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Abstract

Multidimensional periodic wavelet systems with matrix dilation in the framework of periodic
multiresolution analyses are studied. In this work we use notion of a periodic multiresolution
analysis, the most general definition of which was given by Maksimenko and M. Skopina in [25].
An algorithmic method of constructing multidimensional periodic dual wavelet frames from a
suitable set of Fourier coefficients of one function is provided. This function is used as the first
function in a scaling sequence that forms two periodic multiresolution analyses, which are used
to construct wavelet systems. Conditions that the initial function has to satisfy are presented
in terms of a certain rate of decay of its Fourier coefficients, and also mutual arrangement of
zero and non-zero coefficients.
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1. Introduction

A natural way to define periodic wavelet system is to periodize standard wavelet systems from
Ly(R), which is possible if wavelet functions have sufficient decay rate. Such systems are widely
studied ([6, §9.3], [13], [19], [20], [22], [12]). But many periodic objects that can reasonably be
classified as wavelet systems cannot be obtained that way, and thus there exist other approaches
to defining periodic wavelets in a more general sense. Just as in nonperiodic case, wavelets can be
obtained on the basis of multiresolution analyses. Specifically, orthogonal bases and tight frames are
built using one periodic multiresolution analysis (for brevity, PMRA in the sequel), and biorthogonal
bases and dual frames are built using two PMRAs (see [4], [14], [8], [23], [21]). In this paper
we use the definition of PMRA given by I. Maksimenko and M. Skopina in [25] (also see [24,
Chapter 9]). In [2] N. Atreas has shown that in order to establish that dual wavelet systems are
frames, one should check that, along with a few technical conditions, these systems are Bessel. It
is worth noting that similar constructions of tight frames do not require this check. Algorithmic
methods for the construction of PMRA-based tight wavelet frames were suggested in [7], and in
[2] for multidimensional case. However, the condition of systems being Bessel is critical for the
construction of dual wavelet frames. Sufficient conditions, under which multidimensional periodic
wavelet system is Bessel, were established in [1]. Basing on this result, we provide an algorithmic
method of constructing multidimensional periodic dual wavelet frames, starting with any suitable
set of Fourier coefficients. In the provided scheme these coefficients define a function that induces
two scaling sequences, which generate dual frames.
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2. Notation and auxiliary results

As usual, N is a set of positive integers, R? is a d-dimensional euclidean space, x = (21, ..., 2q),
y = (y1,...,yq) are its elements (vectors), (z,y) = z1y1 + ...2qyq, 0 = (0,...,0) € R%
2| = \/(z,2), Z is integer lattice in R, Z = Z!, Z, = {0,1,...}, T¢ = (-4;4]1? is a d-
dimensional unit torus, &,  is Kronecker delta, f(k) = Jpa f(£)e= 2 kD dt is k-th Fourier coefficient
of f € La(T9), (f,g) is inner product in Ly(T9).

If Ais d x d matrix, then [|A| is its euclidean operator norm from R to RY, A* is its Hermitian
adjoint, A* = (A*)J, I is d x d identity matrix. If A is a d x d nonsingular integer matrix, we say
that vectors k, n € Z% are congruent modulo A and write k = n (mod A) if k —n = Al, | € Z4.
We denote by Zg 4 set of all I € Z4, such that [ = 0 (mod A). The integer lattice Z? is partitioned
into cosets with I:espect to this congruence. The number of these cosets equals to | det A| (see, for
instance, [11, Proposition 2.1.1]). Any set containing only one representative of each coset is called
a set of digits of the matrix A. When it does not matter which set of digits is chosen, we assume
that it is chosen arbitrarily and denote it by D(A). Let us also note that H(A) := Z¢N AT is a set
of digits (see [11, Proposition 2.1.1]). Also, there is a following lemma that establishes connection
between sets of digits of matrices A, A7 and AJ*1.

LEMMA 1 ([11], Lemma 2.1.3). Let A be a nonsingular integer d x d matriz, | det A| > 1. Then
the set {r + AJp} for all possible r € D(A’) and p € D(A) is a set of digits of the matriz AL,

In this paper M denotes a square integer matrix with eigenvalues greater than one in modulus.
We will also denote m := |det M|. Note that matrix M1 has all eigenvalues less than one in
modulus, and there is only finite number of them, and hence spectral radius of matrix M ! is also
less than one. This implies that

lim |[M™"|| =0. (1)
n—00

For any [ € Z4, I, is a vector such that [; € H(M*), I; = ImodM*/ (note that it is unique).

A matrix M is called isotropic if it is similar to a diagonal matrix such that numbers Ay, ..., \g
are placed on the main diagonal and |A;| = ... = |A\g|. Thus, A\1,..., \g are eigenvalues of M and
the spectral radius of M is equal to |A|, where X is one of the eigenvalues of M. Note that if matrix
M is isotropic then M* is isotropic and M7 is isotropic for all j € Z. It is well known that for an
isotropic matrices M and for any j € Z we have

CHYIAP < IM7 || < CAY, (2)

where A is one of the eigenvalues of M.

For any sequence of functions { f;};ez, C Ls(T%) we will denote its shifts by fik = [i(-+M7k).
By wavelet system we will mean a system of shifts {fjk}jez+7keD(Mj), associated with a sequence
of functions {f;},ez, C Ly(T%), and denote it by {fik}jr- If we have several sequences {f;y)}jEL,
v=1,...,n,n €N, the system that represents a union of wavelet systems of each sequence we will
also call a wavelet system and denote it by {f J(Z)}ka- In the case if we will need to specify the sets
of indices, we will write {fj(z)}j€Z+7keD(Mj)7V:17.._,n.

In this paper we rely on the following result that establishes sufficient conditions for wavelet
systems to be Bessel.

THEOREM 1 ([1]). Let Fourter coefficients of functions 1; € Ly(T%), j € Z, satisfy the following
conditions e o _
Vj € Zy,l€Zh  |mi/2;(1)] < C'min {\M*_JU_(E*&), \M*_3l|o‘} (3)

for some C' >0, € >0, > 0. Then, the wavelet system {1} ;r is Bessel.
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Let us now proceed to defining periodic multiresolution analysis.

DEFINITION 1 ([24], Definition 9.1.1). A collections of sets {V;}52,, V; C Lo(T%), is called
PMRA, if the following properties hold:

e MR1.V; C Vjy1;

o MR2. U2, V; = Ly(T%);

e MR3. dimV; = mJ;

o MRy. dim{f € V;: f(-+ M 7In) =\, f Vn € Z9} <1, V{\u }nezas Mn € C;

e MR5. feV;& f(-+M™In) € V; ¥n € Z¢;

e MR6. a) f € V;= f(M-) € Viy1; f € Vipr = Y cpan F(MH-+M~1s) € V.

DEFINITION 2 ([24], Definition 9.1.3). Let {V;}32, be a PMRA in Lo(T9). Sequence of functions
{vj}iez,, wj €V}, is called a scaling sequence, if functions ¢ji, k € D(M7), form a basis for V;.

THEOREM 2 ([24], Theorem 9.1.4). Functions {p;}32, C Lo(T9) form a scaling sequence for
some PMRA if and only if:

S1. po(k) =0, for all k #0;

S2. for all j € Z, and for all n € Z? exists m = n (mod M*), such that p;(k) # 0;

S3. for all k € Z% exists j € Z., such that p;(k) # 0;

S4. For all j € Zy, n € Z%, emists v, # 0, such that ’y%@(k) = pir1(M*k) for all
k=n (mod M*);

e S5 Forall j €N, neZ% exists ihy, such that pi-1(k) = ,u,fl@(k) for all k =n (mod M*7).

Let us note that in Theorem 2 the sequences of numbers {’}/i}kezd, {M‘li}kezd are M*-periodic
with respect to k for every j € Z,..

Now we define how scaling sequences generate wavelet systems. Let {¢;}3%,, {$;}52, be
two scaling sequences, s; — arbitrarily enumerated digits of the matrix M*, and matrices
A1) = {CL?(leg) nm7;:107 Al = {55:,3}%;:10 are such that

(r) _  j+1

~ ~j+1
aOk == MT’+M*~7Sk’ a(r) J (4)

0k — MrJrM*jsk’
and for any r € D(M*/) it is true that AW AM* = mI,,. Forv=1,...,m —1, let

v,j (r)

_ ,r ~v,j _ ~(7)
Apfmrisy, = ks (5)

ar+1\/1*~7sk =y -

By lemma 1, vectors r + M*/s;, form a set of digits D(M**1), i. e. we can M*/*1-periodically
(

extend these sequences to Z¢. Let us define functions wjy), JJ(V) by defining its Fourier coefficients

— —

B0 = iz, D) = a@IE ). (6)

Systems {gpg}u{w§z) }iez, keD(Mi)p=1,...m—1 and {950}U{{/;§2) }kw we will call dual wavelet systems
that are generated by scaling sequences {¢; }?im {@; }f.io- Now let us cite a theorem that establishes
frame conditions for such systems.
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TueoreM 3 ([2]). Let {p;}72, {pj}520 be scaling sequences that satisfy the condition

lim mig;(k)3;(k) =1 Vke Z¢, (7)

j—+o0
and let {¢xo} U {7/)]('2)}3',19,1/ and {¢o} U {JJ(.Z)}j,k?V be Bessel dual wavelet systems generated by them.
Then these systems are dual frames.
3. Main result

THEOREM 4. Let M be an isotropic matriz such that T¢ C M*T?, and o1 € Lo(T?) with Fourier
coefficients given by

ao, Zf l= 07
G =l if 1€, 1€Q,
0, otherwise,

where o > d/2,0 < Cy < |ay| < Co forl =0 and alll € Q, where Q C Z¢ is such that QOZ&M* =0,
H(M*) C Q and satisfies the condition:

(Z) If1 ¢ Q and | € H(M*) for some j € N, then | + Mk & Q for every k € Z%. Then
there ewist scaling sequences {p;}32,, {91720 that generate wavelet systems {¢o} U {¢jk}jk and

{o} U {ij}j,k, which are dual frames.

For any vector [ ¢ Z&M*, 1 € Q we set a; = C1, and define {a}}, | € Z%, by

. aj, ifl:OornggM*,
o — :
" \ak, ifl=MTE neN, kgL,

Next, we construct scaling sequences {¢;}3%, {9,172, by defining their Fourier coefficients. We
start with setting
j+1

—~ m~5a; ', ifle HMY),
p;(l) == . »
0, if 1 ¢ H(M*),
and, since T¢ ¢ M*T¢,
i Jvm, ifle HM), ®
7%, it HOuEY,

Thus, the functions ¢; are defined, and they are trigonometric polynomials.
Construction of {¢;}; is slightly more sophisticated. First of all we define the function on 0-th
level,

20(0) :=v/m - 21(0), Po(l) =0, 1#0.

Note that the already have Fourier coefficients of ¢;. Next we define coefficients @;(1) for the rest
of the scaling sequence, recursively by j.

L (I € Z§ ) Define p;(1) and find i for | ¢ Z§ \p., k € 29, j > 1.
1) Let [ € H(M*). Two cases may occur:

__ e rlhalye,

W FGAN A0 = GO= e W = vim(H) (9)
— _— _i=t e ;

H FEn =0 = Fo=ms ()% -0 (10)
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Note that the case I = 0 is not described here, and hence [l;_1| # 0.

2) Let | ¢ H(M"). Since numbers u{ should be M*/-periodic with respect to I, we will
periodically extend them from | € H(M™), where we defined these numbers at previous step.
Again, two cases may occur:

W A0 = Fo=210, )
b) w =0 = p;1):=0. (12)

IL. (I € Z3 ,;.) Now we define 3;(1) and find pf for I € Z8 ., j > 1.

— 1 — *— y ) —
G = =@M, = ity (13)

Note that 7/ = — for all | € Z? due to this formula.

Thus, we have defined all p;(I). Obviously, the corresponding functions ¢; are in Ly. For [ =0
we, by definition (13), have a simple formula ©;(0) = \/%@,\1(0) Next, let us show that for the
following inequality holds for all | # 0,

~ o —iztliNe

w0l < om= (1), (14)
where for [ ¢ Z&M* inequality turns into equality with C* = 1, and C* = (CM")2 for [ € Zg’M*.
For [ ¢ Z&M*, it follows directly from the formulas (9)-(12). Now let | = M*"k, k & Z&M*, kezl
and let ;(1) # 0. Using definition (13) n times, we have

—~ 1 n__—_ *— _n _J=n—-1 |(M*_nl) | — ‘ @ *
@D](l) = <ﬁ> QDan(M TLZ) =m 2m 2 (W) a’M*_"l‘
According to definition of af, aj;._.,, = aj. Also, due to properties of matrix M and de-
finition of I;, we know that (M*~™);_, = M*" + M*~"r where r € Z% is such that
M*=" + M*I="r € M*J~"T9, This means that M**(M*~™);_, =+ M*Jr € M*JT? and hence
I+ M*yr =1;. Thus, (M*~™);_, = M*"l;. Using these facts, we obtain

_ it (| MR N e,
B0 =m % () lai] (15)
e [N
<m 7 (o) a
A=)
i (I AT e
7 ( |Mn] up ) il

St} x— * |l‘ .
< T (I e ) e

It remains to recall that M is an isotropic matrix, which implies that ||M*~"||||M*"|| < (C37)2.
Let us show that {¢;}72, {¢;}72, are scaling sequences. Condition S1 is obviously fulfilled.
Since

pi(l) #0, (1) #0
whenever | € H(M*), conditions S2 and S3 are also granted. Condition S4 (periodicity of vi) is

also fulfilled, because all fyi are equal to each others. The last, condition S5 (periodicity of ui) is
granted by the fact that for every j € Z, we defined . on H(M*), and then extended it to 7%, 1t
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is also worth noting that the fulfillment of condition (Z) grants us absence of collisions during the
process of defining ..
Noting that [; = [ for sufficiently large j, we can see that the equality

lim mig;(1)3;(1) =1 Viez?
J—00
follows from inequality (14) for | ¢ Z& M+ which, as it was mentioned above, turns into equality
with C* = 1; and from equality (15) for [ € Zg , ..
Now, we introduce and analyze wavelet sy’stems generated by the scaling sequences {goj}‘]?io,
{@j }]Qio-
Let us define Fourier coefficients of 15, Jj. It will be suitable for us to represent a set of digits
of the matrix M™ as given in Lemma 1, i. e.

DMY)y= ) {r+M77p) (16)

reD(M*I—1)
pED(M™)

But we should note that this set is not necessarily the same as H(M*7). However, when speaking
about ,u%, due to its M*I-periodicity we can safely regard it as defined on any set of digits
(particularly on H(M*/)), whenever they are defined on at least one set of digits.

It follows from (8) that

40 fork e H(MY),

; . . 17
=0 forke H(M9HY)\ H(M™Y). {7
Using lemma 1, with D(M*) = H(M*}), D(M*) = H(M*), we can rewrite it as
: ; 0, forp=0
Vr e H(M*]) ﬁ]-+}yj*j 75 5 orp ; (18)
rHMEP 1 =0, forp#0, pe H(M*).

Let us now build matrices A™) and A for every v € H(M*). First, enumerate digits
p € H(M*) such that pp = 0. Then we define the first row as

(r) _  j+1 ~(r) _ ~j+1 _
ayy _'ui-s—M*jpk’ ayy _Mi-i-M*jpk’ k=0,1,...,m—1. (19)
It is easy to see that, due to (18), Ei(()?,;) =0for k=1,...,m — 1. Extend these matrices to square

matrices in the following fashion

[, J+1 j+1 j+1

e Hepaape e Mg
A — 0 —,ui .. 0
| 0 0 o =t
[t 0o ... 0
j+1 j+1
g0y | Prearsip TR 0
1 : C n
oy Mgy, 0 cee —
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7541l

check that A A(M* — ml,,. Now we let

Due to (9), @it = ﬁ( I ) = \/m, since r € H(M*). Using this equality and (8), it is easy to

V7j J— (T) ~V7.j — ~(7‘)
ar+M*jpk =y arJrM*J'pk =0y
Vectors r + M*py, k=1,...,m—1 are a set of digits D(M*/™!), since r € H(M*), py, € H(M™*).
Thus, we can M* ! periodically extend the coefficients ozzj’j , 62;"] to Z.
Now, forv=1,...,m — 1, we let

— —

e () = a5, Y0 =65 0).

We can see that

- —vmpigi(l), forl=r+p, (mod M*+1),
(1) = r € H(M*); (20)
0, otherwise;
- —Vm@ia(l),  forle H(MYH)\ H(M*);
O () = S e Grea(l), forl € H(MY), (21)
0, otherwise;

To estimate them we consider two cases:
1) Let | € H(M*). In this case, |M*~JI| < @, and hence,

|M*I1|* < Cgo| M*I172, (22)
_ (2™ Wy
where Cg o = \/g) - From (20), |¢;7(1)| = 0. Next,
=5 . 2
W) = 1]y, I~ Nap ',

41 B ( [(1+ M*ip,),| )a
i = m - .
Hissrsn | =V G 30,

It is not hard to see that (I+M*p,); = [, and since p, # 0, (I-+M*p,) ;11 € H(M* )\ H(M*),

which means that |(I+ M*p,); 1| > m Using this and the fact that M* is isotropic, we have

/]
I+ M*py )

41 @ *J *—7 *—7] @
b, | = v ( )" < vm (2|

< vm2e(C3)e ()
and thus, according to (21), we have
w2105 (0)) < m32 (O (1) | < Caam2 (@7 (1)) Jar |

2) Let I ¢ H(M*). In this case |[M*~91| > %, and hence

\MIle < (4|M**jzy)o‘.
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By (21), |9;(1)| = —vm@;41(1) for | € H(M*+1)\ H(M*), i. e. where [M*~91| < || M*||/d, and
0 otherwise. Thus, we have the following estimate

127 3 4t 3 4l * 2 *—57|— 3 41 * < =i\ &
20,0 = | —m2af | < | —m2af || M]3 MU < | - m2af || M ”%2(4\]\4 ”|>

o Na
Next, from (14), for non-zero coefficients we have |p;1(l)] < C*m_%<|lj|;“|1|> laf|, where

*j+1 .
1Li+1] < M, since lj41 € H(M**1). Using this and the fact that M* is isotropic,

(S

2i+1(D)] < C"m”

] (|M*_(j+1)l|lj+1|

\/d\ﬂi*j+1HHA4*(j+1)lﬂl)“
M GO

2[M =G|

i *\2a \/& « *—1||—« *—j1|—Q

<CmH Oy () I e
S *a\/&aa *—1||—a *—j1|Q

< CrmA (") () A e e

&3 J
) lail < crmE (

By definition,

i/2177 j — * *\2a \/g @ x—1||—a|qx—j7|—c
mI 2[5 (0)] = mI?) = V()] < CVm(CsT R (3) I e ar
vd

. « .
< Crym(Cy e (35) Al e e
As for coefficients that are equal to zero, the same estimates are obviously held.
Thus, we have shown that all conditions of theorems 1 and 3 are satisfied, and hence, wavelet

systems {@o} U {¢jx};r and {@o} U {{Ejk}m are dual frames.

COROLLARY 1. Let M be an isotropic matriz such that T® C M*T?, and p1 € Lo(T?) with
Fourier coefficients given by

ap, Zf l: 0,
Al = alh), i 1EZE .,
0, if 1€ZLyn., L #0,

where a > d /2, 0 < Cy < |ag| < Cy for 1 =0 and all | ¢ Z&M*. Then there exist scaling sequences

{01520, {95}520 that generate wavelet systems {po}U{tjk}jk and {$o}U {@ij}j,k, which are dual
frames.

It suffices to check that, in this case, @ = {l: 1 ¢ Zg’M*}. This set obviously satisfies condition
(Z) from Theorem 4.

4. Conclusion

We have presented a method of constructing periodic dual wavelet frames with an isotropic
matrix dilation, starting with only one suitable function. Its Fourier coefficients have to have a
sufficient rate of decay, and also satisfy the condition (Z) on mutual arrangement of zero and
non-zero coefficients. The resulting wavelet systems can be built layer by layer, with the provided
recurrent formulas for its Fourier coefficients.
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