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Abstract
In 1975, Sergei Mikhailovich Voronin discovered the universality of the Riemann zeta-
function ((s), s = o + it , on the approximation of a wide class of analytic functions by

shifts (s +i7), T € R. Later, it turned out that also some other zeta-functions are universal in
the Voronin sense. If 7 takes values from a certain descrete set, then the universality is called
discrete.

In the present paper, the discrete universality of periodic Hurwitz zeta-functions is
considered. The periodic Hurwitz zeta-function ((s,«;a) is defined by the series with terms
am(m + a)~%, where 0 < o < 1 is a fixed number, and a = {a,,} is a periodic sequence of
complex numbers. It is proved that a wide class of analytic functions can be approximated by
shifts
C(s+ihk5 log™ k, a; a) with £ = 2,3, ..., where h > 0 and 0 < 51 < 1, B2 > 0 are fixed numbers,
and the set {log(m+a) : m =0, 1,2} is linearly independent over the field of rational numbers.
It is obtained that the set of such k£ has a positive lower density. For the proof, properties of
uniformly distributed modulo 1 sequences of real numbers are applied.

Keywords: periodic Hurwitz zeta-function, space of analytic functions, limit theorem,
universality.
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ANCKPETHAf TEOPEMA YHUBEPCAJIBHOCTH J141
INTEPNO/INYECKUX A3ETA ®YHKIVN I'VPBULIA

A. Jlaypununkac, /1. Moxos (r. BuibHroc)

AnaHoTanusa

B 1975 r. Cepreit Muxaiiiopud BOpoHMH OTKpBLI CBONCTBO yHUBEPCAJIBHOCTH J[3€Ta-
dyukuun Pumana ((s), s = 0 +it, 0 IPUOIMKEHUN IIUPOKOIO KJIACCA AHAJUTUICCKUX (DYHKIUI
casuramu (s + i7), 7 € R. Tlo3Ke 0Ka3a10Ch, 4TO U HEKOTODbIE JIpyrue j3era~-GyHKImuu 00J1a-
JAl0T CBOWCTBOM yHHBEPCAJBLHOCTH B cMbiciie Bopormna. Eciau ciuBur 7 npunnmaer 3nadenust
13 HEKOTOPOI'O JUCKPETHOIO MHOXKECTBA, TO YHUBEPCAJIHHOCTH HA3BIBAETCS TUCKPETHOM.

B pabore usydaercs AMCKpeTHasl YHUBEPCAJIbHOCTBH IT€PUOANYecKuX j3era-pyHKnmii ['yp-
Bura. Ilepuommyeckas j3era-pynkuus Dypsuna ((s,q;a) onpemensgercda psijoM € daeHAME
am(m+ o)™, m=20,1,2,..., tue 0 < o < 1 — dbukcuposannoe uucio, a ¢ = {a,,} — nepu-
OIIecKasi MTOC/IEI0OBATEIBHOCTD KOMILJIEKCHBIX Ynces. J[oKa3aHo, 9TO MUPOKUI KJIACC aHAJIU-
TIdecknx (YHKIHUI ¢ 33JaHHON TOYHOCTHIO Mpubmmkaercs capuramu (s + ihko logﬁ 2k, 0)
ck=23,....,tueh>0u0< f; <1, 8 >0 — dpuUKCUpOBAHHBIE YUCJIA, 8 MHOXKECTBO
{log(m + @) : m =0,1,2,...} JuHe{iHO HE3aBUCUMO HA/| TIOJIEM PAIMOHAJBHBIX dnces. [lo-
JIYIEHO, 9YTO MHOXKECTBO TAKWUX CJIBUIOB, MPUOJINKAOIINX JTAHHYI0 AHAJUTUIECKYIO (DYHKIIHIO,
“MeeT MOJIOKUTEIbHYIO0 HUXKHIOI ILIOTHOCTH. lIpm moKa3aTesibCTBE WCIOJB3YIOTCS CBOICTBA
PaBHOMEDPHO PACHPEIEIEHHBIX 10 MOYJIIO 1 MOCIeI0BATEILHOCTENH JeHCTBUTEIbHBIX IUCE.

Karuesvie caosa: nepuoanveckas jg3era-QyHKIMs [ypBuiia, mpejesbHasi Teopema, IIpo-
CTPAHCTBO AHATUTUICCKAX (PYHKITUN, YHUBEPCATHHOCTD.

Bubauoepapus: 15 HazBaHuUii.
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1. Introduction

Let s = 0 + it be a complex variable, and a = {a,, : m € Ny = NU{0}} be a periodic sequence
of complex numbers with minimal period ¢ € N. The periodic Hurwitz zeta-function (s, o; a) with
parameter «,0 < a < 1 is defined,
for o > 1, by the Dirichlet series

(s, o) = Y —
7;) (m+ a)

and was introduced in |7]. In virtue of the equality

q—1

amC(

m=0

1
@

m-+ «

((s,a;a) = ),U>1,

where ((s, «) is the classical Hurwitz zeta-function given, for o > 1, by

b
(m+a)*’

NE

C(S7O‘) =

0

3
Il

and meromorphically continued to the whole complex plane with unique simple pole at the point
s = 1 with residue 1, the function ((s, ; a) also has meromorphic continuation to the whole complex
plane with possible simple pole at the point s = 1 with residue

q—1
> am

m=0

Q| =

If the latter quantity is equal to zero, the function ((s, «; a) is entire one.
Clearly, if a,, = 1, the function ((s, ; a) becomes the Hurwitz zeta-function. If a,,, = ™ ,m €

Np, then ((s, a;a) reduces to the Lerch zeta-function

27rz)\m

(o)
L(\ a,s) Zm—i—a o>1,
0

with A = 1. Thus, the periodic Hurwitz zeta-function is a generalization of classical zeta-functions.

The function ((s, «; a), as the majority of other zeta-functions, is universal in the Voronin sense,

e., its shifts ((s + i7,a;a), 7 € R, approximate a wide class of analytic functions. We recall some

results on the universality of ((s,a;a). Let D = {s € C: % < o < 1}. Denote by # the class of

compact subsets of the strip D with connected complements, and by H(K), K € %, the class of
continuous functions on K which are analytic in the interior of K. Moreover, let

L(o) = {log(m + a) : m € Ny} .
Then in [11], the following theorem was obtained.

THEOREM 1. Suppose that the set L(«a) is linearly independent over the field of rational numbers
Q. Let K € % and f(s) € H(K). Then, for every e > 0,

1
lim inf — meas {T €[0,7T] : sup |¢(s + iT,;a) — f(s)‘ < e} > 0.
T—oo T seK
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Here meas A denotes the Lebesgue measure of a measurable set A C R. It is not difficult to see
that the set L(«) is linearly independent over Q with transcendental a.. This case was discussed in
[2] and [3].

Theorem 1 is of continuous character because the shift 7 in ((s + i7, a; a) can take arbitrary
real values. Also, discrete versions of Theorem 1 are known when 7 takes values from the set
{kh : k € Ny} with fixed h > 0. The first result in this direction has been obtained in [10].

THEOREM 2. Suppose that a is a transcendental number, and exp {27“} is a rational number.
Let K € ¢ and f(s) € H(K). Then, for every e > 0,

1
lim inf <k<N: ‘ ikh, o a) — ’ .
imin: N+1#{O k jglg C(s+ikh,a;a) — f(s)]| < 6} >0

Here #A denotes the cardinality of the set A. In [13], a more general result was obtained. Let

L(a,h,m) = {(log(m+a) tm € No),%}.
THEOREM 3. Suppose that the set L(a, h,m) is linearly independent over Q. Let K € J and
f(s) € H(K). Then the assertion of Theorem 2 is true .

The aim of this paper is to replace the set {kh : k € Ny} in Theorems 2 and 3 by a more
complicated one. Let 0 < 81 < 1, B2 > 0 and h > 0 be fixed numbers.

THEOREM 4. Suppose that the set L(«) is linearly independent over Q. Let K € & and f(s) €
H(K). Then, for every e >0,

1
1#{2 <k <N :sup |¢(s +ihkP log™ k, a;a) — f(s)‘ < e} > 0.

lim inf
N—o00 SEK

For the proof of Theorem 4, we will apply good distribution properties of the sequence
{hkP log? k : k = 2,3,...}. In general, we will use the probabilistic method based on a limit
theorem for probability measures in the space of analytic functions. Let B(X) denote the Borel o—
field of the space X, and let H(D) be space of analytic functions on D endowed with the topology
of uniform convergence on compacta.

We note that the universality of zeta and L-functions was discovered by Sergei Mikhailovich
Voronin who in [15] obtained universality of the Riemann zeta-function and Dirichlet L -functions,
see also [6].

2. A limit theorem

We start with a limit theorem of discrete type on the torus
Q = H ’YWL)
meENy

where v, = {s € C : |s|] = 1} for all m € Ny. With the product topology and pointwise
multiplication, the torus €2 is a compact topological group. Therefore, on (€2, B(£2)), the probability
Haar measure my exists, and we have the probability space (€2, B(f2),mg). Denote by w(m) the
projection of an element w € € to the coordinate space ~,,, m € Ny. For A € B(Q), we set

Qn(A) = ﬁ#@ RSN : ((mta) " e ) € 4l
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LEMMA 1. Suppose that the set L(a) is linearly independent over Q. Then the measure
QN converges weakly to the Haar measure myg as N — oo.

PROOF. We remind that a sequence {x,, : m € N} is uniformly distributed modulo 1 if, for
every interval I = [a,b) C [0,1) of length |I|,

n—oo n

lim =3 v ({aed) = 11,
k=1

where {u} is the fractional part of u € R and y is the indicator function of I. By the Weyl criterion,
see, for example, [5], the sequence {x,,} is uniformly distributed modulo 1 if and only if, for every

ke Z\ {0},
. 1 . 2wikXTm
nlglgoﬁ Ele =0.

It is well known [5] that the sequence {ak?' log? k : k = 2,3, ...} with a # 0 is uniformly distributed
modulo 1.

For the proof of the lemma, we apply the method of the Fourier transforms. Let k = {k,, : m €
No} with integers ky,. Then the Fourier transform gy (k) of the measure @y is of the form

on() = [ T] & (m)iQy.

Q meENy

where only a finite number of integers k,,, are distinct from zero. Hence, we have that

N
1 —i B1 loghB
ov(k) = 7> [ (mtay eniiiose

k=2 meNp
1 N
- mZexp{ —ihk% log® k> ki 1og(m+a)}. (1)
k=2 meNy

The linear independence over Q of the set L(«) implies that
Z km log(m 4+ o) =0
meENy

if and only if £k = 0. Therefore, if k # 0, then

h > kmlog(m + a) # 0.

meENp
By the above remark, the sequence

{hkﬂl log™ k

5 Z km log(m + «) :k:2,3,...}

meENy

is uniformly distributed modulo 1. Thus, in view of (1) and the Weyl criterion,

Jim g (k) =0 (2)

for k # 0. Obviously, by (1),
gn(0) = 1.
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This and (2) show that

Clearly,
1 k=0,
is the Fourier transform of the Haar measure mp. Therefore, the lemma follows by a general

continuity theorem for probability measures on compact groups, see, for example, [4].
O

Furthermore, we will deal with a limit theorem for absolutely convergent Dirichlet series. For a
fixed 6 > % and m € Ng,n € N, let

vp(m,a) = exp{ - (m—l—a)ff}.

n—+a«a

Define two functions

i) = 3 )

m=0
and
apmw(m)v,(m, o)
(m+ a)®

Cn(s, o,wsa) = Z

m=0
Then the latter series are absolutely convergent for o > % [2]. From this, it follows that the function
un : 0 — H(D) given by the formula

un(w) = Ga(s, o, wia),w € Q,

is continuous one. For A € B(H (D)), let
1
Prn(A) = m#{2 <k <N :C(s+ihkP log™ k,asa) € A}.

Moreover, we put B,=m gu,t, where the measure myu,,! is defined by
mgu,  (A) = my(u,'A), A € B(H(D)).
LEMMA 2. Suppose that the set L(«) is linearly independent over Q. Then Py, converges
weakly to B, as N = c0.

PrOOF. By the definition of the function w,, we have
un((m I a)—z’hkﬂl logh k. NO) = (s + ihkP log™ k, o a).

Therefore, for A € B(H(D)),

Pnn(4) = ﬁ#{Q <k<N: ((m + a)_ihkﬁl log™k .y € NO) € A}

= Qn(u,"A) = Qnu, ' (A).
This, the continuity of u,, Lemma 1 and Theorem 5.1 of [1] show that Py, converges weakly to
]5” as N — oo.
O
Now we will approximate ¢(s+ihk”' log? k, o; a) by Cu(s +ihk® log?? k, o; a) in the mean. Let
p be the metric on H (D) which induces the topology of uniform convergence on compacta, see [10],
or [8, 9.
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LEMMA 3. The equality

N
3 p(g(s +ihkP 10g?2 k, a; a), Ca(s + ihKP log™ kb, a)) —0
k=2

lim lim sup
n—0 N_s00 - 1

holds.

PROOF. It was obtained in [2] that, for o > 1,

T
/ C(0 + it, o, a)|*dt = O(T). (3)
1

To obtain a discrete version of the latter estimate, we will use the Gallagher lemma, see Lemma
1.4 in [14]. For 2 < k < N, with sufficiently large N we have

(k+ 1) log™(k + 1) — k' log™ k

= kM (1 + %)ﬁl (logk + log (1 + %))62 — kP log™ k

a1y BB 1) 11 B2y B
k (1+ p + 572 +...><logk:+ r 2 +) k"t log™ k
B B1(B1—1) 1 1 P2
= (k™ .. ) log™ k(1 —
( tora t e ) tog” k( T klogk  2k2logk T )
clog® N

—EA 10g’82 k> N

chlogf2 N

with suitable constant ¢ > 0 not depending on N. Therefore, taking § = in Lemma 1.4 of

N1-51
[14], we find that
N
37 |¢(o + ihk? log? k + it, o a)|
k=2
hNP1loghf2 N
< N'7Bog=P2 N / |C(J+i7+it,a;a)‘2d7+
1
1
hNB1 loghf2 N hNP11logP2 N 2
+ / ]C(0+ir+it,a;a)|2d7 / ¢ (o +iT +it, o a)]2d7
1 1

K N+t < N(1+1t])

for o > 1 because of (3) and the estimate

T
/ (0 + it,, )| dt = O(T)
1

implied by (3). Let K be a compact subset of the strip D. Then, repeating the proof of Theorem 4.1
from [6], we obtain that

N

lim limsu su ) s + ihk% lo 'BQk,a;a — Cols + ihk™ 1o 52k,a;a =0.
Tim N%opN_lgsgg ¢( g ) = Gl g )
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This and the definition of the metric p prove the lemma.
O

Now we state the main limit theorem. On the probability space (2, B(£2), m), define the H(D)-
valued random element ((s, o, w; a) by the formula

L apmw(m)
C(S7 a7w; ) = S *
¢ Z:O (m+ )

m=

The latter series, for almost all w € €0, converges uniformly on compact subsets of the strip D, and
therefore, defines a H(D)-valued random element. Denote by P the distribution of the random
element ((s, @, w;a), ie.,

Pr(A) = mH{w €Q:((s,a,w;a) € A},A € B(H(D)).
For A € B(H(D)), let
Pn(A) = ﬁ#@ < k<N :((s+ihkP 1og? k, o a) € A}.

THEOREM 5. Suppose that the set L(a) is linearly independent over Q. Then Py converges
weakly to Pr as N — oo. Moreover, the support of P is the whole of H(D).

PROOF. Let 0y be a random variable defined on a certain probability space (Q, F, ]P’) and having

the distribution 1
IP’(QN — hEkP logBQ k) - ﬁ’k =2,...,N.

Define the H(D)-valued random element Xy , by the formula
Xnpn = Xnn(s) = (s +i0n, a5 0).

Moreover, let X,, be the H (D)-valued random element having the distribution Pn, where P, is the
limit measure in Lemma 2. Then the assertion of Lemma 2 can be written in the form

XN,n L> Xn, (4)
N—oo

where 25 means the convergence in distribution. We will prove that the family of probability
measures {]5” in € N} is tight, i.e., for every € > 0, there exists a compact set K = K(¢) C H(D)
such that

PyK)>1—¢

for all n € N. Since the series for (,(s, a;a) is absolutely convergent for o > %, we have that

o lam[*vz(m, 0)

T
1 2
sup lim sup — oc+it,a;a)|"dt = su
neg T%oopTO/‘C( )’ pz (m—f‘OC)QU

‘am’2 <C<
(m+a)2e — '
0

IN

m=

This together with the Gallagher lemma [14] implies the bound

N

sup lim sup Z
neEN N—oo -1 =2

2
Cn(s + ihkP log?? k, o a)‘ < () < 0.
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Hence,
N

D

sup lim sup
neN N—oo -1

Cn(s + ihkP log? k, o a)‘ < (Cs < . (5)

Let K;, I € N, be compact sets from the definition of the metric p [10]. Then (6) together with the
Cauchy integral formula shows that

N
Z sup

k=2 seK;

sup lim sup
neN N—oo N -1

Cn(s + ihkP log?? k, o a)‘ < R; < 0. (6)

Let € > 0 be an arbitrary number, and M; = M;(e) = 2'Rje!. Then, taking into account (7), we
find that, for [ € N,

limsup[F’( sup |Xnn(s)| > Ml>
N—oo seK;

= limsup #{2 <k<N:sup ‘Cn(s + ihkP log™ k, o a)‘ > Ml}
Nooo NV —1 sk,
N €
< limsup ——— sup [(n(s + ik logﬁ2 kiaja)| < —.
N—oo (N —1)M, szem [6n( | 2!

Hence, by the relation (5), we obtain that, for [ € N,

- €
P( s Xn M) < =. 7
(sup [Xa(o)] > M) < 5 (7)

Putting

K(e)={ge€ H(D): seu}() lg(s)| < My, 1 € N},

we have that K (e€) is a compact subset of H(D) because it is uniformly bounded on compact subsets
of the strip D. Moreover, (8) shows that, for all m € N,

P(Xn(s) c K(e)) >1-¢

or, for all m € N,

P(K(e)) >1—e
Thus, the sequence {Pn 'n € N} is tight.

Since the sequence {Pn in € N} is tight, by the Prokhorov theorem, see [1, Theorem 6.1], it is
relatively compact. Therefore, there exists a subsequence {P;LT} C {ﬁn} such that P;LT converges
weakly to a certain probability measure P on (H(D), B(H(D))) as n — oo. From this,

X, (s) —2— P. (8)

T—00
Let the H(D)-valued random element Xy be defined by the formula
Xy =Xn(s) =((s+i0n,a50a).

Then, by Lemma 3, for every € > 0,

lim limsup]P’<p(XN(s),XN,n(s)) > e)

n—oo N—o00
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= lim limsup
n—00 N_sog —1

#{2 <kE<N: p(c(s +ihkP log® k. a a),

Co(s + ihkP log™ k, a; a)) > e}

M) =

< lim limsup

ihkP1 1062 k. o
i Hm sup p(C(sﬂ 0g” k, a; a),

b

=2
(s + ihkP log® k, a; a)) —0.

This equality, (5), (9) and Theorem 4.2 from [1] imply the relation
D
Xy — P, 9)
N—oo

thus, Py converges weakly to P as N — oco. Moreover, (10) shows that the measure P is independent
of the choice of the subsequence {Pnr } Therefore, the relation

X, —— P,
n—o0
is true, and we have that the measure P, converges weakly to P as n — oo.

It remains to identify the measure P. In [11], under the hypothesis that the set L(«) is linearly
independent over Q, it was obtained that the measure

%meas {7’ €[0,T]: {(s+iT,a50a) € A},A € B(H(D)),

as T — oo, also converges weakly to the measure P which is the limit measure of P, as n — oo,
and that P coincides with P. Since Py, as n — oo, converges weakly to P, hence we have that Py
also converges weakly to Pr as N — oco. Moreover, in [11], it was obtained, that the support of Py
is the whole of H(D). The theorem is proved.

O

3. Proof of universality
First we state two lemmas.

LEMMA 4. Let K C C be a compact subset with connected complement, and let f(s) be a
continuous function on K which is analytic in the interior of K. Then, for every e > 0, there exists
a polynomial p(s) such that

sup [£(5) = pls)| < e

The lemma is the Mergelyan theorem, see [12].

LEMMA 5. Let P,,n € N, and P be a probability measures on (X,B(X)). Then P,, as n — 0o,
converges weakly to P if and only if, for every open set G C X,

liminf P,(G) > P(G).

n—oo
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The lemma is a part of Theorem 2.1 from [1].
PROOF OF THEOREM 4. By Lemma 4, there exists a polynomial p(s) such that

sup [£(5) = p(s)| < 5. (10)

Define the set .

G ={g€ HD): sup lofs) ~ p(s)] < 3}

Then G is an open set in H (D), therefore, in view of Theorem 5 and Lemma 5,
liminf Py (G) > P:(G). (11)
N—o0

Moreover, GG is an open neighbourhood of the polynomial p(s) which, again by Theorem 4, is an
element of the support of the measure Pr. Thus, P:(G) > 0. This, (12) and the definition of G
imply the inequality

1
lim inf #{2 < k<N :supl|((s + ihkP log™ k, o a) —p(s)’ < E} > 0.
N—ro0 -1 sEK 2

This and (11) prove the theorem.
O

4. Conclusions

Let a = {an} be a periodic sequence of complex numbers, 0 < @ < 1 and s = o + it. The
periodic Hurwitz zeta-function ((s, a; a) is defined, for o > 1 , by the series

(s as0) = 30 2

0

and by analytic continuation elsewhere. Moreover, let
L(a) = {log(m+«a) :m=0,1,2,...}.

In the paper, the following discrete universality theorem for the function ((s,;a) is obtained.
Suppose that £ be the class of compact subsets of the strip D with connected complement, and
H(K), K € %, be the class of continuous functions on K which are analytic in the interior of K.
Moreover, we assume that the set L(«) is linearly independent over the field of rational numbers,
and that 0 < 81 < 1, B2 > 0 and h > 0 are fixed numbers. Then the function ((s, a;a) is universal
in the Voronin sense, i.e., if K € %, f(s) € H(K), then, for every € > 0,

1
lim inf #{2 < k< N :sup |C(s + ihkP log™ k, a;a) — f(s)‘ < 6} > 0.
N—oo N —1 seK

REFERENCES

1. Billingsley P., 1968, "Convergence of Probability Measures" , New York: Wiley.

2. Javtokas A., Laurincikas A., 2006, "On the periodic Hurwitz zeta-fucntion" , Hardy- Ramanujan
J. Vol. 29. P. 18-36.

3. Javtokas A., Laurinc¢ikas A., 2006, "Universality of the periodic Hurwitz zeta-function" , Integral
Transforms Spec. Funct. Vol. 17, No. 10. P. 711-722.



158 A. LAURINCIKAS, D. MOCHOV

4. Heyer H.,1977, "Probability Measures on Locally Compact Groups", Berlin, Heidelberg, New
York: Springer-Verlag.

5. Kuipers L., Niederreiter H., 1974, "Uniform Distribution of Sequences", Pure and Applied
Mathematics. New York, London, Sydney: Wiley-Interscience.

6. Karatsuba A.A., Voronin S.M., 1992, "The Riemann zeta-function" , Berlin: Walter de Gruyter.

7. Laurincikas A., 2006, "The joint universality for periodic Hurwitz zeta-functions", Analysis
(Munich) Vol. 26, No. 3. P. 419-428.

8. Laurincikas A., 1996, "Limit theorems for Riemann zeta-function" , Dordrecht, Boston, London:
Kluwer.

9. Laurinc¢ikas A., Garunkstis R., 2002, "The Lerch zeta-function", Dordrecht, Boston, London:
Kluwer.

10. Laurincikas A., Macaitiené R., 2009, "The discrete universality of the periodic Hurwitz zeta-
function" | Integral Transforms Spec. Funct. Vol. 20. P. 673-686.

11. Laurincikas A., Macaitiené R., Mochov D., Siau¢iunas D., 2013, "On universality of certain
zeta-functions" , Izv. Saratov. univ., ser. Matem., Mekhan. Inform. P. 67-72.

12. Mergelyan S. N.; 1952, "Uniform approximations to functions of a complex variable", Usp.
Matem. Nauk. Vol. 7, No. 2. P. 31-122 (Russian) = Amer. Math. Trans. 1954. Vol. 101.

13. Mincevi¢ A., Mochov D.;2015, "On the discrete universality of the periodic Hurwitz zeta-
function" , Siauliai Math. Semin. Vol. 10. P. 81-89.

14. Montgomery H. L., 1971, "Topics in Multiplicative Number Theory." , Lecture Notes in Math.
Vol. 227. Berlin: Springer.

15. Voronin S. M., 1975, "Theorem on the "universality" of the Riemann zeta-function." , Izv. Akad.
Nauk SSSR. Vol. 39. P. 475-486 (in Russian) = Math. USSR Izv. 1975. Vol. 9. P. 443-453.

CIIINCOK IIUTUPOBAHHO JINTEPATYPHI

1. Billingsley P. Convergence of Probability Measures. New York: Wiley, 1968.

2. Javtokas A., Laurin¢ikas A. On the periodic Hurwitz zeta-fucntion // Hardy-Ramanujan J.
2006. Vol. 29. P. 18-36.

3. Javtokas A., Laurin¢ikas A. Universality of the periodic Hurwitz zeta-function // Integral
Transforms Spec. Funct. 2006. Vol. 17, No. 10. P. 711-722.

4. Heyer H. Probability Measures on Locally Compact Groups. Berlin, Heidelberg, New York:
Springer-Verlag, 1977.

5. Keitnepc JI., Huneppetitep I. PaBnomepmnoe pacmpesnenenue mociemoBaTeabHocTeill. Mocksa:
Hayxka, 1985.

6. Bopouun C.M., Kapamyba A.A. [zera-dynknus Pumana. Mockpa: @uamatiut, 1994.

7. Laurinc¢ikas A. The joint universality for periodic Hurwitz zeta-functions // Analysis (Munich).
2006. Vol. 26, No. 3. P. 419-428.



A DISCRETE UNIVERSALITY THEOREM ... 159

10.

11.

12.

13.

14.

15.

Laurin¢ikas A. Limit theorems for Riemann zeta-function. Dordrecht, Boston, London: Kluwer,
1996.

Laurinc¢ikas A., Garunkstis R. The Lerch zeta-function. Dordrecht, Boston, London: Kluwer.

Laurincikas A., Macaitiené R. The discrete universality of the periodic Hurwitz zeta-function
// Integral Transforms Spec. Funct. 2009. Vol. 20. P. 673-686.

Laurin¢ikas A., Macaitien¢ R., Mochov D., Siau¢iunas D. On universality of certain zeta-
functions // Uss. Caparosckoro yuus., cep. Marem., Mexan., udopm. 2013. P. 67-72.

Mepresnsia C.H. PaBHoMmepHble npubimzkennst byHKIHA KOMILIEKCHOTO nepemennoro // YMH
1952. T. 7, Ne, 2. C. 31-122 = Amer. Math. Trans. 1954. Vol. 101.

Mincevi¢ A., Mochov D. On the discrete universality of the periodic Hurwitz zeta-function //
Siauliai Math. Semin. 2015. Vol. 10. P. 81-89.

Montgomery H.L. Topics in Multiplicative Number Theory. Lecture Notes in Math. Vol. 227.
Berlin: Springer, 1971.

Boponnn C. M. Teopema 06 “yuusepcanbroctu” n3era-byukiun Pumana // 1ss. AH CCCP.
Cep. marem. 1975. T. 39. C. 475-486. = Math. USSR Izv. 1975. Vol. 9. P. 443-453.

Faculty of Mathematics and Informatics, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius,
Lithuania.

E-mail: antanas.laurincikas@mif.vu.lt, dmitrij.mochov@mif.vu.lt

Ilosmyweno 11.12.2015 1.

IIpunsaro B meuars 10.03.2016 1.



