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Аннотация

Учитывая список 𝐿(𝑣) для каждой вершины 𝑣, мы говорим, что граф 𝐺 является 𝐿-
раскрашиваемым, если существует правильная раскраска вершины G, где каждая вершина
𝑣 берет свой цвет из 𝐿(𝑣). Граф является однозначно раскрашиваемым списком 𝑘, если су-
ществует присвоение списка 𝐿 такое, что |𝐿(𝑣)| = 𝑘 для каждой вершины 𝑣, и граф имеет
ровно одну раскраску 𝐿 с этими списками. Если граф 𝐺 не является однозначно раскра-
шиваемым списком 𝑘, мы также говорим, что 𝐺 обладает свойством 𝑀(𝑘). Наименьшее
целое число 𝑘, такое, что 𝐺 обладает свойством 𝑀(𝑘), называется 𝑚-числом 𝐺, обозна-
чаемым 𝑚(𝐺). В этой статье сначала мы охарактеризуем свойство полных трехсторонних
графов, когда это однозначно 𝑘-список раскрашиваемых графов, наконец, мы докажем,
что 𝑚(𝐾2,2,𝑚) = 𝑚(𝐾2,3,𝑛) = 𝑚(𝐾2,4,𝑝) = 𝑚(𝐾3,3,3) = 4 за каждые 𝑚 > 9, 𝑛 > 5, 𝑝 > 4.
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Abstract

Given a list 𝐿(𝑣) for each vertex 𝑣, we say that the graph 𝐺 is 𝐿-colorable if there is a proper
vertex coloring of G where each vertex 𝑣 takes its color from 𝐿(𝑣). The graph is uniquely 𝑘-list
colorable if there is a list assignment 𝐿 such that |𝐿(𝑣)| = 𝑘 for every vertex 𝑣 and the graph
has exactly one 𝐿-coloring with these lists. If a graph 𝐺 is not uniquely 𝑘-list colorable, we also
say that 𝐺 has property 𝑀(𝑘). The least integer 𝑘 such that 𝐺 has the property 𝑀(𝑘) is called
the 𝑚-number of 𝐺, denoted by 𝑚(𝐺). In this paper, first we characterize about the property of
the complete tripartite graphs when it is uniquely 𝑘-list colorable graphs, finally we shall prove
that 𝑚(𝐾2,2,𝑚) = 𝑚(𝐾2,3,𝑛) = 𝑚(𝐾2,4,𝑝) = 𝑚(𝐾3,3,3) = 4 for every 𝑚 > 9, 𝑛 > 5, 𝑝 > 4.

Keywords: Vertex coloring (coloring), list coloring, uniquely list colorable graph, complete
r-partite graph.

Bibliography: 18 titles.

For citation:

Le Xuan Hung, 2022, “Uniquely list colorability of complete tripartite graphs” , Chebyshevskii sbor-
nik, vol. 23, no. 2, pp. 170–178.

1. Introduction

All graphs considered in this paper are finite undirected graphs without loops or multiple edges.
If 𝐺 is a graph, then 𝑉 (𝐺) and 𝐸(𝐺) (or 𝑉 and 𝐸 in short) will denote its vertex-set and its
edge-set, respectively. The set of all neighbours of a subset 𝑆 ⊆ 𝑉 (𝐺) is denoted by 𝑁𝐺(𝑆) (or
𝑁(𝑆) in short). Further, for 𝑊 ⊆ 𝑉 (𝐺) the set 𝑊 ∩ 𝑁𝐺(𝑆) is denoted by 𝑁𝑊 (𝑆). The subgraph
of 𝐺 induced by 𝑊 ⊆ 𝑉 (𝐺) is denoted by 𝐺[𝑊 ]. The empty and complete graphs of order 𝑛 are
denoted by 𝑂𝑛 and 𝐾𝑛, respectively. Unless otherwise indicated, our graph-theoretic terminology
will follow [2].

A graph 𝐺 = (𝑉,𝐸) is called r-partite graph if 𝑉 admits a partition into 𝑟 classes
𝑉 = 𝑉1 ∪ 𝑉2 ∪ . . . ∪ 𝑉𝑟 such that the subgraphs of 𝐺 induced by 𝑉𝑖, 𝑖 = 1, . . . , 𝑟, is empty, if
𝑟 = 2 then 𝐺 is called bipartite graph, if 𝑟 = 3 then 𝐺 is called tripartite graph. An 𝑟-partite
graph in which every two vertices from different partition classes are adjacent is called complete
𝑟-partite graph and is denoted by 𝐾|𝑉1|,|𝑉2|,...,|𝑉𝑟| . The complete 𝑟-partite graph 𝐾|𝑉1|,|𝑉2|,...,|𝑉𝑟| with
|𝑉1| = |𝑉2| = . . . = |𝑉𝑟| = 𝑠 is denoted by 𝐾𝑟

𝑠 .
Let 𝐺1 = (𝑉1, 𝐸1), 𝐺2 = (𝑉2, 𝐸2) be two graphs such that 𝑉1∩𝑉2 = ∅. Their union 𝐺 = 𝐺1∪𝐺2

has, as expected, 𝑉 (𝐺) = 𝑉1 ∪ 𝑉2 and 𝐸(𝐺) = 𝐸1 ∪𝐸2. Their join defined is denoted 𝐺1 +𝐺2 and
consists of 𝐺1 ∪𝐺2 and all edges joining 𝑉1 with 𝑉2.

Let 𝐺 = (𝑉,𝐸) be a graph and 𝜆 is a positive integer.
A 𝜆-coloring of 𝐺 is a mapping 𝑓 : 𝑉 (𝐺)→ {1, 2, . . . , 𝜆} such that 𝑓(𝑢) ̸= 𝑓(𝑣) for any adjacent

vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺). The smallest positive integer 𝜆 such that 𝐺 has a 𝜆-coloring is called the
chromatic number of 𝐺 and is denoted by 𝜒(𝐺). We say that a graph 𝐺 is 𝑛-chromatic if 𝑛 = 𝜒(𝐺).

Let (𝐿(𝑣))𝑣∈𝑉 be a family of sets. We call a coloring 𝑓 of 𝐺 with 𝑓(𝑣) ∈ 𝐿(𝑣) for all 𝑣 ∈ 𝑉 is a
list coloring from the lists 𝐿(𝑣). We will refer to such a coloring as an 𝐿-coloring. The graph 𝐺 is
called 𝜆-list-colorable, or 𝜆-choosable, if for every family (𝐿(𝑣))𝑣∈𝑉 with |𝐿(𝑣)| = 𝜆 for all 𝑣, there
is a coloring of 𝐺 from the lists 𝐿(𝑣). The smallest positive integer 𝜆 such that 𝐺 has a 𝜆-choosable
is called the list-chromatic number, or choice number of 𝐺 and is denoted by 𝑐ℎ(𝐺). The idea of
list colorings of graphs is due independently to V. G. Vizing [14] and to P. Erdös, A. L. Rubin, and
H. Taylor [7].

Let 𝐺 be a graph with 𝑛 vertices and suppose that for each vertex 𝑣 in 𝐺, there exists a list of
𝑘 colors 𝐿(𝑣), such that there exists a unique 𝐿-coloring for 𝐺, then 𝐺 is called a uniquely 𝑘-list
colorable graph or a U𝑘LC graph for short. If a graph 𝐺 is not uniquely 𝑘-list colorable, we also
say that 𝐺 has property 𝑀(𝑘). So 𝐺 has the property 𝑀(𝑘) if and only if for any collection of lists
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assigned to its vertices, each of size 𝑘, either there is no list coloring for 𝐺 or there exist at least
two list colorings. The least integer 𝑘 such that 𝐺 has the property𝑀(𝑘) is called the 𝑚-𝑛𝑢𝑚𝑏𝑒𝑟 of
𝐺, denoted by 𝑚(𝐺). The idea of uniquely colorable graph was introduced independently by Dinitz
and Martin [6] and by Mahmoodian and Mahdian [10].

For example, one can easily see that the graph 𝐾1,1,2 has the property M(3) and it is U2LC, so
𝑚(𝐾1,1,2) = 3.

The list coloring model can be used in the channel assignment. The fixed channel allocation
scheme leads to low channel utilization across the whole channel. It requires a more effective channel
assignment and management policy, which allows unused parts of channel to become available
temporarily for other usages so that the scarcity of the channel can be largely mitigated [15]. It is
a discrete optimization problem. A model for channel availability observed by the secondary users
is introduced in [15]. The research of list coloring consists of two parts: the choosability and the
unique list colorability. In [9], we characterized uniquely list colorability of the graph 𝐺 = 𝐾𝑚

2 +𝐾𝑛.
In this paper, first we characterize about the property of the complete tripartite graphs when it

is uniquely 𝑘-list colorable graphs (Section 2), finally we shall prove that 𝑚(𝐾2,2,𝑚) = 𝑚(𝐾2,3,𝑛) =
= 𝑚(𝐾2,4,𝑝) = 𝑚(𝐾3,3,3) = 4 for every 𝑚 > 9, 𝑛 > 5, 𝑝 > 4 (Section 3).

2. Property of the complete tripartite graphs when it is 𝑘-list
colorable

We need the following Lemmas 1–6 to prove our results.

Lemma 1 ([10]). Each U𝑘LC graph is also a U(𝑘 − 1)LC graph.

Lemma 2 ([10]). The graph 𝐺 is U𝑘LC if and only if 𝑘 < 𝑚(𝐺).

Lemma 3 ([10]). A connected graph 𝐺 has the property 𝑀(2) if and only if every block of 𝐺 is
either a cycle, a complete graph, or a complete bipartite graph.

Lemma 4 ([10]). For every graph 𝐺 we have 𝑚(𝐺) 6 𝐸(𝐺)|+ 2.

Lemma 5 ([10]). Every U𝑘LC graph has at least 3𝑘 − 2 vertices.

Lemma 6 ([10]). A connected graph 𝐺 has the property 𝑀(2) if and only if every block of 𝐺 is
either a cycle, a complete graph, or a complete bipartite graph.

Theorem 1. Let 𝐺 = 𝐾𝑚,𝑛,𝑝 be a U𝑘LC graph with 𝑘 > 2. Then

(i) max{𝑚,𝑛, 𝑝} > 2;

(ii) If 𝑘 > 3 then min{𝑚,𝑛, 𝑝} > 2;

(iii) 𝑘 < 𝑚2+𝑛2+𝑝2−(𝑚+𝑛+𝑝)+4
2 ;

(iv) 𝑘 6
⌊︁
𝑚+𝑛+𝑝+2

3

⌋︁
.

Proof. (i) For suppose on the contrary that max{𝑚,𝑛, 𝑝} = 1. Then 𝑚 = 𝑛 = 𝑝 = 1, so 𝐺 is
a complete graph 𝐾3. By Lemma 3, 𝐺 has the property 𝑀(2), a contradiction.

(ii) For suppose on the contrary that min{𝑚,𝑛, 𝑝} = 1. Without loss of generality, we may
assume that min{𝑚,𝑛, 𝑝} = 𝑚 = 1. Let 𝑉 (𝐺) = 𝑉1 ∪ 𝑉2 ∪ 𝑉3 is a partition of 𝑉 (𝐺) such that
|𝑉1| = 𝑚, |𝑉2| = 𝑛, |𝑉3| = 𝑝, 𝑉1 = {𝑎} and for every 𝑖 = 1, 2, 3 the subgraphs of 𝐺 induced by 𝑉𝑖, is
empty graph.

Since 𝐺 is a U𝑘LC graph, there exists a list of 𝑘 colors 𝐿(𝑣) for each vertex 𝑣, such that there
exists a unique 𝐿-coloring 𝑓 for 𝐺. Set graph 𝐻 = 𝐺−𝑉1, it is not difficult to see that 𝐻 is complete
bipartite graph 𝐾𝑛,𝑝. We assign the following lists 𝐿′(𝑣) for the vertices 𝑣 of 𝐻:
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If 𝑓(𝑎) ∈ 𝐿(𝑣) then 𝐿′(𝑣) = 𝐿(𝑣) ∖ {𝑓(𝑎)}.
If 𝑓(𝑎) /∈ 𝐿(𝑣) then 𝐿′(𝑣) = 𝐿(𝑣) ∖ {𝑏}, where 𝑏 ∈ 𝐿(𝑣) and 𝑏 ̸= 𝑓(𝑣).

It is clear that |𝐿′(𝑣)| = 𝑘− 1 > 2 for every 𝑣 ∈ 𝑉 (𝐻). By Lemma 3, 𝐻 has the property 𝑀(2). So
by Lemma 1, 𝐻 has the property 𝑀(𝑘−1). It follows that with lists 𝐿′(𝑣), there exists at least two
list colorings for the vertices 𝑣 of 𝐻. So it is not difficult to see that with lists 𝐿(𝑣), there exists at
least two list colorings for the vertices 𝑣 of 𝐺, a contradiction.

(iii) It is not difficult to see that |𝐸(𝐺)| = 𝑚2+𝑛2+𝑝2−(𝑚+𝑛+𝑝)
2 . By Lemma 4, we have

𝑚(𝐺) 6 |𝐸(𝐺)|+ 2 =
𝑚2 + 𝑛2 + 𝑝2 − (𝑚+ 𝑛+ 𝑝) + 4

2
.

By Lemma 2, we have 𝑘 < 𝑚2+𝑛2+𝑝2−(𝑚+𝑛+𝑝)+4
2 .

(iv) Assertion (iii) follows immediately from Lemma 5.
Let 𝐺 = 𝐾𝑚,𝑛,𝑝 be a U𝑘LC graph with 𝑉 (𝐺) = 𝑉1 ∪ 𝑉2 ∪ 𝑉3, 𝐺[𝑉1] = 𝑂𝑚, 𝐺[𝑉2] = 𝑂𝑛, 𝐺[𝑉3] =

= 𝑂𝑝, 2 6 𝑚 6 𝑛 6 𝑝, 𝑘 > 3. Set

𝑉1 = {𝑢1, 𝑢2, . . . , 𝑢𝑚}, 𝑉2 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, 𝑉3 = {𝑤1, 𝑤2, . . . , 𝑤𝑝}.

Suppose that, for the given 𝑘-list assignment 𝐿:
𝐿𝑢𝑖 = {𝑎𝑖,1, 𝑎𝑖,2, . . . , 𝑎𝑖,𝑘} for every 𝑖 = 1, . . . ,𝑚,
𝐿𝑣𝑖 = {𝑏𝑖,1, 𝑏𝑖,2, . . . , 𝑏𝑖,𝑘} for every 𝑖 = 1, . . . , 𝑛,
𝐿𝑤𝑖 = {𝑐𝑖,1, 𝑐𝑖,2, . . . , 𝑐𝑖,𝑘} for every 𝑖 = 1, . . . , 𝑝,

there is a unique 𝑘-list color 𝑓 :
𝑓(𝑢𝑖) = 𝑎𝑖,1 for every 𝑖 = 1, . . . ,𝑚,
𝑓(𝑣𝑖) = 𝑏𝑖,1 for every 𝑖 = 1, . . . , 𝑛,
𝑓(𝑤𝑖) = 𝑐𝑖,1 for every 𝑖 = 1, . . . , 𝑝.

Theorem 2. (i) 𝑎𝑖,1 ̸= 𝑏𝑗,1 for every 𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑛;

(ii) 𝑎𝑖,1 ̸= 𝑐𝑗,1 for every 𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑝;

(iii) 𝑏𝑖,1 ̸= 𝑐𝑗,1 for every 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑝;

(iv) 𝑎𝑖,1 /∈ {𝑎𝑗,2, 𝑎𝑗,3, . . . , 𝑎𝑗,𝑘} for every 𝑖, 𝑗 = 1, 2, . . . ,𝑚;

(v) 𝑏𝑖,1 /∈ {𝑏𝑗,2, 𝑏𝑗,3, . . . , 𝑏𝑗,𝑘} for every 𝑖, 𝑗 = 1, 2, . . . , 𝑛;

(vi) 𝑐𝑖,1 /∈ {𝑐𝑗,2, 𝑐𝑗,3, . . . , 𝑐𝑗,𝑘} for every 𝑖, 𝑗 = 1, 2, . . . , 𝑝.

Proof. (i) Since 𝐺 = 𝐾𝑚,𝑛,𝑝 is a complete tripartite graph, 𝑢𝑖 is adjacent to 𝑣𝑗 for every
𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑛. So it is not difficult to see that 𝑎𝑖,1 = 𝑓(𝑢𝑖) ̸= 𝑓(𝑣𝑗) = 𝑏𝑗,1 for every
𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑛.

(ii) Similar proofs (i).
(iii) Similar proofs (i).
(iv) If 𝑖 = 𝑗, then it is obvious that the conclusion is true. If 𝑖 ̸= 𝑗, then we suppose that there

exists 𝑖0, 𝑗0 such that 𝑖0, 𝑗0 = 1, . . . ,𝑚; 𝑖0 ̸= 𝑗0 and 𝑎𝑖0,1 ∈ {𝑎𝑗0,2, 𝑎𝑗0,3, . . . , 𝑎𝑗0,𝑘}. It is clear that
𝑎𝑖0,1 ̸= 𝑎𝑗0,1. Let 𝑓

′ be the coloring of 𝐺 such that
(a) 𝑓 ′(𝑢𝑗0) = 𝑎𝑖0,1;
(b) 𝑓 ′(𝑢𝑖) = 𝑎𝑖,1 for every 𝑖 ∈ {1, . . . ,𝑚}, 𝑖 ̸= 𝑗0;
(c) 𝑓 ′(𝑣𝑖) = 𝑏𝑖,1 for every 𝑖 = 1, . . . , 𝑛;
(d) 𝑓 ′(𝑤𝑖) = 𝑐𝑖,1 for every 𝑖 = 1, . . . , 𝑝.

Then 𝑓 ′ is a 𝑘-list coloring for 𝐺 and 𝑓 ′ ̸= 𝑓 , a contradiction.
(v) Similar proofs (iii).
(vi) Similar proofs (iii).
Set 𝑓(𝑣) = 𝐿(𝑣) ∖ {𝑓(𝑣)} for every 𝑣 ∈ 𝑉 (𝐺).
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Theorem 3. (i) |𝑓(𝑉𝑖)| > 𝑘 − 2 for every 𝑖 = 1, 2, 3;
(ii) ∪𝑣∈𝑉𝑖𝑓(𝑣) ⊆ 𝑓(𝑉𝑗 ∪ 𝑉𝑡) for every 𝑖, 𝑗, 𝑡 ∈ {1, 2, 3} and 𝑖, 𝑗, 𝑡 are doubles a distinction;
(iii) ∪𝑣∈𝑉 (𝐺)𝑓(𝑣) ⊆ 𝑓(𝑉 (𝐺));

(iv) There exists 𝑣 ∈ 𝑉𝑖 ∪ 𝑉𝑗 such that 𝑓(𝑣) ⊆ 𝑓(𝑉𝑡) for every 𝑖, 𝑗, 𝑡 ∈ {1, 2, 3} and 𝑖, 𝑗, 𝑡 are
doubles a distinction.

Proof. (i) For suppose on the contrary that |𝑓(𝑉1)| = 𝑡 6 𝑘 − 2,. Set 𝐻 = 𝐺 − 𝑉1, it is not
difficult to see that 𝐻 is complete bipartite graph 𝐾𝑛,𝑝. We assign the following lists 𝐿′(𝑣) for the
vertices 𝑣 of 𝐻:

If 𝑓(𝑉1) ⊆ 𝐿(𝑣) then 𝐿′(𝑣) = 𝐿(𝑣) ∖ 𝑓(𝑉1).
If there exists 𝐴 ⊆ 𝑓(𝑉1) such that 𝐴 ∩ 𝐿(𝑣) = ∅, then

𝐿′(𝑣) = 𝐿(𝑣) ∖ {𝑑1, 𝑑2, . . . , 𝑑𝑡−|𝐴|, 𝑒1, 𝑒2, . . . , 𝑒|𝐴|},
where

𝑑1, 𝑑2, . . . , 𝑑𝑡−|𝐴| ∈ 𝐿(𝑣) ∖𝐴, 𝑒1, 𝑒2, . . . , 𝑒|𝐴| ∈ 𝐿(𝑣)
and 𝑓(𝑣) /∈ {𝑒1, 𝑒2, . . . , 𝑒|𝐴|}.
It is clear that |𝐿′(𝑣)| = 𝑘− 𝑡 > 2 for every 𝑣 ∈ 𝑉 (𝐻). By Lemma 3, 𝐻 has the property 𝑀(2). So
by Lemma 1, 𝐻 has the property 𝑀(𝑘− 𝑡). It follows that with lists 𝐿′(𝑣), there exist at least two
list colorings for the vertices 𝑣 of 𝐻. So it is not difficult to see that with lists 𝐿(𝑣), there exist at
least two list colorings for the vertices 𝑣 of 𝐺, a contradiction. Thus, |𝑓(𝑉1)| > 𝑘 − 2.

By the same method of proof as above, we can also prove that |𝑓(𝑉2)| > 𝑘−2 and |𝑓(𝑉3)| > 𝑘−2.
(ii) For suppose on the contrary that ∪𝑣∈𝑉1𝑓(𝑣) ̸⊆ 𝑓(𝑉2 ∪ 𝑉3). Then there exists 𝑖0, 𝑗0 such that

𝑎𝑖0,𝑗0 /∈ 𝑓(𝑉2 ∪ 𝑉3) with 1 6 𝑖0 6 𝑚, 2 6 𝑗0 6 𝑘. Let 𝑓 ′ be the coloring of 𝐺 such that
(a) 𝑓 ′(𝑢𝑖0) = 𝑎𝑖0,𝑗0 ;
(b) 𝑓 ′(𝑢𝑖) = 𝑎𝑖,1 for every 𝑖 ∈ {1, . . . ,𝑚}, 𝑖 ̸= 𝑖0;
(c) 𝑓 ′(𝑣𝑖) = 𝑏𝑖,1 for every 𝑖 = 1, . . . , 𝑛;
(d) 𝑓 ′(𝑤𝑖) = 𝑐𝑖,1 for every 𝑖 = 1, . . . , 𝑝.

Then 𝑓 ′ is a 𝑘-list coloring for 𝐺 and 𝑓 ′ ̸= 𝑓 , a contradiction. Thus,

∪𝑣∈𝑉1𝑓(𝑣) ⊆ 𝑓(𝑉2 ∪ 𝑉3).
By the same method of proof as above, we can also prove that ∪𝑣∈𝑉2𝑓(𝑣) ⊆ 𝑓(𝑉1 ∪ 𝑉3) and
∪𝑣∈𝑉3𝑓(𝑣) ⊆ 𝑓(𝑉1 ∪ 𝑉2).

(iii) For suppose on the contrary that ∪𝑣∈𝑉 (𝐺)𝑓(𝑣) ̸⊆ 𝑓(𝑉 (𝐺). Without loss of generality, we
may assume that there exists 𝑖0, 𝑗0 such that 𝑎𝑖0,𝑗0 /∈ 𝑓(𝑉 (𝐺)) with 1 6 𝑖0 6 𝑚, 2 6 𝑗0 6 𝑘.

Let 𝑓 ′ be the coloring of 𝐺 such that
(a) 𝑓 ′(𝑢𝑖0) = 𝑎𝑖0,𝑗0 ;
(b) 𝑓 ′(𝑢𝑖) = 𝑎𝑖,1 for every 𝑖 ∈ {1, . . . ,𝑚}, 𝑖 ̸= 𝑖0;
(c) 𝑓 ′(𝑣𝑖) = 𝑏𝑖,1 for every 𝑖 = 1, . . . , 𝑛;
(d) 𝑓 ′(𝑤𝑖) = 𝑐𝑖,1 for every 𝑖 = 1, . . . , 𝑝.

Then 𝑓 ′ is a 𝑘-list coloring for 𝐺 and 𝑓 ′ ̸= 𝑓 , a contradiction.
(iv) For suppose on the contrary that 𝑓(𝑣) ̸⊆ 𝑓(𝑉1) for every 𝑣 ∈ 𝑉2∪𝑉3, then |𝑓(𝑣)∖𝑓(𝑉1)| > 1

for every 𝑣 ∈ 𝑉2 ∪ 𝑉3. So |𝐿(𝑣) ∖ 𝑓(𝑉1)| > 2 for every 𝑣 ∈ 𝑉2 ∪ 𝑉3. Set graph
𝐻 = 𝐺− 𝑉1 = 𝐺[𝑉2 ∪ 𝑉3] = 𝐾𝑛,𝑝.

Let 𝐿′(𝑣) ⊆ 𝐿(𝑣) ∖ 𝑓(𝑉1) such that |𝐿′(𝑣)| = 2 for every 𝑣 ∈ 𝑉2 ∪ 𝑉3. By Lemma 3, 𝐻 has the
property 𝑀(2), it follows that with lists 𝐿′(𝑣), there exist at least two list colorings for the vertices
𝑣 for every 𝑣 ∈ 𝑉2 ∪ 𝑉3. So it is not difficult to see that with lists 𝐿(𝑣), there exist at least two
list colorings for the vertices 𝑣 of 𝐺, a contradiction. Thus, there exists 𝑣 ∈ 𝑉2 ∪ 𝑉3 such that
𝑓(𝑣) ⊆ 𝑓(𝑉1).

By the same method of proof as above, we can also prove that there exists 𝑣 ∈ 𝑉1 ∪ 𝑉3 such
that 𝑓(𝑣) ⊆ 𝑓(𝑉2) and there exists 𝑣 ∈ 𝑉1 ∪ 𝑉2 such that 𝑓(𝑣) ⊆ 𝑓(𝑉3).
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3. On property 𝑀(4) of some complete tripartite graphs

Set the complete tripartite graph 𝐺 = 𝐾𝑚,𝑛,𝑝. Let 𝑉 (𝐺) = 𝑉1∪𝑉2∪𝑉3 is a partition of 𝑉 (𝐺) such
that 𝑉1 = {𝑢1, 𝑢2, . . . , 𝑢𝑚}, 𝑉2 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, 𝑉3 = {𝑤1, 𝑤2, . . . , 𝑤𝑝} and for every 𝑖 = 1, 2, 3
the subgraphs of 𝐺 induced by 𝑉𝑖, is empty graph.

Lemma 7. 𝑚(𝐾2,2,𝑝) = 3 if 1 6 𝑝 6 2.

Proof. By Lemma 3, 𝐺 is U2LC. Suppose that 𝐺 is U3LC. By Lemma 5, |𝑉 (𝐺)| > 7, a
contradiction. So 𝑚(𝐺) = 3.

Lemma 8 ([10]). 𝑚(𝐾2,2,3) = 𝑚(𝐾2,3,3) = 3.

Lemma 9 ([17]). 𝑚(𝐾2,2,𝑝) = 3 if 4 6 𝑝 6 8.

Lemma 10. 𝑚(𝐾2,2,𝑝) = 3 if 1 6 𝑝 6 8.

Proof. It follows from Lemma 7, Lemma 8 and Lemma 9.

Lemma 11 ([18]). The graph 𝐾2,3,4 has the property M(3).

Lemma 12. 𝑚(𝐾2,3,4) = 3.

Proof. It follows from Lemma 3 and Lemma 11.

Theorem 4. 𝐺 = 𝐾𝑚,𝑛,𝑝 is U3LC if one of the following conditions occurs.
(i) 𝑚 > 2, 𝑛 > 2 and 𝑝 > 9;
(ii) 𝑚 > 2, 𝑛 > 3 and 𝑝 > 5;
(iii) 𝑚 > 2, 𝑛 > 4 and 𝑝 > 4;
(iv) 𝑚,𝑛, 𝑝 > 3.

Proof. (i) We assign the following lists for the vertices of𝐺: 𝐿(𝑢1) = {1, 2, 6}, 𝐿(𝑢2) = 𝐿(𝑢3) =
= . . . = 𝐿(𝑢𝑚) = {3, 4, 5};

𝐿(𝑣1) = {1, 3, 6}, 𝐿(𝑣2) = 𝐿(𝑣3) = . . . = 𝐿(𝑣𝑛) = {2, 4, 6};
𝐿(𝑤1) = {1, 4, 5}, 𝐿(𝑤2) = {1, 3, 6}, 𝐿(𝑤3) = {1, 4, 6}, 𝐿(𝑤4) = {1, 5, 6}, 𝐿(𝑤5) = {2, 3, 4},

𝐿(𝑤6) = {2, 3, 5}, 𝐿(𝑤7) = {2, 3, 6}, 𝐿(𝑤8) = {2, 4, 6}, 𝐿(𝑤9) = 𝐿(𝑤10) = . . . = 𝐿(𝑤𝑝) = {2, 5, 6}.
A unique coloring 𝑓 of 𝐺 exists from the assigned lists: 𝑓(𝑢1)=6,𝑓(𝑢2)= 𝑓(𝑢3) = . . .=𝑓(𝑢𝑚)=5;
𝑓(𝑣1) = 3, 𝑓(𝑣2) = 𝑓(𝑣3) = . . . = 𝑓(𝑣𝑛) = 4;
𝑓(𝑤1) = 𝑓(𝑤2) = 𝑓(𝑤3) = 𝑓(𝑤4) = 1, 𝑓(𝑤5) = 𝑓(𝑤6) = . . . = 𝑓(𝑤𝑝) = 2.
(ii) We assign the following lists for the vertices of 𝐺: 𝐿(𝑢1) = {1, 3, 6}, 𝐿(𝑢2) = 𝐿(𝑢3) =

= . . . = 𝐿(𝑢𝑚) = {2, 4, 5};
𝐿(𝑣1) = {1, 2, 3}, 𝐿(𝑣2) = 𝐿(𝑣3) = . . . = 𝐿(𝑣𝑛) = {2, 4, 5};
𝐿(𝑤1) = {1, 3, 5}, 𝐿(𝑤2) = {1, 4, 5}, 𝐿(𝑤3) = {1, 4, 6}, 𝐿(𝑤4) = {2, 3, 4}, 𝐿(𝑤5) = 𝐿(𝑤6) =

= . . . = 𝐿(𝑤𝑝) = {2, 5, 6}.
A unique coloring 𝑓 of 𝐺 exists from the assigned lists: 𝑓(𝑢1)=6,𝑓(𝑢2)=𝑓(𝑢3)= . . .=𝑓(𝑢𝑚)=5;
𝑓(𝑣1) = 3, 𝑓(𝑣2) = 𝑓(𝑣3) = . . . = 𝑓(𝑣𝑛) = 4;
𝑓(𝑤1) = 𝑓(𝑤2) = 𝑓(𝑤3) = 1, 𝑓(𝑤4) = 𝑓(𝑤5) = . . . = 𝑓(𝑤𝑝) = 2.
(iii) We assign the following lists for the vertices of 𝐺: 𝐿(𝑢1) = {1, 3, 5}, 𝐿(𝑢2) = 𝐿(𝑢3) = . . . =

= 𝐿(𝑢𝑚) = {2, 4, 6};
𝐿(𝑣1) = {1, 2, 3}, 𝐿(𝑣2) = {1, 3, 5}, 𝐿(𝑣3) = {1, 2, 4}, 𝐿(𝑣4) = 𝐿(𝑣5) = . . . = 𝐿(𝑣𝑛) = {2, 4, 6};
𝐿(𝑤1) = {1, 4, 5}, 𝐿(𝑤2) = {1, 3, 6}, 𝐿(𝑤3) = {2, 3, 4}, 𝐿(𝑤4) = 𝐿(𝑤5) = . . . = 𝐿(𝑤𝑝)=2, 5, 6.
A unique coloring 𝑓 of 𝐺 exists from the assigned lists: 𝑓(𝑢1) = 5, 𝑓(𝑢2) = 𝑓(𝑢3) = . . . =

= 𝑓(𝑢𝑚) = 6;
𝑓(𝑣1) = 𝑓(𝑣2) = 3, 𝑓(𝑣3) = 𝑓(𝑣4) = . . . = 𝑓(𝑣𝑛) = 4;
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𝑓(𝑤1) = 𝑓(𝑤2) = 1, 𝑓(𝑤3) = 𝑓(𝑤4) = . . . = 𝑓(𝑤𝑝) = 2.
(iv) We assign the following lists for the vertices of 𝐺: 𝐿(𝑢1) = {1, 4, 6}, 𝐿(𝑢2) = {2, 3, 6},

𝐿(𝑢3) = 𝐿(𝑢4) = . . . = 𝐿(𝑢𝑚) = {2, 4, 5};
𝐿(𝑣1) = {2, 3, 6}, 𝐿(𝑣2) = {1, 2, 4}, 𝐿(𝑣3) = 𝐿(𝑣4) = . . . = 𝐿(𝑣𝑛) = {4, 5, 6};
𝐿(𝑤1) = {2, 3, 5}, 𝐿(𝑤2) = {2, 4, 6}, 𝐿(𝑤3) = 𝐿(𝑤4) = . . . = 𝐿(𝑤𝑝) = {3, 4, 6}.
A unique coloring 𝑓 of 𝐺 exists from the assigned lists: 𝑓(𝑢1)=1,𝑓(𝑢2)=𝑓(𝑢3)= . . .=𝑓(𝑢𝑚)=2;
𝑓(𝑣1) = 3, 𝑓(𝑣2) = 𝑓(𝑣3) = . . . = 𝑓(𝑣𝑛) = 4;
𝑓(𝑤1) = 5, 𝑓(𝑤2) = 𝑓(𝑤3) = . . . = 𝑓(𝑤𝑝) = 6.
Corollary. (i) 𝐺 = 𝐾2,2,𝑝 is U3LC if and only if 𝑝 > 9;
(ii) 𝐺 = 𝐾2,3,𝑝 is U3LC if and only if 𝑝 > 5;
(iii) 𝐺 = 𝐾2,4,𝑝 is U3LC if and only if 𝑝 > 4;
(iv) 𝐺 = 𝐾3,3,𝑝 is U3LC if and only if 𝑝 > 3.
Proof. (i) It follows from Lemma 10 and (i) of Theorem 3.
(ii) It follows from (ii) of Theorem 1, Lemma 8 and Lemma 12.
(iii) It follows from (ii) of Theorem 1, Lemma 10 and Lemma 12.
(iv) It follows from (ii) of Theorem 1 and Lemma 8.

Lemma 13. The graph 𝐺 = 𝐾2,𝑛,𝑝 has the property 𝑀(4).

Proof. For suppose on the contrary that 𝐺 is U4LC. Then for each vertex 𝑣 in 𝐺, there exists
a list of 4 colors 𝐿(𝑣), such that there exists a unique 𝐿-coloring for 𝐺. By (i) of Theorem 3 we
have 2 = |𝑉1| > |𝑓(𝑉1)| > 4− 2 = 2, contradiction. Thus, 𝐺 = 𝐾2,𝑛,𝑝 has the property M(4).

The join of 𝑂𝑚 and 𝐾𝑛, 𝑂𝑚 +𝐾𝑛 = 𝑆(𝑚,𝑛), is called a complete split graph.

Lemma 14 ([10]). For every 𝑛 > 2, we have 𝑚(𝑆(3, 𝑛)) = 3.

Theorem 5. (i) 𝑚(𝐾2,2,𝑝) = 4 if and only if 𝑝 > 9;

(ii) 𝑚(𝐾2,3,𝑝) = 4 if and only if 𝑝 > 5;

(iii) 𝑚(𝐾2,4,𝑝) = 4 if and only if 𝑝 > 4;

(iv) 𝑚(𝐾3,3,3) = 4.

Proof. (i) It follows from (i) of Theorem 4 and Lemma 13.
(ii) It follows from (ii) of Theorem 4 and Lemma 13.
(iii) It follows from (iii) of Theorem 4 and Lemma 13.
(iv) For suppose on the contrary that 𝐺 = 𝐾3,3,3 is U4LC. Then for each vertex 𝑣 in 𝐺, there

exists a list of 4 colors 𝐿(𝑣), such that there exists a unique 𝐿-coloring for 𝐺. By (i) of Theorem 3,
|𝑓(𝑉1)|, |𝑓(𝑉2)| > 4−2 = 2, it follows that |𝑓(𝑉1)| = |𝑓(𝑉2)| = 3. So 𝑓(𝑢𝑖) ̸= 𝑓(𝑢𝑗) and 𝑓(𝑣𝑖) ̸= 𝑓(𝑣𝑗)
for every 𝑖, 𝑗 = 1, 2, 3, 𝑖 ̸= 𝑗. Set graph 𝐺′ = (𝑉 ′, 𝐸′) with 𝑉 ′ = 𝑉 (𝐺),

𝐸′ = 𝐸(𝐺) ∪ {𝑢𝑖𝑢𝑗 |𝑖, 𝑗 = 1, 2, . . . ,𝑚; 𝑖 ̸= 𝑗} ∪ {𝑣𝑖𝑣𝑗 |𝑖, 𝑗 = 1, 2, . . . , 𝑛; 𝑖 ̸= 𝑗}.

It is clear that 𝐺′ is complete split graph 𝑆(3, 6). By Lemma 14, 𝐺′ has the property 𝑀(3). By
Lemma 1, 𝐺′ has the property 𝑀(4), so with lists 𝐿(𝑣), there exist at least two list colorings for
the vertices 𝑣 of 𝐺′. Since 𝑉 (𝐺) = 𝑉 (𝐺′), it is not difficult to see that with lists 𝐿(𝑣), there exist
at least two list colorings for the vertices 𝑣 of 𝐺, a contradiction. Thus, 𝐺 has the property 𝑀(4).
By (iv) of Theorem 4, we have 𝑚(𝐾3,3,3) = 4.
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