v) € f(V(G). Without loss of generality, we
may assume that there exists ig, jo such that a;, j, ¢ f(V(G)) with 1 <ip <m,2 < jo < k.

Let f’ be the coloring of G such that

() F'(11y) = i o

(b) f'(u;) = a;1 for every i € {1,...,m},i # ip;

(¢) f'(vi) =bi1 foreveryi=1,...,n;

(d) f'(w;) =ci for every i =1,...,p.
Then f’ is a k-list coloring for G' and f’ # f, a contradiction.

(iv) For suppose on the contrary that f(v) € f(V1) for every v € VaUVs, then |f(v)\ f(V1)| > 1
for every v € Vo U V3. So |L(v) \ f(V1)| = 2 for every v € Vo U V3. Set graph

H=G-V = G[VQ U Vg] = Kn,p-
Let L'(v) C L(v) \ f(V4) such that |L'(v)| = 2 for every v € V5 U V3. By Lemma 3, H has the
property M (2), it follows that with lists L'(v), there exist at least two list colorings for the vertices

v for every v € Vo U V3. So it is not difficult to see that with lists L(v), there exist at least two
list colorings for the vertices v of G, a contradiction. Thus, there exists v € Vo U V3 such that

flv) € f(V1).
By the same method of proof as above, we can also prove that there exists v € V; U V3 such
that f(v) C f(V2) and there exists v € V1 U V5 such that f(v) C f(V3).
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3. On property M (4) of some complete tripartite graphs

Set the complete tripartite graph G = Ky, 1, p. Let V(G) = V1UVaUV3 is a partition of V(G) such
that Vi = {ui,ug,...,un}, Vo = {v1,v2,..., v}, V3 = {wy,wa,...,wp} and for every i = 1,2,3
the subgraphs of GG induced by V;, is empty graph.

LEMMA 7. m(Ka2,) =3 if 1 <p < 2.

PrROOF. By Lemma 3, G is U2LC. Suppose that G is USLC. By Lemma 5, |[V(G)| > 7, a
contradiction. So m(G) = 3.

LEMMA 8 ([10]) m(K272,3) = m(KQ’gyg) = 3.
)

LEMMA 9 ([17]). m(K22,) =3 if 4 <p < 8.

LEMMA 10. m(K22,) =3 if 1 < p < 8.

PRrOOF. It follows from Lemma 7, Lemma 8 and Lemma 9.
LEMMA 11 ([18]). The graph K334 has the property M(3).
LEMMA 12. m(K234) = 3.

Proor. It follows from Lemma 3 and Lemma 11.

THEOREM 4. G = Ky, p is USLC if one of the following conditions occurs.
(i)m=>=2n2>2andp>9;

(i) m>2,n>3 and p > 5;

(iii) m > 2,n >4 and p > 4;

(iv) m,n,p > 3.

PROOF. (i) We assign the following lists for the vertices of G: L(u1) = {1,2,6}, L(u2) = L(us) =
=...=L(um) = {3,4,5};

L(v1) ={1,3,6}, L(ve) = L(v3) = ... = L(v,) = {2,4,6};

L(wl) = {1747 5}7 L(w2) = {1’3’6}7 L(w3) = {1’4’6}7 L(w4) = {17576}7 L(wf)) = {27374}7
L(we) ={2,3,5}, L(wr) = {2,3,6}, L(ws) = {2,4,6}, L(wy) = L(wip) = ... = L(w,) = {2,5,6}.

A unique coloring f of G exists from the assigned lists: f(u1)=6,f(u2)= f(us) =...= f(um)=5;

flo) =3, f(v2) = fvz) = ... = flun) = 4

flwr) = flwa) = fws) = f(wa) =1, fws) = fwe) = ... = f(wp)

(ii) We assign the following lists for the vertices of G: L( ={1,3
=...= L(um) ={2,4,5};

L(v1) = {1,2,3}, L(v2) = L(v3) = ... = L(vn) = {2,4,5};

L(w1 = {1,3,5}, L(wg) { 4 5} w3) = {1,4,6}, L(w4) = {2,3,4}, L(w5) = L(w(;) =
=...= L(wp) ={2,5,6}.

5 Lus) = Lus) =

A unique coloring f of G exists from the assigned lists: f(u1)=6,f(u2)=f(us)=...= f(um)=5;
flo1) =3, f(v2) = f(vs) = ... = flvn) =4
flwr) = f(wz) = fws) =1, f(ws) = flws) = ... = f(wp) =2.

(iii) We assign the following lists for the vertices of G: L(u1) = {1,3,5}, L(u2) = L(u3) =
= L(um) = {2,4,6};
L(vy) = {1,2,3}, L(vs) = {1,3,5}, L(vs) = {1,2,4}, L(vs) = L(vs5) = ... = L(vy) = {2,4,6};
L(wy) ={1,4,5}, L(wz) ={1,3,6}, L(w3) ={2,3,4}, L(wy) = L(ws) = ... = L(wp) =2,5,6.
A unique coloring f of G exists from the assigned lists: f(u1) =5, f(u2) = f(uz) =... =
= f(um) = 6;
f(or) = f(v2) =3, f(vs) = floa) = ... = flon) = 4
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flwr) = f(w2) =1, f(ws) = f(wa) = ... = flwp) = 2.
(iv) We assign the following lists for the vertices of G: L(u1) = {1,4,6}, L(uz) = {2,3,6},
L(ug) = L(ug) = ... = L(um) = {2,4,5};

L(v1) ={2,3,6}, L(va) = {1,2,4}, L(vs) = L(v4) = ... = L(v,,) = {4,5,6};

L(w) =1{2,3,5}, L(wz) ={2,4,6}, L(w3) = L(wg) = ... = L(wp) = {3,4,6}.

A unique coloring f of G exists from the assigned lists: f(u1)=1,f(u2)=f(uz)=...= f(um)=2;
flor) =3, f(v2) = fluz) = ... = flun) = 4

fwr) =5, f(wz) = flwg) = ... = f(wp) =6.

COROLLARY. (i) G = K32, is U3LC if and only if p > 9;

(ii) G = K33, is U3LC if and only if p > 5;

(i) G = K24, is U3LC if and only if p > 4;

(iv) G = K33, is USLC if and only if p > 3.

PRrROOF. (i) It follows from Lemma 10 and (i) of Theorem 3.

(ii) It follows from (ii) of Theorem 1, Lemma 8 and Lemma 12.
(iii) It follows from (ii) of Theorem 1, Lemma 10 and Lemma 12.
(iv) It follows from (ii) of Theorem 1 and Lemma 8.

LEMMA 13. The graph G = Ka,, ) has the property M(4).

PRroOF. For suppose on the contrary that G is U4LC. Then for each vertex v in G, there exists
a list of 4 colors L(v), such that there exists a unique L-coloring for G. By (i) of Theorem 3 we
have 2 = V1| > | f(V1)| > 4 — 2 = 2, contradiction. Thus, G = K» ,,, has the property M(4).

The join of O,, and K,,, O, + K,, = S(m,n), is called a complete split graph.

LemMA 14 ([10]). For every n > 2, we have m(S(3,n)) = 3.

THEOREM 5. (i) m(Kaz2,) =4 if and only if p > 9;
(i) m(Ka3p) =4 if and only if p > 5;

(iii) m(Ka4,p) = 4 if and only if p > 4;

(iv) m(K333) = 4.

PRrOOF. (i) It follows from (i) of Theorem 4 and Lemma 13.

(ii) It follows from (ii) of Theorem 4 and Lemma 13.

(iii) It follows from (iii) of Theorem 4 and Lemma 13.

(iv) For suppose on the contrary that G = K333 is U4LC. Then for each vertex v in G, there
exists a list of 4 colors L(v), such that there exists a unique L-coloring for G. By (i) of Theorem 3,
[ (V) 1 f(V2)| > 4—2 = 2, it follows that [f(V1)| = | f(V2)| = 3. So f(ui) # f(u;) and f(vi) # f(v))
for every i,7 =1,2,3,i # j. Set graph G' = (V', E') with V' = V(QG),

E' = E(G)U{uujli,j =1,2,...,m;i # j} U {vj;li,j = 1,2,...,n5i # j}.

It is clear that G’ is complete split graph S(3,6). By Lemma 14, G’ has the property M(3). By
Lemma 1, G’ has the property M (4), so with lists L(v), there exist at least two list colorings for
the vertices v of G'. Since V(G) = V(G’), it is not difficult to see that with lists L(v), there exist
at least two list colorings for the vertices v of G, a contradiction. Thus, G has the property M (4).
By (iv) of Theorem 4, we have m(K333) = 4.
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