ЧЕБЫШЕВСКИЙ СБОРНИК Том 17. Выпуск 1.

УДК 519.14

A DISCRETE UNIVERSALITY THEOREM FOR PERIODIC HURWITZ ZETA-FUNCTIONS

A. Laurinčikas, D. Mochov (Vilnius, Lithuania)

Dedicated to Gennadii Ivanovich Arkhipov and Sergei Mikhailovich Voronin

Abstract

In 1975, Sergei Mikhailovich Voronin discovered the universality of the Riemann zeta-function $\zeta(s)$, $s=\sigma+it$, on the approximation of a wide class of analytic functions by shifts $\zeta(s+i\tau)$, $\tau\in\mathbb{R}$. Later, it turned out that also some other zeta-functions are universal in the Voronin sense. If τ takes values from a certain descrete set, then the universality is called discrete.

In the present paper, the discrete universality of periodic Hurwitz zeta-functions is considered. The periodic Hurwitz zeta-function $\zeta(s,\alpha;\mathfrak{a})$ is defined by the series with terms $a_m(m+\alpha)^{-s}$, where $0<\alpha\leq 1$ is a fixed number, and $\mathfrak{a}=\{a_m\}$ is a periodic sequence of complex numbers. It is proved that a wide class of analytic functions can be approximated by shifts

 $\zeta(s+ihk^{\beta_1}\log^{\beta_2}k,\alpha;\mathfrak{a})$ with k=2,3,..., where h>0 and $0<\beta_1<1,\,\beta_2>0$ are fixed numbers, and the set $\{\log(m+\alpha): m=0,1,2\}$ is linearly independent over the field of rational numbers. It is obtained that the set of such k has a positive lower density. For the proof, properties of uniformly distributed modulo 1 sequences of real numbers are applied.

 $\it Keywords:$ periodic Hurwitz zeta-function, space of analytic functions, limit theorem, universality.

Bibliography: 15 titles.

ДИСКРЕТНАЯ ТЕОРЕМА УНИВЕРСАЛЬНОСТИ ДЛЯ ПЕРИОДИЧЕСКИХ ДЗЕТА ФУНКЦИЙ ГУРВИЦА

А. Лауринчикас, Д. Мохов (г. Вильнюс)

Аннотация

В 1975 г. Сергей Михайлович Воронин открыл свойство универсальности дзета-функции Римана $\zeta(s)$, $s=\sigma+it$, о приближении широкого класса аналитических функций сдвигами $\zeta(s+i\tau)$, $\tau\in\mathbb{R}$. Позже оказалось, что и некоторые другие дзета-функции обладают свойством универсальности в смысле Воронина. Если сдвиг τ принимает значения из некоторого дискретного множества, то универсальность называется дискретной.

В работе изучается дискретная универсальность периодических дзета-функций Гурвица. Периодическая дзета-функция Гурвица $\zeta(s,\alpha;\mathfrak{a})$ определяется рядом с членами $a_m(m+\alpha)^{-s},\ m=0,1,2,\ldots$, где $0<\alpha\leq 1$ — фиксированное число, а $\mathfrak{a}=\{a_m\}$ — периодическая последовательность комплексных чисел. Доказано, что широкий класс аналитических функций с заданной точностью приближается сдвигами $\zeta(s+ihk^{\beta_1}\log^{\beta_2}k,\alpha;\mathfrak{a})$ с $k=2,3,\ldots$, где h>0 и $0<\beta_1<1,\ \beta_2>0$ — фиксированные числа, а множество $\{\log(m+\alpha):\ m=0,1,2,\ldots\}$ линейно независимо над полем рациональных чисел. Получено, что множество таких сдвигов, приближающих данную аналитическую функцию, имеет положительную нижнюю плотность. При доказательстве используются свойства равномерно распределенных по модулю 1 последовательностей действительных чисел.

Ключевые слова: периодическая дзета-функция Гурвица, предельная теорема, пространство аналитических функций, универсальность.

Библиография: 15 названий.

1. Introduction

Let $s = \sigma + it$ be a complex variable, and $\mathfrak{a} = \{a_m : m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}\}$ be a periodic sequence of complex numbers with minimal period $q \in \mathbb{N}$. The periodic Hurwitz zeta-function $\zeta(s, \alpha; \mathfrak{a})$ with parameter $\alpha, 0 < \alpha \le 1$ is defined, for $\sigma > 1$, by the Dirichlet series

$$\zeta(s,\alpha;\mathfrak{a}) = \sum_{m=0}^{\infty} \frac{a_m}{(m+\alpha)^s},$$

and was introduced in [7]. In virtue of the equality

$$\zeta(s,\alpha;\mathfrak{a}) = \frac{1}{q^s} \sum_{m=0}^{q-1} a_m \zeta\left(s, \frac{m+\alpha}{q}\right), \sigma > 1,$$

where $\zeta(s,\alpha)$ is the classical Hurwitz zeta-function given, for $\sigma > 1$, by

$$\zeta(s,\alpha) = \sum_{m=0}^{\infty} \frac{1}{(m+\alpha)^s},$$

and meromorphically continued to the whole complex plane with unique simple pole at the point s=1 with residue 1, the function $\zeta(s,\alpha;\mathfrak{a})$ also has meromorphic continuation to the whole complex plane with possible simple pole at the point s=1 with residue

$$\frac{1}{q}\sum_{m=0}^{q-1}a_m.$$

If the latter quantity is equal to zero, the function $\zeta(s,\alpha;\mathfrak{a})$ is entire one.

Clearly, if $a_m \equiv 1$, the function $\zeta(s, \alpha; \mathfrak{a})$ becomes the Hurwitz zeta-function. If $a_m = e^{2\pi i \frac{m}{q}}$, $m \in \mathbb{N}_0$, then $\zeta(s, \alpha; \mathfrak{a})$ reduces to the Lerch zeta-function

$$L(\lambda,\alpha,s) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda m}}{(m+\alpha)^s}, \sigma > 1,$$

with $\lambda = \frac{1}{q}$. Thus, the periodic Hurwitz zeta-function is a generalization of classical zeta-functions. The function $\zeta(s,\alpha;\mathfrak{a})$, as the majority of other zeta-functions, is universal in the Voronin sense, i.e., its shifts $\zeta(s+i\tau,\alpha;\mathfrak{a}),\tau\in\mathbb{R}$, approximate a wide class of analytic functions. We recall some results on the universality of $\zeta(s,\alpha;\mathfrak{a})$. Let $D=\{s\in\mathbb{C}:\frac{1}{2}<\sigma<1\}$. Denote by \mathscr{K} the class of compact subsets of the strip D with connected complements, and by $H(K), K\in\mathscr{K}$, the class of continuous functions on K which are analytic in the interior of K. Moreover, let

$$L(\alpha) = \{\log(m + \alpha) : m \in \mathbb{N}_0\}.$$

Then in [11], the following theorem was obtained.

THEOREM 1. Suppose that the set $L(\alpha)$ is linearly independent over the field of rational numbers \mathbb{Q} . Let $K \in \mathcal{K}$ and $f(s) \in H(K)$. Then, for every $\epsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] : \sup_{s \in K} \left| \zeta(s + i\tau, \alpha; \mathfrak{a}) - f(s) \right| < \epsilon \right\} > 0.$$

Here meas A denotes the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. It is not difficult to see that the set $L(\alpha)$ is linearly independent over \mathbb{Q} with transcendental α . This case was discussed in [2] and [3].

Theorem 1 is of continuous character because the shift τ in $\zeta(s+i\tau,\alpha;\mathfrak{a})$ can take arbitrary real values. Also, discrete versions of Theorem 1 are known when τ takes values from the set $\{kh:k\in\mathbb{N}_0\}$ with fixed h>0. The first result in this direction has been obtained in [10].

THEOREM 2. Suppose that α is a transcendental number, and $\exp\left\{\frac{2\pi}{h}\right\}$ is a rational number. Let $K \in \mathcal{K}$ and $f(s) \in H(K)$. Then, for every $\epsilon > 0$,

$$\liminf_{N \to \infty} \frac{1}{N+1} \# \Big\{ 0 \leqslant k \leqslant N : \sup_{s \in K} \Big| \zeta(s+ikh,\alpha;\mathfrak{a}) - f(s) \Big| < \epsilon \Big\} > 0.$$

Here #A denotes the cardinality of the set A. In [13], a more general result was obtained. Let

$$L(\alpha, h, \pi) = \left\{ \left(\log(m + \alpha) : m \in \mathbb{N}_0 \right), \frac{\pi}{h} \right\}.$$

THEOREM 3. Suppose that the set $L(\alpha, h, \pi)$ is linearly independent over \mathbb{Q} . Let $K \in \mathcal{K}$ and $f(s) \in H(K)$. Then the assertion of Theorem 2 is true.

The aim of this paper is to replace the set $\{kh : k \in \mathbb{N}_0\}$ in Theorems 2 and 3 by a more complicated one. Let $0 < \beta_1 < 1$, $\beta_2 > 0$ and h > 0 be fixed numbers.

THEOREM 4. Suppose that the set $L(\alpha)$ is linearly independent over \mathbb{Q} . Let $K \in \mathcal{K}$ and $f(s) \in H(K)$. Then, for every $\epsilon > 0$,

$$\liminf_{N\to\infty}\frac{1}{N-1}\#\Big\{2\leqslant k\leqslant N: \sup_{s\in K}\Big|\zeta(s+ihk^{\beta_1}\log^{\beta_2}k,\alpha;\mathfrak{a})-f(s)\Big|<\epsilon\Big\}>0.$$

For the proof of Theorem 4, we will apply good distribution properties of the sequence $\{hk^{\beta_1}\log^{\beta_2}k: k=2,3,...\}$. In general, we will use the probabilistic method based on a limit theorem for probability measures in the space of analytic functions. Let $\mathcal{B}(X)$ denote the Borel σ -field of the space X, and let H(D) be space of analytic functions on D endowed with the topology of uniform convergence on compacta.

We note that the universality of zeta and L-functions was discovered by Sergei Mikhailovich Voronin who in [15] obtained universality of the Riemann zeta-function and Dirichlet L-functions, see also [6].

2. A limit theorem

We start with a limit theorem of discrete type on the torus

$$\Omega = \prod_{m \in \mathbb{N}_0} \gamma_m,$$

where $\gamma_m = \{s \in \mathbb{C} : |s| = 1\}$ for all $m \in \mathbb{N}_0$. With the product topology and pointwise multiplication, the torus Ω is a compact topological group. Therefore, on $(\Omega, \mathcal{B}(\Omega))$, the probability Haar measure m_H exists, and we have the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$. Denote by $\omega(m)$ the projection of an element $\omega \in \Omega$ to the coordinate space $\gamma_m, m \in \mathbb{N}_0$. For $A \in \mathcal{B}(\Omega)$, we set

$$Q_N(A) = \frac{1}{N-1} \# \Big\{ 2 \leqslant k \leqslant N : \Big((m+\alpha)^{-ihk^{\beta_1} \log^{\beta_2} k} : m \in \mathbb{N}_0 \Big) \in A \Big\}.$$

LEMMA 1. Suppose that the set $L(\alpha)$ is linearly independent over \mathbb{Q} . Then the measure Q_N converges weakly to the Haar measure m_H as $N \to \infty$.

PROOF. We remind that a sequence $\{x_m : m \in \mathbb{N}\}$ is uniformly distributed modulo 1 if, for every interval $I = [a, b) \subset [0, 1)$ of length |I|,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \chi_I(\{x_k\}) = |I|,$$

where $\{u\}$ is the fractional part of $u \in \mathbb{R}$ and χ_I is the indicator function of I. By the Weyl criterion, see, for example, [5], the sequence $\{x_m\}$ is uniformly distributed modulo 1 if and only if, for every $k \in \mathbb{Z} \setminus \{0\}$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} e^{2\pi i k x_m} = 0.$$

It is well known [5] that the sequence $\{ak^{\beta_1}\log^{\beta_2}k: k=2,3,...\}$ with $a\neq 0$ is uniformly distributed modulo 1.

For the proof of the lemma, we apply the method of the Fourier transforms. Let $\underline{k} = \{k_m : m \in \mathbb{N}_0\}$ with integers k_m . Then the Fourier transform $g_N(\underline{k})$ of the measure Q_N is of the form

$$g_N(\underline{k}) = \int_{\Omega} \prod_{m \in \mathbb{N}_0} \omega^{k_m}(m) dQ_N,$$

where only a finite number of integers k_m are distinct from zero. Hence, we have that

$$g_{N}(\underline{k}) = \frac{1}{N-1} \sum_{k=2}^{N} \prod_{m \in \mathbb{N}_{0}} (m+\alpha)^{-ihk_{m}k^{\beta_{1}} \log^{\beta_{2}} k}$$

$$= \frac{1}{N-1} \sum_{k=2}^{N} \exp\left\{-ihk^{\beta_{1}} \log^{\beta_{2}} k \sum_{m \in \mathbb{N}_{0}} k_{m} \log(m+\alpha)\right\}.$$
(1)

The linear independence over \mathbb{Q} of the set $L(\alpha)$ implies that

$$\sum_{m \in \mathbb{N}_0} k_m \log(m + \alpha) = 0$$

if and only if $\underline{k} = \underline{0}$. Therefore, if $\underline{k} \neq \underline{0}$, then

$$h\sum_{m\in\mathbb{N}_0} k_m \log(m+\alpha) \neq 0.$$

By the above remark, the sequence

$$\left\{ \frac{hk^{\beta_1}\log^{\beta_2}k}{2\pi} \sum_{m \in \mathbb{N}_0} k_m \log(m+\alpha) : k = 2, 3, \dots \right\}$$

is uniformly distributed modulo 1. Thus, in view of (1) and the Weyl criterion,

$$\lim_{N \to \infty} g_N(\underline{k}) = 0 \tag{2}$$

for $\underline{k} \neq \underline{0}$. Obviously, by (1),

$$g_N(\underline{0}) = 1.$$

This and (2) show that

$$\lim_{N \to \infty} g_N(\underline{k}) = \begin{cases} 1 & \text{if } \underline{k} = \underline{0}, \\ 0 & \text{if } \underline{k} \neq \underline{0}. \end{cases}$$

Clearly,

$$g(\underline{k}) = \begin{cases} 1 & \text{if } \underline{k} = \underline{0}, \\ 0 & \text{if } \underline{k} \neq \underline{0}, \end{cases}$$

is the Fourier transform of the Haar measure m_H . Therefore, the lemma follows by a general continuity theorem for probability measures on compact groups, see, for example, [4].

Furthermore, we will deal with a limit theorem for absolutely convergent Dirichlet series. For a fixed $\hat{\sigma} > \frac{1}{2}$ and $m \in \mathbb{N}_0, n \in \mathbb{N}$, let

$$v_n(m,\alpha) = \exp\left\{-\left(\frac{m+\alpha}{n+\alpha}\right)^{\hat{\sigma}}\right\}.$$

Define two functions

$$\zeta_n(s,\alpha;\mathfrak{a}) = \sum_{m=0}^{\infty} \frac{a_m v_n(m,\alpha)}{(m+\alpha)^s}$$

and

$$\zeta_n(s,\alpha,\omega;\mathfrak{a}) = \sum_{m=0}^{\infty} \frac{a_m \omega(m) v_n(m,\alpha)}{(m+\alpha)^s}.$$

Then the latter series are absolutely convergent for $\sigma > \frac{1}{2}$ [2]. From this, it follows that the function $u_n : \Omega \to H(D)$ given by the formula

$$u_n(\omega) = \zeta_n(s, \alpha, \omega; \mathfrak{a}), \omega \in \Omega,$$

is continuous one. For $A \in \mathcal{B}(H(D))$, let

$$P_{N,n}(A) = \frac{1}{N-1} \# \Big\{ 2 \leqslant k \leqslant N : \zeta(s + ihk^{\beta_1} \log^{\beta_2} k, \alpha; \mathfrak{a}) \in A \Big\}.$$

Moreover, we put $\hat{P}_n = m_H u_n^{-1}$, where the measure $m_H u_n^{-1}$ is defined by

$$m_H u_n^{-1}(A) = m_H(u_n^{-1}A), A \in \mathcal{B}(H(D)).$$

LEMMA 2. Suppose that the set $L(\alpha)$ is linearly independent over \mathbb{Q} . Then $P_{N,n}$ converges weakly to $\hat{P_n}$ as $N \to \infty$.

PROOF. By the definition of the function u_n , we have

$$u_n\Big((m+\alpha)^{-ihk^{\beta_1}\log^{\beta_2}k}: m \in \mathbb{N}_0\Big) = \zeta(s+ihk^{\beta_1}\log^{\beta_2}k, \alpha; \mathfrak{a}).$$

Therefore, for $A \in \mathcal{B}(H(D))$,

$$P_{N,n}(A) = \frac{1}{N-1} \# \left\{ 2 \leqslant k \leqslant N : \left((m+\alpha)^{-ihk^{\beta_1} \log^{\beta_2} k} : m \in \mathbb{N}_0 \right) \in A \right\}$$
$$= Q_N(u_n^{-1}A) = Q_N u_n^{-1}(A).$$

This, the continuity of u_n , Lemma 1 and Theorem 5.1 of [1] show that $P_{N,n}$ converges weakly to \hat{P}_n as $N \to \infty$.

Now we will approximate $\zeta(s+ihk^{\beta_1}\log^{\beta_2}k,\alpha;\mathfrak{a})$ by $\zeta_n(s+ihk^{\beta_1}\log^{\beta_2}k,\alpha;\mathfrak{a})$ in the mean. Let ρ be the metric on H(D) which induces the topology of uniform convergence on compacta, see [10], or [8, 9].

Lemma 3. The equality

$$\lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{N-1} \sum_{k=2}^{N} \rho \Big(\zeta(s+ihk^{\beta_1} \log^{\beta_2} k, \alpha; \mathfrak{a}), \zeta_n(s+ihk^{\beta_1} \log^{\beta_2} k, \alpha; \mathfrak{a}) \Big) = 0$$

holds.

PROOF. It was obtained in [2] that, for $\sigma > \frac{1}{2}$,

$$\int_{1}^{T} \left| \zeta(\sigma + it, \alpha, \mathfrak{a}) \right|^{2} dt = O(T). \tag{3}$$

To obtain a discrete version of the latter estimate, we will use the Gallagher lemma, see Lemma 1.4 in [14]. For $2 \le k \le N$, with sufficiently large N we have

$$\begin{split} &(k+1)^{\beta_1}\log^{\beta_2}(k+1)-k^{\beta_1}\log^{\beta_2}k\\ &=k^{\beta_1}\Big(1+\frac{1}{k}\Big)^{\beta_1}\Big(\log k+\log\Big(1+\frac{1}{k}\Big)\Big)^{\beta_2}-k^{\beta_1}\log^{\beta_2}k\\ &=k^{\beta_1}\Big(1+\frac{\beta_1}{k}+\frac{\beta_1(\beta_1-1)}{2k^2}+\ldots\Big)\Big(\log k+\frac{1}{k}-\frac{1}{k^2}+\ldots\Big)^{\beta_2}-k^{\beta_1}\log^{\beta_2}k\\ &=\Big(k^{\beta_1}+\frac{\beta_1}{k^{1-\beta_1}}+\frac{\beta_1(\beta_1-1)}{2k^{2-\beta_1}}+\ldots\Big)\log^{\beta_2}k\Big(1+\frac{1}{k\log k}-\frac{1}{2k^2\log k}+\ldots\Big)^{\beta_2}\\ &-k^{\beta_1}\log^{\beta_2}k\geq \frac{c\log^{\beta_2}N}{N^{1-\beta_1}} \end{split}$$

with suitable constant c > 0 not depending on N. Therefore, taking $\delta = \frac{ch \log^{\beta_2} N}{N^{1-\beta_1}}$ in Lemma 1.4 of [14], we find that

$$\begin{split} &\sum_{k=2}^{N} \left| \zeta(\sigma + ihk^{\beta_1} \log^{\beta_2} k + it, \alpha; \mathfrak{a}) \right|^2 \\ &\ll N^{1-\beta_1} \log^{-\beta_2} N \int\limits_{1}^{hN^{\beta_1} \log^{\beta_2} N} \left| \zeta(\sigma + i\tau + it, \alpha; \mathfrak{a}) \right|^2 d\tau + \\ &+ \left(\int\limits_{1}^{hN^{\beta_1} \log^{\beta_2} N} \left| \zeta(\sigma + i\tau + it, \alpha; \mathfrak{a}) \right|^2 d\tau \int\limits_{1}^{hN^{\beta_1} \log^{\beta_2} N} \left| \zeta'(\sigma + i\tau + it, \alpha; \mathfrak{a}) \right|^2 d\tau \right)^{\frac{1}{2}} \\ &\ll N + |t| \ll N(1 + |t|) \end{split}$$

for $\sigma > \frac{1}{2}$ because of (3) and the estimate

$$\int_{1}^{T} |\zeta'(\sigma + it, \alpha, \mathfrak{a})| dt = O(T)$$

implied by (3). Let K be a compact subset of the strip D. Then, repeating the proof of Theorem 4.1 from [6], we obtain that

$$\lim_{n\to\infty} \limsup_{N\to\infty} \frac{1}{N-1} \sum_{k=2}^{N} \sup_{s\in K} \left| \zeta(s+ihk^{\beta_1}\log^{\beta_2}k,\alpha;\mathfrak{a}) - \zeta_n(s+ihk^{\beta_1}\log^{\beta_2}k,\alpha;\mathfrak{a}) \right| = 0.$$

This and the definition of the metric ρ prove the lemma.

Now we state the main limit theorem. On the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$, define the H(D)-valued random element $\zeta(s, \alpha, \omega; \mathfrak{a})$ by the formula

$$\zeta(s, \alpha, \omega; \mathfrak{a}) = \sum_{m=0}^{\infty} \frac{a_m \omega(m)}{(m+\alpha)^s}.$$

The latter series, for almost all $\omega \in \Omega$, converges uniformly on compact subsets of the strip D, and therefore, defines a H(D)-valued random element. Denote by P_{ζ} the distribution of the random element $\zeta(s, \alpha, \omega; \mathfrak{a})$, i.e.,

$$P_{\zeta}(A) = m_H \Big\{ \omega \in \Omega : \zeta(s, \alpha, \omega; \mathfrak{a}) \in A \Big\}, A \in \mathcal{B}(H(D)).$$

For $A \in \mathcal{B}(H(D))$, let

$$P_N(A) = \frac{1}{N-1} \# \Big\{ 2 \leqslant k \leqslant N : \zeta(s + ihk^{\beta_1} \log^{\beta_2} k, \alpha; \mathfrak{a}) \in A \Big\}.$$

THEOREM 5. Suppose that the set $L(\alpha)$ is linearly independent over \mathbb{Q} . Then P_N converges weakly to P_{ζ} as $N \to \infty$. Moreover, the support of P_{ζ} is the whole of H(D).

PROOF. Let θ_N be a random variable defined on a certain probability space $(\hat{\Omega}, \mathcal{F}, \mathbb{P})$ and having the distribution

$$\mathbb{P}(\theta_N = hk^{\beta_1} \log^{\beta_2} k) = \frac{1}{N-1}, k = 2, ..., N.$$

Define the H(D)-valued random element $X_{N,n}$ by the formula

$$X_{N,n} = X_{N,n}(s) = \zeta_n(s + i\theta_N, \alpha; \mathfrak{a}).$$

Moreover, let \hat{X}_n be the H(D)-valued random element having the distribution \hat{P}_n , where \hat{P}_n is the limit measure in Lemma 2. Then the assertion of Lemma 2 can be written in the form

$$X_{N,n} \xrightarrow[N \to \infty]{\mathcal{D}} \hat{X_n},$$
 (4)

where $\xrightarrow{\mathcal{D}}$ means the convergence in distribution. We will prove that the family of probability measures $\{\hat{P}_n : n \in \mathbb{N}\}$ is tight, i.e., for every $\epsilon > 0$, there exists a compact set $K = K(\epsilon) \subset H(D)$ such that

$$\hat{P}_n(K) > 1 - \epsilon$$

for all $n \in \mathbb{N}$. Since the series for $\zeta_n(s,\alpha;\mathfrak{a})$ is absolutely convergent for $\sigma > \frac{1}{2}$, we have that

$$\sup_{n \in \mathbb{N}} \limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \left| \zeta(\sigma + it, \alpha; \mathfrak{a}) \right|^{2} dt = \sup_{n \in \mathbb{N}} \sum_{m=0}^{\infty} \frac{|a_{m}|^{2} v_{n}^{2}(m, \alpha)}{(m + \alpha)^{2\sigma}}$$

$$\leq \sum_{m=0}^{\infty} \frac{|a_{m}|^{2}}{(m + \alpha)^{2\sigma}} \leq C < \infty.$$

This together with the Gallagher lemma [14] implies the bound

$$\sup_{n\in\mathbb{N}} \limsup_{N\to\infty} \frac{1}{N-1} \sum_{k=2}^{N} \left| \zeta_n(s+ihk^{\beta_1} \log^{\beta_2} k, \alpha; \mathfrak{a}) \right|^2 \le C_1 < \infty.$$

Hence,

$$\sup_{n\in\mathbb{N}} \limsup_{N\to\infty} \frac{1}{N-1} \sum_{k=2}^{N} \left| \zeta_n(s+ihk^{\beta_1}\log^{\beta_2}k, \alpha; \mathfrak{a}) \right| \le C_2 < \infty.$$
 (5)

Let K_l , $l \in \mathbb{N}$, be compact sets from the definition of the metric ρ [10]. Then (6) together with the Cauchy integral formula shows that

$$\sup_{n \in \mathbb{N}} \limsup_{N \to \infty} \frac{1}{N - 1} \sum_{k=2}^{N} \sup_{s \in K_l} \left| \zeta_n(s + ihk^{\beta_1} \log^{\beta_2} k, \alpha; \mathfrak{a}) \right| \le R_l < \infty.$$
 (6)

Let $\epsilon > 0$ be an arbitrary number, and $M_l = M_l(\epsilon) = 2^l R_l \epsilon^{-1}$. Then, taking into account (7), we find that, for $l \in \mathbb{N}$,

$$\limsup_{N \to \infty} \mathbb{P}\Big(\sup_{s \in K_l} |X_{N,n}(s)| > M_l\Big)$$

$$\lim\sup_{N \to \infty} \frac{1}{|X_{N,n}(s)|} = \lim_{N \to \infty$$

$$= \limsup_{N \to \infty} \frac{1}{N-1} \# \left\{ 2 \leqslant k \leqslant N : \sup_{s \in K_l} \left| \zeta_n(s+ihk^{\beta_1} \log^{\beta_2} k, \alpha; \mathfrak{a}) \right| > M_l \right\}$$

$$\leq \limsup_{N \to \infty} \frac{1}{(N-1)M_l} \sum_{k=2}^{N} \sup_{s \in K_l} \left| \zeta_n(s+ihk^{\beta_1} \log^{\beta_2} k, \alpha; \mathfrak{a}) \right| \leq \frac{\epsilon}{2^l}.$$

Hence, by the relation (5), we obtain that, for $l \in \mathbb{N}$,

$$\mathbb{P}\left(\sup_{s \in K_l} \left| \hat{X}_n(s) \right| > M_l \right) \le \frac{\epsilon}{2^l}. \tag{7}$$

Putting

$$K(\epsilon) = \{g \in H(D) : \sup_{s \in K_l} |g(s)| \le M_l, l \in \mathbb{N}\},$$

we have that $K(\epsilon)$ is a compact subset of H(D) because it is uniformly bounded on compact subsets of the strip D. Moreover, (8) shows that, for all $m \in \mathbb{N}$,

$$\mathbb{P}\Big(\hat{X}_n(s) \in K(\epsilon)\Big) \ge 1 - \epsilon,$$

or, for all $n \in \mathbb{N}$,

$$\hat{P}(K(\epsilon)) \ge 1 - \epsilon.$$

Thus, the sequence $\{\hat{P}_n : n \in \mathbb{N}\}$ is tight.

Since the sequence $\{\hat{P}_n : n \in \mathbb{N}\}$ is tight, by the Prokhorov theorem, see [1, Theorem 6.1], it is relatively compact. Therefore, there exists a subsequence $\{\hat{P}_{n_r}\}\subset\{\hat{P}_n\}$ such that \hat{P}_{n_r} converges weakly to a certain probability measure P on $(H(D), \mathcal{B}(H(D)))$ as $n \to \infty$. From this,

$$\hat{X}_{n_r}(s) \xrightarrow[r \to \infty]{\mathcal{D}} P.$$
 (8)

Let the H(D)-valued random element X_N be defined by the formula

$$X_N = X_N(s) = \zeta(s + i\theta_N, \alpha; \mathfrak{a}).$$

Then, by Lemma 3, for every $\epsilon > 0$,

$$\lim_{n \to \infty} \limsup_{N \to \infty} \mathbb{P}\Big(\rho\big(X_N(s), X_{N,n}(s)\big) \geqslant \epsilon\Big)$$

$$= \lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{N-1} \# \Big\{ 2 \leqslant k \leqslant N : \rho \Big(\zeta(s+ihk^{\beta_1} \log^{\beta_2} k, \alpha; \mathfrak{a}),$$

$$\zeta_n(s+ihk^{\beta_1} \log^{\beta_2} k, \alpha; \mathfrak{a}) \Big) \ge \epsilon \Big\}$$

$$\leq \lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{(N-1)\epsilon} \sum_{k=2}^{N} \rho \Big(\zeta(s+ihk^{\beta_1} \log^{\beta_2} k, \alpha; \mathfrak{a}), \\ \zeta_n(s+ihk^{\beta_1} \log^{\beta_2} k, \alpha; \mathfrak{a}) \Big) = 0.$$

This equality, (5), (9) and Theorem 4.2 from [1] imply the relation

$$X_N \xrightarrow[N \to \infty]{\mathcal{D}} P, \tag{9}$$

thus, P_N converges weakly to P as $N \to \infty$. Moreover, (10) shows that the measure P is independent of the choice of the subsequence $\{\hat{P}_{n_r}\}$. Therefore, the relation

$$\hat{X}_n \xrightarrow[n \to \infty]{\mathcal{D}} P,$$

is true, and we have that the measure \hat{P}_n converges weakly to P as $n \to \infty$.

It remains to identify the measure P. In [11], under the hypothesis that the set $L(\alpha)$ is linearly independent over \mathbb{Q} , it was obtained that the measure

$$\frac{1}{T} \operatorname{meas} \Big\{ \tau \in [0, T] : \zeta(s + i\tau, \alpha; \mathfrak{a}) \in A \Big\}, A \in \mathcal{B}(H(D)),$$

as $T \to \infty$, also converges weakly to the measure P which is the limit measure of \hat{P}_n as $n \to \infty$, and that P coincides with P_{ζ} . Since P_N , as $n \to \infty$, converges weakly to P, hence we have that P_N also converges weakly to P_{ζ} as $N \to \infty$. Moreover, in [11], it was obtained, that the support of P_{ζ} is the whole of H(D). The theorem is proved.

3. Proof of universality

First we state two lemmas.

LEMMA 4. Let $K \subset \mathbb{C}$ be a compact subset with connected complement, and let f(s) be a continuous function on K which is analytic in the interior of K. Then, for every $\epsilon > 0$, there exists a polynomial p(s) such that

$$\sup_{s \in K} \left| f(s) - p(s) \right| < \epsilon.$$

The lemma is the Mergelyan theorem, see [12].

LEMMA 5. Let $P_n, n \in \mathbb{N}$, and P be a probability measures on $(X, \mathcal{B}(X))$. Then P_n , as $n \to \infty$, converges weakly to P if and only if, for every open set $G \subset X$,

$$\liminf_{n\to\infty} P_n(G) \ge P(G).$$

The lemma is a part of Theorem 2.1 from [1].

PROOF OF THEOREM 4. By Lemma 4, there exists a polynomial p(s) such that

$$\sup_{s \in K} \left| f(s) - p(s) \right| < \frac{\epsilon}{2}. \tag{10}$$

Define the set

$$G = \left\{ g \in H(D) : \sup_{s \in K} \left| g(s) - p(s) \right| < \frac{\epsilon}{2} \right\}.$$

Then G is an open set in H(D), therefore, in view of Theorem 5 and Lemma 5,

$$\liminf_{N \to \infty} P_N(G) \ge P_{\zeta}(G).$$
(11)

Moreover, G is an open neighbourhood of the polynomial p(s) which, again by Theorem 4, is an element of the support of the measure P_{ζ} . Thus, $P_{\zeta}(G) > 0$. This, (12) and the definition of G imply the inequality

$$\liminf_{N\to\infty} \frac{1}{N-1} \# \left\{ 2 \leqslant k \leqslant N : \sup_{s\in K} \left| \zeta(s+ihk^{\beta_1}\log^{\beta_2}k,\alpha;\mathfrak{a}) - p(s) \right| < \frac{\epsilon}{2} \right\} > 0.$$

This and (11) prove the theorem.

4. Conclusions

Let $\mathfrak{a} = \{a_m\}$ be a periodic sequence of complex numbers, $0 < \alpha \le 1$ and $s = \sigma + it$. The periodic Hurwitz zeta-function $\zeta(s, \alpha; \mathfrak{a})$ is defined, for $\sigma > 1$, by the series

$$\zeta(s,\alpha;\mathfrak{a}) = \sum_{m=0}^{\infty} \frac{a_m}{(m+\alpha)^s},$$

and by analytic continuation elsewhere. Moreover, let

$$L(\alpha) = \{ \log(m + \alpha) : m = 0, 1, 2, ... \}.$$

In the paper, the following discrete universality theorem for the function $\zeta(s,\alpha;\mathfrak{a})$ is obtained. Suppose that \mathscr{K} be the class of compact subsets of the strip D with connected complement, and $H(K), K \in \mathscr{K}$, be the class of continuous functions on K which are analytic in the interior of K. Moreover, we assume that the set $L(\alpha)$ is linearly independent over the field of rational numbers, and that $0 < \beta_1 < 1, \beta_2 > 0$ and h > 0 are fixed numbers. Then the function $\zeta(s,\alpha;\mathfrak{a})$ is universal in the Voronin sense, i.e., if $K \in \mathscr{K}$, $f(s) \in H(K)$, then, for every $\epsilon > 0$,

$$\liminf_{N \to \infty} \frac{1}{N-1} \# \left\{ 2 \leqslant k \leqslant N : \sup_{s \in K} \left| \zeta(s + ihk^{\beta_1} \log^{\beta_2} k, \alpha; \mathfrak{a}) - f(s) \right| < \epsilon \right\} > 0.$$

REFERENCES

- 1. Billingsley P., 1968, "Convergence of Probability Measures", New York: Wiley.
- 2. Javtokas A., Laurinčikas A., 2006, "On the periodic Hurwitz zeta-fucntion", *Hardy-Ramanujan J.* Vol. 29. P. 18-36.
- 3. Javtokas A., Laurinčikas A., 2006, "Universality of the periodic Hurwitz zeta-function", *Integral Transforms Spec. Funct.* Vol. 17, No. 10. P. 711-722.

- 4. Heyer H.,1977, "Probability Measures on Locally Compact Groups", Berlin, Heidelberg, New York: Springer-Verlag.
- 5. Kuipers L., Niederreiter H., 1974, "Uniform Distribution of Sequences", *Pure and Applied Mathematics*. New York, London, Sydney: Wiley-Interscience.
- 6. Karatsuba A.A., Voronin S.M., 1992, "The Riemann zeta-function", Berlin: Walter de Gruyter.
- 7. Laurinčikas A., 2006, "The joint universality for periodic Hurwitz zeta-functions", *Analysis* (Munich) Vol. 26, No. 3. P. 419–428.
- 8. Laurinčikas A., 1996, "Limit theorems for Riemann zeta-function", *Dordrecht, Boston, London: Kluwer*.
- 9. Laurinčikas A., Garunkštis R., 2002, "The Lerch zeta-function", *Dordrecht, Boston, London: Kluwer*.
- 10. Laurinčikas A., Macaitienė R., 2009, "The discrete universality of the periodic Hurwitz zeta-function", *Integral Transforms Spec. Funct.* Vol. 20. P. 673-686.
- 11. Laurinčikas A., Macaitienė R., Mochov D., Šiaučiūnas D., 2013, "On universality of certain zeta-functions", *Izv. Saratov. univ., ser. Matem., Mekhan. Inform.* P. 67-72.
- 12. Mergelyan S. N., 1952, "Uniform approximations to functions of a complex variable", *Usp. Matem. Nauk.* Vol. 7, No. 2. P. 31–122 (Russian) ≡ *Amer. Math. Trans.* 1954. Vol. 101.
- 13. Mincevič A., Mochov D.,2015, "On the discrete universality of the periodic Hurwitz zeta-function", *Šiauliai Math. Semin.* Vol. 10. P. 81-89.
- 14. Montgomery H. L., 1971, "Topics in Multiplicative Number Theory.", Lecture Notes in Math. Vol. 227. Berlin: Springer.
- 15. Voronin S. M., 1975, "Theorem on the "universality" of the Riemann zeta-function.", Izv. Akad. Nauk SSSR. Vol. 39. P. 475–486 (in Russian) $\equiv Math. USSR Izv.$ 1975. Vol. 9. P. 443–453.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Billingsley P. Convergence of Probability Measures. New York: Wiley, 1968.
- 2. Javtokas A., Laurinčikas A. On the periodic Hurwitz zeta-fucntion // Hardy-Ramanujan J. 2006. Vol. 29. P. 18-36.
- 3. Javtokas A., Laurinčikas A. Universality of the periodic Hurwitz zeta-function // Integral Transforms Spec. Funct. 2006. Vol. 17, No. 10. P. 711-722.
- 4. Heyer H. Probability Measures on Locally Compact Groups. Berlin, Heidelberg, New York: Springer-Verlag, 1977.
- 5. Кейперс Л., Нидеррейтер Г. Равномерное распределение последовательностей. Москва: Наука, 1985.
- 6. Воронин С.М., Карацуба А.А. Дзета-функция Римана. Москва: Физматлит, 1994.
- 7. Laurinčikas A. The joint universality for periodic Hurwitz zeta-functions // Analysis (Munich). 2006. Vol. 26, No. 3. P. 419–428.

- 8. Laurinčikas A. Limit theorems for Riemann zeta-function. Dordrecht, Boston, London: Kluwer, 1996.
- 9. Laurinčikas A., Garunkštis R. The Lerch zeta-function. Dordrecht, Boston, London: Kluwer.
- 10. Laurinčikas A., Macaitienė R. The discrete universality of the periodic Hurwitz zeta-function // Integral Transforms Spec. Funct. 2009. Vol. 20. P. 673-686.
- 11. Laurinčikas A., Macaitienė R., Mochov D., Šiaučiūnas D. On universality of certain zeta-functions // Изв. Саратовского унив., сер. Матем., Механ., Информ. 2013. P. 67-72.
- 12. Мергелян С.Н. Равномерные приближения функций комплексного переменного // УМН 1952. Т. 7, № 2. С. 31–122 ≡ Amer. Math. Trans. 1954. Vol. 101.
- 13. Mincevič A., Mochov D. On the discrete universality of the periodic Hurwitz zeta-function // Šiauliai Math. Semin. 2015. Vol. 10. P. 81-89.
- 14. Montgomery H.L. Topics in Multiplicative Number Theory. Lecture Notes in Math. Vol. 227. Berlin: Springer, 1971.
- 15. Воронин С. М. Теорема об "универсальности" дзета-функции Римана // Изв. АН СССР. Сер. матем. 1975. Т. 39. С. 475–486. ≡ Math. USSR Izv. 1975. Vol. 9. P. 443–453.

Faculty of Mathematics and Informatics, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania.

 $E\text{-}mail:\ antanas.laurincikas@mif.vu.lt,\ dmitrij.mochov@mif.vu.lt$

Получено 11.12.2015 г.

Принято в печать 10.03.2016 г.