ЧЕБЫШЕВСКИЙ СБОРНИК Том 14 Выпуск 4 (2013)

УДК 511.36

РАЗВИТИЕ МЕТОДА СУЩЕСТВЕННЫХ И НЕСУЩЕСТВЕННЫХ ОБЛАСТЕЙ ДЛЯ ПОДСЧЕТА ВЕКТОРОВ С ДЕЙСТВИТЕЛЬНЫМИ АЛГЕБРАИЧЕСКИМИ КООРДИНАТАМИ ВБЛИЗИ ГЛАДКИХ ПОВЕРХНОСТЕЙ

Э. И. Ковалевская, О. В. Рыкова (г. Минск, Беларусь)

Аннотация

Дана оценка снизу для количества векторов с действительными алгебраическими координатами вблизи гладких поверхностей.

В доказательстве использован метод существенных и несущественных областей В. Г. Спринджука в форме, развитой и усовершенствованной в последнее десятилетие.

Ключевые слова: метрическая теория диофантовых приближений, целочисленные многочлены, распределение действительных алгебраических чисел.

THE DEVELOPMENT OF THE ESSENTIAL AND INESSENTIAL DOMAINS METHOD FOR THE CALCULATION OF VECTORS WITH REAL ALGEBRAIC COORDINATES NEAR SMOOTH SURFACES

E. I. Kovalevskaya, O. V. Rykova (Minsk, Belarus)

Abstract

The lower estimate for number of vectors with real algebraic coordinates near smooth surfaces is obtained. We use a new form of the essential and inessential domains method.

Key words: metric theory of Diophantine approximation, integer polynomials, distribution of the real algebraic numbers .

1. ВВЕДЕНИЕ

Задача подсчета целых (рациональных) точек или векторов — классическая задача теории чисел. С ее решением связаны другие задачи. Например, проблема круга или задачи метрической теории диофантовых приближений, изучающие экстремальные многообразия. В последнее 10-летие получено продвижение в решении задачи о числе точек с рациональными координатами вблизи некоторых гладких кривых $\Gamma \subset \mathbb{R}^n, \ n \geqslant 3$, в смысле получения нижних границ того же порядка, что и верхних. Отсюда следует, что такие точки равномерно распределены вблизи Γ ([1], [2]).

Пусть $t \in \mathbb{R}$. Будем рассматривать приближения нуля значениями многочлена $P = P(t) = a_n t^n + \cdots + a_1 t + a_0 \in \mathbb{Z}[t], \ n \geqslant 3, \ a_n \neq 0, \$ в точках t при возрастании высоты $H(P) = \max(|a_n|, \dots, |a_0|)$ и фиксированном n. Пусть $\alpha_1, \alpha_2, \dots, \alpha_n$ — корни многочлена P, и $\mu_i > 0$ (i = 1, 2, 3). Рассмотрим параллелепипед $\mathcal{T} = \prod_{i=1}^3 I_i = \prod_{i=1}^3 [a_i, b_i] \subset [-1/2, 1/2]^3$, где длина $|I_i| = Q^{-\mu_i}$ при $Q > Q_0 > 0$, и множество $\mathcal{M} = \{(x, y, z) \in \mathcal{T} : |x - y| < 0, 01, \ |y - z| < 0, 01, \ |x - z| < 0, 01\}$. Положим $\mathcal{T}_1 = \mathcal{T} \setminus \mathcal{M}$. Введем класс многочленов $\mathcal{P}_n(Q) = \{P : H(P) \leqslant Q\}$. Пусть $\mathcal{A}_n(\mathcal{T}_1, Q)$ — множество векторов $\overline{\alpha} = (\alpha_i, \alpha_j, \alpha_k), \ 1 \leqslant i < j < k \leqslant n$, составленное из $\partial e \ddot{u} c m e u m e n b h u x$ корней многочлена $P, P \in \mathcal{P}_n(Q)$, таких, что $\overline{\alpha} \in \mathcal{T}_1$. Значит, $\alpha_i \neq \alpha_j \neq \alpha_k \neq \alpha_i$. Доказана

ТЕОРЕМА 1. Если $0 < \mu_i < 1/3 \ (i = 1, 2, 3), \ mo$

$$\sharp \mathcal{A}_n(\mathcal{T}_1, Q) \geqslant c(n)Q^{n+1-\mu_1-\mu_2-\mu_3},$$

 $r \partial e$ константа c(n) > 0 зависит только от n.

Из теоремы 1 следует

ТЕОРЕМА 2. Пусть функция u=f(x,y) непрерывна в прямоугольнике $K_1\times K_2\subset [-1/2,1/2]^2$ и $0<\lambda<1/3$. Положим $\mathcal{J}(Q,\lambda)=\{(x,y,z)\in\mathbb{R}^3:x\in K_1,y\in K_2,|z-f(x,y)|< Q^{-\lambda}\}$. Тогда существует $\geqslant c(n)Q^{n+1-\lambda}$ векторов $\overline{\alpha}\in\mathcal{A}_n(\mathcal{T}_1,Q)\bigcap\mathcal{J}(Q,\lambda)$, где константа c(n)>0 зависит только от n.

Пусть $\overline{c} = (c_1, c_2, \dots, c_6), \ 0 < c_i \leqslant 1, \ \text{и} \ \overline{v} = (v_1, v_2, v_3) \in \mathbb{R}^3, \ v_i > 0,$ фиксированные константы. Обозначим через $M_n(\overline{c}, Q)$ множество точек $\overline{x} \in \mathcal{T}_1$ таких, что система неравенств

$$|P(x_i)| < c_i Q^{-v_i}, \quad |P'(x_i)| < c_{i+3}Q \quad (i = 1, 2, 3) \quad \text{при} \quad v_1 + v_2 + v_3 = n - 2 \quad (1)$$

имеет решение в многочленах $P \in \mathcal{P}_n(Q)$. Доказана

ТЕОРЕМА 3. При $c_1c_2c_3 < 2^{-14-n/3}n^{-1}$ имеем $\mu M_n(\overline{c},Q) < \frac{1}{8}|I_1||I_2||I_3|$, где μX обозначает меру Лебега измеримого множества $X \subset \mathbb{R}^3$, $|I| - \partial$ лину интервала I.

Теорема 1 следует из теоремы 3 в силу "принципа ящиков" Дирихле. Базой сформулированных теорем является теорема 3. Для ее доказательства используется метод существенных и несущественных областей В. Спринджука, развитый и усовершенствованный В. Берником, В. Бересневичем, М. Додсоном, Д. Диккинсон, С. Велани и другими представителями школ теории чисел НАН Беларуси (Минск, Беларусь) и Йоркского университета (Йорк, Великобритания).

2. ОБЩИЙ ПЛАН ДОКАЗАТЕЛЬСТВА

Наше исследование основано на методе [3], рассуждениях из [4-8] и их развитии.

Первым важным моментом доказательства является переход от рассмотрения в качестве решений системы (1) вместо множества всех $P \in \mathcal{P}_n(Q)$ множества неприводимы x в поле $\mathbb Q$ и примитивны x многочленов из $\mathcal P_n(Q)$ с условием $|a_n| \ge c(n)H(P)$), где $c(n) \ge 1$ (см. [3, §7]). Обозначим это множество через \mathfrak{P}_n . Далее для фиксированного $P \in \mathfrak{P}_n$ при $H(P) = H \leqslant Q$ выделим систему малых параллелепипедов $\Pi_j(P) \subset \mathcal{T}_1 \ (j=1,2,\ldots)$, в которых выполняется (1), так, что $M_n(\overline{c},Q)\subset \sum_i\Pi_j(P)$. Параллелепипеды $\Pi_j(P)$ подразделяются на два вида: существенные и несущественные (аналогично [3], §§10, 11). В первом случае $\Pi_i(P)$ содержит множество S, свободное от точек других параллелепипедов $\Pi_i(\widetilde{P})$, где $\widetilde{P} \in \mathfrak{P}_n$, $\widetilde{P} \neq P$, $H(\widetilde{P}) = H$ и \widetilde{P} удовлетворяет (1), с условием: $\mu S < \frac{1}{2}\mu\Pi_i(P)$. Во втором случае это условие не выполняется. Мы показываем, что мера множества точек, попадающих в бесконечно многие существенные и несущественные параллелепипеды, $<\frac{1}{8}|I_1||I_2||I_3|$.

Чтобы получить эту оценку, векторы $\overline{\alpha} = (\alpha_1, \alpha_2, \alpha_3) \in \mathcal{A}_n(\mathcal{T}_1, Q) \cap \Pi_i(P)$ подразделяются на ε -классы $K(\overline{q}, \overline{r}, \overline{t})$ (см. §3, формулы (3), (4) и текст выше и ниже этих формул). Для каждого ε -класса находим оценку меры $<\frac{1}{128}|I_1||I_2||I_3|$. При этом для многочленов $P \in \mathfrak{P}_n$ вводится понятие (i_1,i_2,i_3) -линейности, где $i_j \in \{0,1\}$ (j=1,2,3) (например, (0,0,0)-линейность, (1,1,1)-линейность, (0, 1, 1)-линейность и т. д.). Всего 8 случаев линейности. Это понятие необходимо, чтобы получить верхние и нижние оценки для производных $|P'(x_i)|$ и $|P'(\alpha_i)|$ (i=1,2,3). Отсюда, используя разложение в ряд Тейлора многочлена Pв параллелепипеде $\Pi_i(P)$, по лемме 1 находим указанную оценку меры. В каждом случае линейности векторы $\overline{\alpha} = (\alpha_1, \alpha_2, \alpha_3)$ подразделяются еще на два подкласса (см. §4, Предложения 1, 2). К первому подклассу относятся наборы корней $\overline{\alpha}$ многочлена $P \in \mathfrak{P}_n$, который является единственным решением системы (1). Ко второму – наборы $\overline{\alpha}$, которые являются корнями $\partial \beta yx$ или более различных многочленов из \mathfrak{P}_n . Числа *первого* подкласса охватывают основную массу координат векторов $\overline{\alpha}$. Здесь получаем оценку

$$\mu \sum_{j=1}^{\infty} \Pi_j(P) < \frac{1}{128} |I_1| |I_1| |I_3|, \tag{2}$$

где индекс j = H(P) = H. Числа второго подкласса содержат лишь небольшую часть векторов $\overline{\alpha}$. Последние рассматриваются при помощи леммы 2 независимо от понятия существенных и несущественных параллелепипедов. Отметим также, что при суммировании мер параллелепипедов $\Pi_j(P)$ во многих местах доказательства используется метрическая лемма Бореля-Кантелли [3, лемма 12].

Таким образом, общая схема метода существенных и несущественных областей дополняется рассуждениями, связанными с получением (2), леммы 2 и ее последующим применением.

3. ЛЕММЫ О МНОГОЧЛЕНАХ

Положим $\mathfrak{P}_n(H) = \{P \in \mathfrak{P}_n : H(P) = H\}$, где H фиксировано, $Q_0 \leqslant H \leqslant Q$. Напомним, что согласно $\S 1$ действительные корни $\alpha_i, \alpha_j, \alpha_k$ многочлена $P \in \mathfrak{P}_n$ различны. Обозначим через $np_{x_i}\mathcal{A}_n(\mathcal{T}_1,Q)$ проекцию множества $\mathcal{A}_n(\mathcal{T}_1,Q)$ на ось $OX_i \ (i=1,2,3)$. Каждому вектору $\overline{\alpha}_r = (\alpha_{r1},\alpha_{r2},\alpha_{r3}) \in \mathcal{A}_n(\mathcal{T}_1,Q)$, соответствующему многочлену $P \in \mathfrak{P}_n$, поставим в соответствие множество $\prod_{i=1}^3 S(\alpha_{ri}) =$

$$\{\overline{x} = (x_1, x_2, x_3) \in \mathcal{T}_1 : |x_i - \alpha_{ri}| = \min_{1 \le s \le n} |x_i - \alpha_{si}| \ (i = 1, 2, 3)\},$$

где $\alpha_{ri} \in np_{x_i} \mathcal{A}_n(\mathcal{T}_1, Q)$ и α_{si} – другие действительные корни многочлена $P \in \mathfrak{P}_n$, принадлежащие $np_{x_i} \mathcal{A}_n(\mathcal{T}_1, Q)$ (см. [3, с. 386]), т. е. ставим в соответствие множество, состоящее из всех векторов $\overline{x} \in \mathcal{T}_1$, удаленных по каждой координате от данного $\overline{\alpha}_r$ не более, чем от другого вектора $\overline{\alpha}_s = (\alpha_{s1}, \alpha_{s2}, \alpha_{s3}) \in \mathcal{A}_n(\mathcal{T}_1, Q)$.

При фиксированном i (i=1,2,3), например, i=1, рассмотрим множество $S(\alpha_{r1})$, и положим в следующей лемме $x_1=x, \alpha_{r1}=\alpha_1$.

ЛЕММА 1. При $x \in S(\alpha_1)$ имеем

$$|x - \alpha_1| \le n|P(x)|/|P'(x)|, \quad |x - \alpha_1| \le 2^{n-1}|P(x)|/|P'(\alpha_1)|,$$

$$|x - \alpha_1| \le \min_{2 \le j \le n} (2^{n-j} \prod_{k=2}^{j} |\alpha_1 - \alpha_k||P(x)|/|P'(\alpha_1)|)^{1/j}.$$

ДОКАЗАТЕЛЬСТВО. Первое неравенство получено в [3, лемма 1]. Второе и третье неравенства доказаны в [4, лемма 5].

ЛЕММА 2. Пусть числа $\delta, H, \eta_1, \eta_2, \eta_3 \in \mathbb{R}^+$ и $P_1, P_2 \in \mathbb{Z}[t]$ – взаимно простые многочлены степени $\leqslant n$ с условием $\max(H(P_1), H(P_2)) \leqslant H$ $(H > Q_0)$. Пусть J_i – интервал длины $|J_i| = H^{-\eta_i}$ (i = 1, 2, 3). Если существуют числа $\tau_i > -1$ (i = 1, 2, 3) такие, что для всех $\overline{x} = (x_1, x_2, x_3) \in \prod_{i=1}^3 J_i$ выполняется система неравенств

$$\max(|P_1(x_i)|, |P_2(x_i)|) < H^{-\tau_i} \quad (i = 1, 2, 3),$$

то имеем

$$\tau_1 + \tau_2 + \tau_3 + 3 + 2\max(\tau_1 + 1 - \eta_1, 0) + 2\max(\tau_2 + 1 - \eta_2, 0) + 2\max(\tau_3 + 1 - \eta_3, 0) < 2n + \delta.$$

Доказательство. Аналогично [6]. Различие состоит только в наборах $\overline{X} =$ (X_1, X_2, X_3) и метриках соответствующих пространств. Именно, в [6] имеем $\overline{X} = (x_1, z, \omega) \in \mathbb{R} \times \mathbb{C} \times \mathbb{Q}_p$, в нашем случае $\overline{X} = (x_1, x_2, x_3) \in \mathbb{R}^3$.

Смысл леммы состоит в следующем: если значения двух многочленов малы в заданном параллелепипеде, имеющем малые длины сторон, то параметры au_i и η_i должны удовлетворять заключительному неравенству леммы.

Отметим, что при исследовании некоторых ε -классов $K(\overline{q}, \overline{r}, \overline{t})$ получаем противоречие с заключением леммы 2, т. е. эти классы пусты.

ЛЕММА 3. Пусть v > 0, $n \geqslant 2$ и G(v) обозначает множество точек $(x_1, x_2, x_3) \in \mathbb{R}^3$, для которых неравенство $|P(x_1)| \cdot |P(x_2)| \cdot |P(x_3)| < H^{-v}$ имеет бесконечно много решений в многочленах $P \in \mathcal{P}_n(Q)$ и H(P) = H. Тогда $\mu G(v) = 0 \text{ npu } v > n - 2.$

Доказательство. См. [8].

Далее, как в [3, §12], произведем разбиение корней многочлена $P, P \in$ $\mathfrak{P}_n(H)$, на ε -классы $K(\overline{q},\overline{r},\overline{t})$. Именно, упорядочим корни $\alpha_{ij}\in np_{xi}\mathcal{A}_n(\mathcal{T}_1,Q)$ условиями: $|\alpha_{i1} - \alpha_{i2}| \leq |\alpha_{i1} - \alpha_{i3}| \leq \cdots \leq |\alpha_{i1} - \alpha_{in}|$ (i = 1, 2, 3) и определим числа $\rho_{ij} \in \mathbb{R}$ равенствами $|\alpha_{i1} - \alpha_{ij}| = H^{-\rho_{ij}}, \quad 2 \leq j \leq n, \quad \rho_{in} \leq \rho_{i2} \leq \cdots \leq 1$ ρ_{i2} (i=1,2,3). Так как по лемме 1 ([3, с. 387]) имеем $\max_i |\alpha_i| \ll 1$, то существует такое $\varepsilon_1 > 1$, что $\rho_{ij} \geqslant -\varepsilon_1/2$ для i = 1, 2, 3 и $j = 2, 3, \dots, n$. Выберем arepsilon>0 так, что $arepsilon_1=arepsilon/T_1$ для некоторого $T_1>T_0>0.$ Положим $T=[n/arepsilon_1]+1$ и определим целые числа $k_i, l_i, u_i \ (j = 2, 3, \dots, n)$ неравенствами:

$$(s_{ij}-1)/T \leq \rho_{ij} < s_{ij}/T, \quad s_{i2} \geq s_{i3} \geq \cdots \geq s_{in} \geq 0,$$

 $(s_{1j}, s_{2j}, s_{3j}) = (k_j, l_j, u_j), \ i = 1, 2, 3.$ (3)

Наконец, введем числа q_i, r_i, t_i при $(i=1,2,\ldots,n-1)$

$$q_i = T^{-1} \sum_{m=i+1}^{n} k_m, \qquad r_i = T^{-1} \sum_{m=i+1}^{n} l_m, \qquad t_i = T^{-1} \sum_{m=i+1}^{n} u_m.$$
 (4)

Теперь каждому многочлену $P \in \mathfrak{P}_n(H)$ поставим в соответствие тройку целых векторов $\overline{q} = (k_2, k_3, \dots, k_n), \overline{r} = (l_2, l_3, \dots, l_n), \overline{t} = (u_2, u_3, \dots, u_n).$ Число таких векторов конечно и зависит только от n, ε (см. [3], лемма 24). Обозначим через $\mathfrak{P}_n(H,\overline{q},\overline{r},\overline{t})$ множество многочленов $P\in\mathfrak{P}_n(H)$, имеющих одну и ту же тройку векторов $(\overline{q}, \overline{r}, \overline{t})$, что соответствует разбиению множества корней $\overline{\alpha}$ на ε -классы $K(\overline{q}, \overline{r}, \overline{t}).$

Следующая лемма 4 и лемма 1 используются в доказательстве теоремы 3 при получении верхних границ для членов разложения в ряд Тейлора многочлена $P \in \mathfrak{P}_n(H, \overline{q}, \overline{r}, \overline{t})$ в малых прямоугольниках из $M_n(\overline{c}, Q)$.

ЛЕММА 4. Пусть $P \in \mathfrak{P}_n(H, \overline{q}, \overline{r}, \overline{t})$. Тогда для производных имеем оценки

$$|P^{(l)}(\alpha_{i1})| < c(n)H^{1-s_{ij}+(n-l)\varepsilon_1} \quad (i = 1, 2, 3),$$

 $(s_{1j}, s_{2j}, s_{3j}) = (k_j, l_j, u_j) \quad (1 \le l \le n - 1),$

где константа c(n) > 0 зависит только от n.

Доказательство. См. [4, лемма 7].

4. ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ 3

Определение 1. При $i_j \in \{0,1\}$ (j=1,2,3) многочлен $P \in \mathfrak{P}_n(H,\overline{q},\overline{r},\overline{t})$ называется (i_1,i_2,i_3) -линейным, если:

(1) $npu\ (i_1,i_2,i_3)=(0,0,0)$ выполняется система неравенств

$$r_{i1} + s_{i2}/T < v_i + 1 \quad (i = 1, 2, 3),$$
 (5)

 $r \partial e (r_{11}, r_{21}, r_{31}) = (q_1, r_1, t_1)$ определены в (3) и (4);

- (2) $npu(i_1, i_2, i_3) = (1, 1, 1)$ знаки в неравенствах (5) изменены на \geq ;
- (3) при (0,1,1) в (5) первое неравенство имеет знак <, а остальные два имеют знаки $\geqslant u$ т. д. Всего $2^3=8$ случаев линейности.

В доказательстве теоремы основными являются (1,1,1)-линейность и (0,0,0)-линейность. Остальные линейности представляют собой комбинации этих случаев по соответствующим координатам. Отметим, что при оценке меры в случае (1,1,1)-линейности используем первое и третье неравенства леммы 1, а (0,0,0)-линейности — первое и второе неравенства леммы 1. Наконец, введем две константы

$$d_1 = q_1 + r_1 + t_1, \quad d_2 = (k_2 + l_2 + u_2)/T,$$
 (6)

связанные с (3) и (4). Также далее используем равенства

$$|P'(\alpha_{i1})| = H|\alpha_{i1} - \alpha_{i2}| \cdots |\alpha_{i1} - \alpha_{in}| = H^{1-r_{ij}} \quad (i = 1, 2, 3), \quad (r_{ij}, r_{1j}, r_{3j} = (q_1, r_1, t_1).$$

Обозначим через $\mathfrak{P}_n^{(i_1,i_2,i_3)}(H,\overline{q},\overline{r},\overline{t})$ множество многочленов $P \in \mathfrak{P}_n(H,\overline{q},\overline{r},\overline{t})$, которые удовлетворяют условию (i_1,i_2,i_3) -линейности, и через $M_n^{(i_1,i_2,i_3)}(\overline{c},Q) \subset M_n(\overline{c},Q)$ — множество точек $\overline{x} \in \mathcal{T}_1$, для которых (1) имеет решение в $P \in \mathfrak{P}_n^{(i_1,i_2,i_3)}(H,\overline{q},\overline{r},\overline{t})$.

ПРЕДЛОЖЕНИЕ 1. Если $P \in \mathfrak{P}_n^{(1,1,1)}(H,\overline{q},\overline{r},\overline{t})$, то

$$\mu M_n^{(1,1,1)}(\overline{c},Q) < \frac{1}{128}|I_1||I_2||I_3|.$$

ДОКАЗАТЕЛЬСТВО. Согласно (5), (6) имеем $d_1 + d_2 \ge n + 1$. Следуем схеме рассуждений предложения 5 в [5], дополненной получением оценки, указанной в предложении. Имеются отличия между [5] и нашим доказательством в наборах $\overline{X} = (X_1, X_2, X_3)$, метриках соответствующих пространств и выборе длин подынтервалов $|I_i|$ разбиения множеств $np_{x_i}\mathcal{A}_n(\mathcal{T}_1,Q)$ (i=1,2,3). Именно, в нашем случае $\overline{X}=(x_1,x_2,x_3)\in\mathbb{R}^3,$ а в [5] имеем $\overline{X}\subset\mathcal{O}=\mathbb{R}\times\mathbb{C}\times\mathbb{Q}_p$. Далее мы рассматриваем меру Лебега в \mathbb{R}^3 вместо меры в \mathcal{O} (см.[5]); также полагаем, что $|I_i| = Q^{-\rho_i+\varepsilon}$, $\rho_i = (v_i - r_{i1} + 1)/3$ (i = 1, 2, 3) (в [5] выбираются другие длины интервалов). Наконец, полагая, что (1) имеет не более одного решения в рассматриваемых многочленах, получаем указанную оценку. Полагая, что (1) имеет два или более решений в многочленах $P \in \mathfrak{P}_n^{(1,1,1)}(H,\overline{q},\overline{r},\overline{t})$, получаем противоречие с заключением леммы 2. Предложение доказано.

ПРЕДЛОЖЕНИЕ 2. Если $P \in \mathfrak{P}_n^{(0,0,0)}(H,\overline{q},\overline{r},\overline{t})$, то

$$\mu M_n^{(0,0,0)}(\overline{c},Q) < \frac{1}{128}|I_1||I_2||I_3|.$$

ДОКАЗАТЕЛЬСТВО. Согласно (5), (6) имеем $d_1 + d_2 < n + 1$, и доказательство состоит из пяти случаев: (1) $n + 0, 1 \le d_1 + d_2 < n + 1$; (2) $n - 0, 3 \le d_1 + d_2 < d_2 < d_3 < d_4 < d_4 < d_4 < d_5 < d_4 < d_6 <$ $d_1 + d_2 < n + 0, 1$; (3) $n - 0.55 \le d_1 + d_2 < n - 0.3$; (4) $1 \le d_1 + d_2 < n - 0.55$; (5) $d_1 + d_2 < 1$. Следуем схеме доказательств предложений 1, 2, 4, 3 в [5], дополненной получением оценки, указанной в предложении. Отличие состоит в наборах $\overline{X} = (X_1, X_2, X_3)$, метриках соответствующих пространств (что было указано выше) и выборе длин подынтервалов $|I_i|$ разбиения множеств $np_{x_i}\mathcal{A}_n(\mathcal{T}_1,Q)$ (i=1,2,3). Именно, в случае (1) полагаем $|I_i|=Q^{-\rho_i+\varepsilon}$; в случае (2): $|I_i|=Q^{ho_i+0,3}$; в случае (3): $|I_i|=Q^{ho_i+0,42}$; в случае (4): $|I_i|=Q^{ho_i}$, и везде $\rho_i = r_{ij}/T \ (i=1,2,3)$. Отметим, что в случае (3) производим редукцию к многочленам степени n-1 и применяем лемму 3. Случай (5) соответствует тому, что для производной выполняется оценка снизу: $Q^{-1/3} < |P'(x_i)|$ (i = 1, 2, 3). Здесь рассуждаем аналогично предложению 3 в [5] и исследуем существенные параллелепипеды для многочленов степени 3 (в [5] – степени 2). Наконец, как в предложении 1, окончание доказательства зависит от количества решений системы (1) в указанных многочленах. Предложение доказано.

Таким образом, учитывая сказанное ранее об исследовании остальных случаев (i_1, i_2, i_3) -линейности многочленов, заключаем, что теорема 3 доказана.

Отметим, что аналогичные теореме 3 рассуждения ранее использовались при изучении диофантовых приближений в $\mathbb{C} \times \mathbb{Q}_p$ (см. [7]).

Авторы благодарят профессора В. И. Берника за постановку задачи и полезные обсуждения.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Beresnevich V., Dickinson D., Velani S. Diophantine approximation on planar curves and the distribution of rational points. With an Appendix II by Vaughan R.C. // Ann. of Math. (2). 2007. Vol. 166, № 2. P. 367–426.
- 2. Beresnevich V. Rational points near manifolds and metric Diophantine approximation // Ann. of Math. 2012. Vol. 175. P. 187–235.
- 3. Спринджук В. Г. Доказательство гипотезы Малера о мере множества S-чисел // Изв. АН СССР. Сер. Мат. 1965. Т. 29, вып. 2. С. 379–436. [Sprindžuk V. G. Proof of Mahler conjecture on measure of the S-numbers set // Izv. AN SSSR. Ser. math. 1965. Vol. 29, No. 2. P. 379–436]
- 4. Берник В. И. Совместные приближения нуля значениями целочисленных многочленов // Изв. АН СССР. Сер. Мат. 1980. Т. 44, вып. 1. С. 24–45. [Bernik V. I. Simultaneous approximation of zero by integer polynomials // Izv. AN SSSR. Ser. math. 1980. Vol. 44, no. 1. P. 24–45]
- 5. Budarina N., Dickinson D., Bernik V. Simultaneous Diophantine approximation in the real, complex and p-adic fields // Math. Proc. Cambridge Phil. Soc. 2010. Vol. 149, part 2. P. 193–216.
- 6. Берник В. И., Калоша Н. И. Приближение нуля значениями целочисленных полиномов в пространстве $\mathbb{R} \times \mathbb{C} \times \mathbb{Q}_p$ // Весці НАН Беларуси. Сер. фіз.-мат. навук. 2004, № 1. С. 121–123. [Bernik V. I., Kalosha N. I. Approximation of zero by integer polynomials in space $\mathbb{R} \times \mathbb{C} \times \mathbb{Q}_p$ // Proc. NA Sci. Belarus. Phis. and Math. Ser. 2004, № 1. P. 121–123.]
- 7. Kovalevskaya E. Diophantine approximation in $\mathbb{C} \times \mathbb{Q}_p$ // Analytic and Probab. Methods in Number Theory. Proceedings of the Fourth Intern. Conf. in Honour of J. Kubilius, Palanga, Lithuania. 25–29 Sept. 2006. Vilnius: TEV, 2007. P. 56–71.
- 8. Želudevich F. Simultane diophantishe Approximationen abhängiger Grössen in mehreren Metriken // Acta Arithm. 1986. Vol. 46. P. 285–296.

Белорусский государственный аграрный технический университет Поступило 14.09.2013