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AnHoTa s

3HadnuTesbHAS YaCTh TeOpuH onepaTopoB Xayciaopda B mociaegane 20 JIeT cOCPEIOTOYEHA
Ha ONEHKAX MX OrPaHMYeHHOCTH Ha poctpancrse Xapmu H'(RY). EcrecTsenHbIME pacimpeny-
SIMH 3TOT'O IIPOCTPAHCTBA BO MHOI'UX OTHOIIEHUSIX SIBJISIFOTCSI IPOCTPAHCTBA, BBeiéHHbIe Cyn3u.
Onu zanonmsor Bero mkany mexkay H(RY) u Ly (RY). B ormrane or HY(RY), nyis aux ussect-
Ha TOJIBKO aTOMHas XapakTepusamus. Jlyis omenok omepatopos Xaycaopda ma H'(RY) Bcerma
NPUMEHSJIUCH U Jpyrue Xapakrepusanuu. [IocKoJIbKy 9Ta BO3MOXKHOCTH HCKJIIOYEHA, JIJIs IIPO-
crpanctB Cyunsu, B HACTOSAIIER cTaThe pa3paboTaH MOAX0 K OIEHKaM OIepaTopoB Xaycaopda,
HCIIOJIB3YIOMHT TOJLKO aTOMHBIe pasJoxenns. Ecim na H(RY) stor moaxon npuMenum jjist
OJIHOTHITHBIX aTOMOB, TO Ha pocTpancTBax Cyusu oH He MeHee 3(pdeKTUBHO paboTaeT Ha HeCKo-
HEYHBIX CyMMaX PasHOPOIHBIX aTOMOB. [[jis ojiHOrO M TOrO Ke oneparopa Xaycaopda ycaoBue
OTPAHUYEHHOCTU HE 3aBUCUT OT IPOCTPAHCTBA, & TOJHKO OT MAPAMETPOB CAMOIO OIEpPaTOpPA.
IIpocTpaHCcTBO ke, Ha KOTOPOM OIEPATOP JEHCTBYET, XapaKTepU3yeTcsi BLIDOpoM aToMoB. [Ipu-
BEeJIEH mpuMep (JJIsl IPOCTOTHI JBYMEPHBIH) ¢ MATPUIEH PACTSXKEHUsI apryMEHTa TOJBKO IO
OJIHOM IIepEeMEeHHOI.
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Abstract

During last 20 years, an essential part of the theory of Hausdorff operators is concentrated
on their boundedness on the real Hardy space H'(R?). The spaces introduced by Sweezy are,
in many respects, natural extensions of this space. They are nested in full between H'(R9)
and L§(RY). Contrary to H!(RY), they are subject only to atomic characterization. For the
estimates of Hausdorff operators on H'!(R?), other characterizations have always been applied.
Since this option is excluded in the case of Sweezy spaces, in this paper an approach to the
estimates of Hausdorff operators is elaborated, where only atomic decompositions are used.
While on H'(RY) this approach is applicable to the atoms of the same type, on the Sweezy
spaces the same approach is not less effective for the sums of atoms of various types. For a
single Hausdorff operator, the boundedness condition does not depend on the space but only
on the parameters of the operator itself. The space on which this operator acts is characterized
by the choice of atoms. An example is given (two-dimensional, for simplicity), where a matrix
dilates the argument only in one variable.
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1. Introduction

In the last two decades, the study of various aspects of the theory of Hausdorff operators
has constantly been developed. The paper [15] plays a special role in this topic not because such
operators were introduced there or studied for the first time. In fact, in the one-dimensional case,
Hausdorff operators on the real line were introduced in [9] (in a sense, they can be found in a dual
form in [10]). The main feature of [15] is that such operators in a more or less full generality were
studied on the real Hardy space. This showed the prospects of such a theory on more sophisticated
spaces than the Lebesgue ones, on which Hausdorff summability had been started earlier. The
progress of such studies can partially be seen in the survey papers [5] and [14]. However, the

2The second author was supported by the Russian Science Foundation under grant No. 18-11-00055 (Sections 3
and 5 is due to this author).
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approach elaborated in [15] did not allow to solve a similar problem of the boundedness of the
operator on H'(R?), d > 2. First attempts [16] and [20] had not solved the problem nor even led
to the needed space H'(R?). A sort of a solution was given in [2] but for very exotic Hausdorff
type operators, more precisely, for those with one-dimensional averaging. Finally, in [12] a “genuine”
multidimensional Hausdorff type operator

(Hf)(x) = Haf)(z) = (Ha,af)(x) = /Rd @ (u) f (2A(u)) du, (1)
where A = A(u) = (aij);'i,jzl = (aij(u))zjzl is the d x d matrix with the entries a;;(u) being Borel

measurable functions of u, was introduced (similar to that independently introduced in [3] for the
study on the Lebesgue spaces). This matrix A(u) may be singular at most on a set of measure zero;
xA(u) is the row d-vector obtained by multiplying the row d-vector x by the matrix A. Of course,
zA can be written as ATzT, where both the matrix and the vector are transposed, the latter to
the column vector. Applying the duality approach, the authors of [12] obtained a condition for the
boundedness of the Hausdorff operator (1) on H!(R?) in terms of a matrix norm of A~1. A very
similar but slightly different condition appeared in [13| by means of the atomic characterization of
H'(RY). In fact, all the conditions in question are given in the form ® € Ll where w > 0 is a
weight (a non-negative and locally integrable function) and the norm of ® in the weighted space
L} is defined as

@y, = /Rd |P(u)|w(u) du.

The weight is always given in terms of the matrix A(u). For example, the weight in [13] is assigned
as follows. For a d x d matrix M, let ||M| = max,—; [Mz”|, where |- | denotes the Euclidean
norm. It is known (see, e.g., [11, Ch.5, 5.6.35]) that this norm does not exceed any other matrix
norm. Now, a bit of history of the H' results for He 4. We start not from the first one in [12] but
with that in [13]. The H! boundedness is proved there provided ® € Li,,, where the weight

W(u) = [[A7 (w)|.

In fact, the result in [12]| looks similarly, just the matrix norm (weight) differs a little. It is worth
to compare these assumptions on ® and A with the condition ® € Li,, with

V(u) = |det A7 (u)].

The former ensures the boundedness of the Hausdorff operator in H 1(Rd), while the latter provides
the boundedness on L' (R%). Since we are going to deal with the real Hardy type spaces, subspaces
of L'(R?), the integrability of the Hausdorff operator must be always guaranteed. For this, the
condition ® € L{,, with V(u) = |det A=*(u)|, will be a priori implied into our consideration. It
was proved in [17] that the same condition ® € L{, ensures the boundedness of Hausdorff type
operators on H'(R?) but for a very special diagonal matrices A with all diagonal entries equal to
one another. This by no means can be true in the general case. One can see the difference between
the two conditions from the well-known inequality

1M > | det M. (2)

By this, the two conditions are like the two poles. Any improvement means to take a step closer
to the condition ® € Li,. One step towards this was taken in [4], where the condition in [13] was
relaxed to
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/Rd @ ()| | A ()"0 det A= (u)|7 du < oo. (3)

Shortly after, the next step had been taken. In [6], the following condition came into play:

i (12 AT
/Rd@(u)detA (W) 1 <1+\detA—1(u)|)d < 0 (@)

it is also proven in [6] that the result is sharp in the sense that for every better estimate, there is a
corresponding Hausdorff operator not bounded in H!(R9).

The following natural continuation of the above work is in order. In [19], a scale of Hardy type
spaces H,, 1 < r < oo, was studied (for further study of this scale, see [1]). These spaces are nested
between H' and L' (in fact, even L(l), where L(l) is a space of Lebesgue integrable functions with
cancelation property) so that their duals are similarly nested between L* and BMO (the former
is known to be dual of L', while the latter is dual of H'). Thus, our goal is to give boundedness
conditions for Hausdorff operators on the H, spaces. The main problem here is as follows. In
each of the aforementioned results for H!, the bound was achieved by making use of two different
characterizations of the real Hardy space: atomic and Riesz transforms in [13] and [6]; atomic and
maximal function in [4]. The obstacle is that the spaces H, can be treated by means of atomic
representations only, but even in the atomic expansion of one function a variety of atoms is used.
None of the additional characterizations helpful in the earlier works exists in this case. In order to
overcome this obstacle, we have found a way to use only atomic characterizations.

In the aforementioned H! results, the crucial role is played by estimates of the H!(R?) norms
of all possible automorphisms f4(z) := f(xA(u)) of the H' function f. The better is the constant
C4 in the estimate

1 CA) a2 rey < Call fll g way,

the stronger is the result. We continue this line; of course, for the H, spaces the corresponding
norms of fa(z) := f(zA(u)) are evaluated.

The structure of the paper is as follows. In the next section, we give certain preliminaries of the
theory of the real Hardy space and of H, spaces. In Section 3, we describe the mentioned above
atomic approach. In Section 4, we apply the obtained estimates for atoms to their sequences in
order to establish the boundedness of Hausdorff operators on the H,. spaces. In the last section, we
present an example.

In what follows ¢ < b means that a < Cb for some absolute constant C' but we are not interested
in explicit indication of this constant.

2. Preliminaries on the Hardy type spaces
We start with some basics of the atomic characterization of H!(R%). Let a(z) denote an atom
(an (1, ¢)-atom), 1 < ¢ < oo, a function that is of compact support:
suppa C B(to, R), (5)

where B(to, R) is the ball in R? with center t° and radius R; and satisfies the following size condition
(L7 normalization)
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1
lally € ————. (6)
| B(to, R)|"
where |B| denotes the Lebesgue measure of B (we believe that no confusion will appear with the
same notation | - | for the Euclidean norm, where - means a vector in R?), and the cancelation
condition

/R alw)dr =0 (7)

These conditions make each atom integrable, with the L' norm bounded by 1. Indeed, by (5),
Holder’s inequality and (6), we get, with % + % =1,

/Rd la(z)| dz = /B(to,R) la(z)| dz < </B(to,R) dx>; </B(t0,3) la(z)]? d:c) <1 (8)

It is well known that (see, e.g., [7] or [18])

Q=

£l ~ inf{Zcu  fx) = cham)}, (9)
k

k

where ay are the above described (1, ¢)-atoms. In fact, the atoms may be even of different ¢, but
q > 1+ ¢ should hold for all g, for some fixed § > 0. In addition, to compare the “genuine” norm
of an H' function (say, by means of the maximal function or by means of the Riesz transforms)
with that for the (1,¢)-atomic decomposition, one should take into account that the factor q_%,
in addition to an absolute constant, appears in the latter (for discussion on this, see, for example,
[19]). This means that a more precise form of (3) should include this factor before the integral in
question; this, for instance, shows that the case ¢ =1 in (3) is excluded.

The scale of H, spaces is constructed by an additional parameter r coming into play. More
precisely, a sequence of the above defined atoms is used so that the corresponding ¢-s approach

to 1. The parameter r appears in a different size condition used in place of (6):

1
1-1-

lallg < — I
pr|B(to, R)|" 7

(10)

The atoms defined by (5), (10) and (7) will be called (1, ¢, r)-atoms. The H, spaces are defined as

[ f 1|z, ~ inf {Z lck| = f(x) = chak(x)}, (11)
k

k

where ay, are the (1, g, r)-atoms, with 1 < g < 2 and g — 1 as k — o0. In each of the cases, the
convergence can be understood in the distributional sense or in the L' norm. What mainly makes
the H, spaces different is the influence of different r» on py which tends to infinity as g — 1; recall
that pik + qik = 1. It is proven in the afore-mentioned papers that

H'c H,, C H,, C L},
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for any 1 < rqy < ry < oo.

We add, just for completeness, that the parameter 1 in the notation of atoms means that some
exponential p smaller than 1 may appear instead, for the study of HP spaces, with 0 < p < 1.
However, we are not going to use such an opportunity in this work.

3. Hausdorff operators on the real Hardy space

In order to show how one can estimate Hausdorff operators using only atomic decompositions,
we first restrict ourselves to the case of H!(RY). We shall deal with (1, ¢)-atoms rather than with
(1, 00)-atoms, exactly as in [4]. Thus, we begin with decomposing f in (1).

Let f =) cxax, where ai, are (1, ¢)-atoms and > |cx| < oo. First of all, we note that

k k

/ a(rA(u)) dr = |det A7 a(z) dz = 0. (12)
R4 Rd

By changing the order of integration and summation, we arrive at

(Hf)(z) = / D (u) Z crag (zA(u)) du = Z Ck /Rd P (u)ag (zA(u)) du, (13)
k

d
R k

To justify the change of the order, we observe that both the right-hand side and the intermediate
integral are Lebesgue integrable in x. This follows from (12) because the function ® |det A=!(-)| is
integrable on RY, the series >k Ck is absolutely convergent, and, by (8), the atoms a;, are uniformly
integrable. Thus, due to the du Bois-Reymond lemma (see, e.g., [8]), it suffices to verify that the
last equality in (13) holds true in the distributional sense. But this follows immediately if one uses
again the above arguments.

Let us analyze the properties of the distorted atoms a(xA(u)), where a satisfies (5). First, it
has mean zero because of (12). Obviously, its support is contained in a ball of radius R||A~!(u)]|.
To make atoms from a(zA(u)), we scale them as follows:

~ 1
a(x,u) = T Ta(rA(u)).
| det A= (u)[ | A= ()] 7

Ja(@A@)|" da "< et A Ja(@)dz )"
R R

using (6), we obtain

Since

|

(/ mmJM%m)qs ! :
R IB(A (u)to, RIA- ()]

- ! (14)

|B(to, 1)|7 (R A" (w)])?

which yields that a(x,u) is an (1, ¢)-atom.
With this in hand, let us consider

/ ®(u)a(zA(w)) du,
R4

with a continuing to be an (1, ¢)-atom. Taking into account (3), let us denote
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Ap(@) = — ®(u)| det A~ (w)|4]| A~ ()| d(, u) du.

O Jom <R A= ()| <2+

and

e = / 1B(u)| | det A~ () [+ [ A~ (w)|]? d,
277L<R||A71(u)”<2'm+1

for m € Z. If ay, is taken rather than a, we shall denote the corresponding values by A,, 1 and a, k.-
We thus have

/Rd Ap(w) dz = 0.

As above, the support of A,,(x) is related to the support of a(x, u). Since the latter is within a ball
of radius R||A~!(u)||, we have that the support of A,,(z) is within a ball of radius 2™*!. Now, by
Jensen’s inequality, we obtain

(L1 anrrar)” < = [B(0)]det 47 ()| |47 )
R4

Qm Jom<R||A=1 (u)]|<2m+1

1
q 1
« (/ |E(x,u)|qu>q du < ——.
Rd g(m+1)p

By these, A,,(x) (and each of the A, ;(x)) is an atom. Subsequently, we get

ch/ ak xA du—chZamkAmk

meZ

Q|

which is an atomic decomposition, up to an absolute constant multiple. Indeed, since ) oy i is
m

dominated by the left-hand side of (3) and A,, x(x) are atoms, we have a series of atoms with the
sequence of coefficients summable.

We thus have obtained an atomic decomposition for the Hausdorff operator, with the H' norm
dominated by that of f times

A~ 40D det A~Y|s = W a Vs,

It is worth noting that minimizing the decomposition, if needed, we can prove the result in [4]
(condition (3).

4. Hausdorff operators on the Hardy type spaces

We will now demonstrate how to adjust the estimates of the previous section for obtaining

THEOREM 1. For any q > 1 and any 1 < r < oo, the Hausdorff operator Hf is bounded on the
Hardy type space H.(R?) provided condition (3) holds.

PROOF. The proof goes along the same lines as that in the previous section. Indeed, in that proof
the treatment of an individual atom was the main technicality. After that, since the atoms were
of the same type, the condition concerned just that type of atom. Here, various (1, gk, r)-atoms
are involved in the decomposition. We take into account that in any atomic decomposition all the
sums, where only (1, gy, r)-atoms are involved with g > ¢, give a function in H'. In other words,
every function f in H, can be represented as f = fi + fo, where f; € H! and f, € H, with atomic
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expansions by means (1, gz, 7)-atoms, gz < g. Obviously, we may consider f; € H! be characterized
by (1, g)-atoms. Thus, we apply the obtained estimates separately to each of them. Therefore, the
norms to be estimated by ), |ci| appear first as

(Hf)(z) = ch Z A e Am g r ()2
k mezZ
Here Ay, g, () is an (1, g, r)-atom, g < ¢, and

0

1
®(u)||det A7 ()| [|A7 (u) %’ du.

Am.k = / ‘
2Ry | A1 (w) || <2mH1

Subsequently, we get

_1 _1 1
Slel Y lanml = 3l [ @@ A7 )8 det 47! ()3
k m k R

Since |det A~ (u)| < [|A™ (u)]|?, we have

1 1
1A= ()| “7 %) | det A ()|

<A™ (@) [ "7 A ()| N5 ) det A ()
=[| A ()[40 det A (u)]7,

and taking the upper bound (3), we obtain
D lerl Y lowm| < oo,
k m

which completes the proof of Theorem 1. O

REMARK 1. One can see that condition (38) is the same for any v and the same as for H' in
[4]. The parameter r appears only in the atoms, that is, the family of considered functions may be
different. It is an open problem whether this result for the H, spaces can be improved or not.

5. Example

We give an example which illustrates the main result. It is two-dimensional, d = 2, for the sake
of convenience and transparency.

Let
1
[ 1+...+ﬁ<m1<1+...+ki2,0<a:2<1,
f(z) = k=34,.., (15)
0, otherwise.
3Next we set ) ) N2 .
Aprom () = P— > z Nk (14 F)l‘tfka,f,r(gc) du.
zmg\/@QmH
where ) .
Qkrm = Z p_i LNi(1+%)17§7

I~ k ak
2m 1+1’27742 <om+1
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The matrix A is

Set
q&
k& 1 1
T 1++ﬁ<$1<1++j,0<$2<1,
akr(x) = »f (=1 : (16)
0, otherwise

and check that ay, is an (1, g, 7)-atom, up to a constant multiple. Indeed, its support is in the ball
1

of radius /1 + 1714’ and its L9 norm is dominated by p,;;.

By this,
1
f(z) = Z —5ar(z),
e kak
and we have N2 )
1 1 1 1—
fled) =Y —ap,(wd) =)  —Nu (1 + ﬁ) * g (),
k ]{;qk k qu

where ay, is an (1, gx, r)-atom (up to a constant multiple), with the support in the ball of radius
2
1+ 25
Hence, the corresponding Hausdorff operator is subject to the decomposition

OO

2
®(u) du k way,(xA
ETED SEee

:/R2<I>(u) Zk:kqizvqlk(lﬂli) " g (@)
= chakm(ac).
k

Since the function g(t) = A{(1 + A\?)1~* decreases on (0, +00) for every A > 0, we have

1—1

Ul <Y lenl < 0l S (i\;)é(l . J;fj) 3
k

k=1

The final condition follows from the bound for the latter series. Majorazing it by taking all ¢, = ¢
and splitting the sum into two, over 1 < k < v N and over v N < k < 0o, we see that for the first

1
sum the estimate is exactly N2_4, while the bound for the second one is better.
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