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Аннотация

Значительная часть теории операторов Хаусдорфа в последние 20 лет сосредоточена
на оценках их ограниченности на пространстве Харди 𝐻1(R𝑑). Естественными расширени-
ями этого пространства во многих отношениях являются пространства, введённые Суизи.
Они заполняют всю шкалу между 𝐻1(R𝑑) и 𝐿1

0(R𝑑). В отличие от 𝐻1(R𝑑), для них извест-
на только атомная характеризация. Для оценок операторов Хаусдорфа на 𝐻1(R𝑑) всегда
применялись и другие характеризации. Поскольку эта возможность исключена для про-
странств Суизи, в настоящей статье разработан подход к оценкам операторов Хаусдорфа,
использующий только атомные разложения. Если на 𝐻1(R𝑑) этот подход применим для
однотипных атомов, то на пространствах Суизи он не менее эффективно работает на беско-
нечных суммах разнородных атомов. Для одного и того же оператора Хаусдорфа условие
ограниченности не зависит от пространства, а только от параметров самого оператора.
Пространство же, на котором оператор действует, характеризуется выбором атомов. При-
ведён пример (для простоты двумерный) с матрицей растяжения аргумента только по
одной переменной.
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Abstract

During last 20 years, an essential part of the theory of Hausdorff operators is concentrated
on their boundedness on the real Hardy space 𝐻1(R𝑑). The spaces introduced by Sweezy are,
in many respects, natural extensions of this space. They are nested in full between 𝐻1(R𝑑)
and 𝐿1

0(R𝑑). Contrary to 𝐻1(R𝑑), they are subject only to atomic characterization. For the
estimates of Hausdorff operators on 𝐻1(R𝑑), other characterizations have always been applied.
Since this option is excluded in the case of Sweezy spaces, in this paper an approach to the
estimates of Hausdorff operators is elaborated, where only atomic decompositions are used.
While on 𝐻1(R𝑑) this approach is applicable to the atoms of the same type, on the Sweezy
spaces the same approach is not less effective for the sums of atoms of various types. For a
single Hausdorff operator, the boundedness condition does not depend on the space but only
on the parameters of the operator itself. The space on which this operator acts is characterized
by the choice of atoms. An example is given (two-dimensional, for simplicity), where a matrix
dilates the argument only in one variable.

Keywords: Hausdorff operator; real Hardy space; atomic decomposition.

Bibliography: 20 titles.

For citation:
E. Liflyand, M. Skopina, 2021, "Hausdorff operators on Hardy type spaces" , Chebyshevskii sbornik,
vol. 22, no. 3, pp. 133–142.

1. Introduction

In the last two decades, the study of various aspects of the theory of Hausdorff operators
has constantly been developed. The paper [15] plays a special role in this topic not because such
operators were introduced there or studied for the first time. In fact, in the one-dimensional case,
Hausdorff operators on the real line were introduced in [9] (in a sense, they can be found in a dual
form in [10]). The main feature of [15] is that such operators in a more or less full generality were
studied on the real Hardy space. This showed the prospects of such a theory on more sophisticated
spaces than the Lebesgue ones, on which Hausdorff summability had been started earlier. The
progress of such studies can partially be seen in the survey papers [5] and [14]. However, the

2The second author was supported by the Russian Science Foundation under grant No. 18-11-00055 (Sections 3
and 5 is due to this author).
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approach elaborated in [15] did not allow to solve a similar problem of the boundedness of the
operator on 𝐻1(R𝑑), 𝑑 > 2. First attempts [16] and [20] had not solved the problem nor even led
to the needed space 𝐻1(R𝑑). A sort of a solution was given in [2] but for very exotic Hausdorff
type operators, more precisely, for those with one-dimensional averaging. Finally, in [12] a “genuine”
multidimensional Hausdorff type operator

(ℋ𝑓)(𝑥) = (ℋΦ𝑓)(𝑥) = (ℋΦ,𝐴𝑓)(𝑥) =

∫︁
R𝑑

Φ(𝑢)𝑓
(︀
𝑥𝐴(𝑢)

)︀
𝑑𝑢, (1)

where 𝐴 = 𝐴(𝑢) = (𝑎𝑖𝑗)
𝑑
𝑖,𝑗=1 =

(︀
𝑎𝑖𝑗(𝑢)

)︀𝑑
𝑖,𝑗=1

is the 𝑑× 𝑑 matrix with the entries 𝑎𝑖𝑗(𝑢) being Borel
measurable functions of 𝑢, was introduced (similar to that independently introduced in [3] for the
study on the Lebesgue spaces). This matrix 𝐴(𝑢) may be singular at most on a set of measure zero;
𝑥𝐴(𝑢) is the row 𝑑-vector obtained by multiplying the row 𝑑-vector 𝑥 by the matrix 𝐴. Of course,
𝑥𝐴 can be written as 𝐴𝑇𝑥𝑇 , where both the matrix and the vector are transposed, the latter to
the column vector. Applying the duality approach, the authors of [12] obtained a condition for the
boundedness of the Hausdorff operator (1) on 𝐻1(R𝑑) in terms of a matrix norm of 𝐴−1. A very
similar but slightly different condition appeared in [13] by means of the atomic characterization of
𝐻1(R𝑑). In fact, all the conditions in question are given in the form Φ ∈ 𝐿1

𝑤, where 𝑤 > 0 is a
weight (a non-negative and locally integrable function) and the norm of Φ in the weighted space
𝐿1
𝑤 is defined as

‖Φ‖𝐿1
𝑤
=

∫︁
R𝑑

|Φ(𝑢)|𝑤(𝑢) 𝑑𝑢.

The weight is always given in terms of the matrix 𝐴(𝑢). For example, the weight in [13] is assigned
as follows. For a 𝑑 × 𝑑 matrix 𝑀 , let ‖𝑀‖ = max|𝑥|=1 |𝑀𝑥𝑇 |, where | · | denotes the Euclidean
norm. It is known (see, e.g., [11, Ch.5, 5.6.35]) that this norm does not exceed any other matrix
norm. Now, a bit of history of the 𝐻1 results for ℋΦ,𝐴. We start not from the first one in [12] but
with that in [13]. The 𝐻1 boundedness is proved there provided Φ ∈ 𝐿1

𝑊 , where the weight

𝑊 (𝑢) = ‖𝐴−1(𝑢)‖𝑑.

In fact, the result in [12] looks similarly, just the matrix norm (weight) differs a little. It is worth
to compare these assumptions on Φ and 𝐴 with the condition Φ ∈ 𝐿1

𝑉 , with

𝑉 (𝑢) = | det𝐴−1(𝑢)|.

The former ensures the boundedness of the Hausdorff operator in 𝐻1(R𝑑), while the latter provides
the boundedness on 𝐿1(R𝑑). Since we are going to deal with the real Hardy type spaces, subspaces
of 𝐿1(R𝑑), the integrability of the Hausdorff operator must be always guaranteed. For this, the
condition Φ ∈ 𝐿1

𝑉 , with 𝑉 (𝑢) = | det𝐴−1(𝑢)|, will be a priori implied into our consideration. It
was proved in [17] that the same condition Φ ∈ 𝐿1

𝑉 ensures the boundedness of Hausdorff type
operators on 𝐻1(R𝑑) but for a very special diagonal matrices 𝐴 with all diagonal entries equal to
one another. This by no means can be true in the general case. One can see the difference between
the two conditions from the well-known inequality

‖𝑀‖𝑑 > |det𝑀 |. (2)

By this, the two conditions are like the two poles. Any improvement means to take a step closer
to the condition Φ ∈ 𝐿1

𝑉 . One step towards this was taken in [4], where the condition in [13] was
relaxed to
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∫︁
R𝑑

|Φ(𝑢)| ‖𝐴−1(𝑢)‖𝑑(1−
1
𝑞
)|det𝐴−1(𝑢)|

1
𝑞 𝑑𝑢 <∞. (3)

Shortly after, the next step had been taken. In [6], the following condition came into play:

∫︁
R𝑑

|Φ(𝑢) det𝐴−1(𝑢)| ln
(︂
1 +

‖𝐴−1(𝑢)‖𝑑

| det𝐴−1(𝑢)|

)︂
𝑑𝑢 <∞; (4)

it is also proven in [6] that the result is sharp in the sense that for every better estimate, there is a
corresponding Hausdorff operator not bounded in 𝐻1(R𝑑).

The following natural continuation of the above work is in order. In [19], a scale of Hardy type
spaces 𝐻𝑟, 1 6 𝑟 <∞, was studied (for further study of this scale, see [1]). These spaces are nested
between 𝐻1 and 𝐿1 (in fact, even 𝐿1

0, where 𝐿1
0 is a space of Lebesgue integrable functions with

cancelation property) so that their duals are similarly nested between 𝐿∞ and 𝐵𝑀𝑂 (the former
is known to be dual of 𝐿1, while the latter is dual of 𝐻1). Thus, our goal is to give boundedness
conditions for Hausdorff operators on the 𝐻𝑟 spaces. The main problem here is as follows. In
each of the aforementioned results for 𝐻1, the bound was achieved by making use of two different
characterizations of the real Hardy space: atomic and Riesz transforms in [13] and [6]; atomic and
maximal function in [4]. The obstacle is that the spaces 𝐻𝑟 can be treated by means of atomic
representations only, but even in the atomic expansion of one function a variety of atoms is used.
None of the additional characterizations helpful in the earlier works exists in this case. In order to
overcome this obstacle, we have found a way to use only atomic characterizations.

In the aforementioned 𝐻1 results, the crucial role is played by estimates of the 𝐻1(R𝑑) norms
of all possible automorphisms 𝑓𝐴(𝑥) := 𝑓(𝑥𝐴(𝑢)) of the 𝐻1 function 𝑓 . The better is the constant
𝐶𝐴 in the estimate

‖𝑓(·𝐴(𝑢))‖𝐻1(R𝑑) 6 𝐶𝐴‖𝑓‖𝐻1(R𝑑),

the stronger is the result. We continue this line; of course, for the 𝐻𝑟 spaces the corresponding
norms of 𝑓𝐴(𝑥) := 𝑓(𝑥𝐴(𝑢)) are evaluated.

The structure of the paper is as follows. In the next section, we give certain preliminaries of the
theory of the real Hardy space and of 𝐻𝑟 spaces. In Section 3, we describe the mentioned above
atomic approach. In Section 4, we apply the obtained estimates for atoms to their sequences in
order to establish the boundedness of Hausdorff operators on the 𝐻𝑟 spaces. In the last section, we
present an example.

In what follows 𝑎≪ 𝑏 means that 𝑎 6 𝐶𝑏 for some absolute constant 𝐶 but we are not interested
in explicit indication of this constant.

2. Preliminaries on the Hardy type spaces

We start with some basics of the atomic characterization of 𝐻1(R𝑑). Let 𝑎(𝑥) denote an atom
(an (1, 𝑞)-atom), 1 < 𝑞 6∞, a function that is of compact support:

supp 𝑎 ⊂ 𝐵(𝑡0, 𝑅), (5)

where 𝐵(𝑡0, 𝑅) is the ball in R𝑑 with center 𝑡0 and radius 𝑅; and satisfies the following size condition
(𝐿𝑞 normalization)
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‖𝑎‖𝑞 6
1

|𝐵(𝑡0, 𝑅)|1−
1
𝑞

, (6)

where |𝐵| denotes the Lebesgue measure of 𝐵 (we believe that no confusion will appear with the
same notation | · | for the Euclidean norm, where · means a vector in R𝑑), and the cancelation
condition

∫︁
R𝑑

𝑎(𝑥) 𝑑𝑥 = 0. (7)

These conditions make each atom integrable, with the 𝐿1 norm bounded by 1. Indeed, by (5),
Hölder’s inequality and (6), we get, with 1

𝑝 + 1
𝑞 = 1,

∫︁
R𝑑

|𝑎(𝑥)| 𝑑𝑥 =

∫︁
𝐵(𝑡0,𝑅)

|𝑎(𝑥)| 𝑑𝑥 6

(︃∫︁
𝐵(𝑡0,𝑅)

𝑑𝑥

)︃ 1
𝑝
(︃∫︁

𝐵(𝑡0,𝑅)
|𝑎(𝑥)|𝑞 𝑑𝑥

)︃ 1
𝑞

6 1. (8)

It is well known that (see, e.g., [7] or [18])

‖𝑓‖𝐻1 ∼ inf

{︃∑︁
𝑘

|𝑐𝑘| : 𝑓(𝑥) =
∑︁
𝑘

𝑐𝑘𝑎𝑘(𝑥)

}︃
, (9)

where 𝑎𝑘 are the above described (1, 𝑞)-atoms. In fact, the atoms may be even of different 𝑞, but
𝑞 > 1 + 𝛿 should hold for all 𝑞, for some fixed 𝛿 > 0. In addition, to compare the “genuine” norm
of an 𝐻1 function (say, by means of the maximal function or by means of the Riesz transforms)
with that for the (1, 𝑞)-atomic decomposition, one should take into account that the factor 1

𝑞−1 ,
in addition to an absolute constant, appears in the latter (for discussion on this, see, for example,
[19]). This means that a more precise form of (3) should include this factor before the integral in
question; this, for instance, shows that the case 𝑞 = 1 in (3) is excluded.

The scale of 𝐻𝑟 spaces is constructed by an additional parameter 𝑟 coming into play. More
precisely, a sequence of the above defined atoms is used so that the corresponding 𝑞-s approach
to 1. The parameter 𝑟 appears in a different size condition used in place of (6):

‖𝑎‖𝑞 6
1

𝑝
1
𝑟 |𝐵(𝑡0, 𝑅)|1−

1
𝑞

. (10)

The atoms defined by (5), (10) and (7) will be called (1, 𝑞, 𝑟)-atoms. The 𝐻𝑟 spaces are defined as

‖𝑓‖𝐻𝑟 ∼ inf

{︃∑︁
𝑘

|𝑐𝑘| : 𝑓(𝑥) =
∑︁
𝑘

𝑐𝑘𝑎𝑘(𝑥)

}︃
, (11)

where 𝑎𝑘 are the (1, 𝑞𝑘, 𝑟)-atoms, with 1 < 𝑞𝑘 6 2 and 𝑞𝑘 → 1 as 𝑘 → ∞. In each of the cases, the
convergence can be understood in the distributional sense or in the 𝐿1 norm. What mainly makes
the 𝐻𝑟 spaces different is the influence of different 𝑟 on 𝑝𝑘 which tends to infinity as 𝑞𝑘 → 1; recall
that 1

𝑝𝑘
+ 1

𝑞𝑘
= 1. It is proven in the afore-mentioned papers that

𝐻1 ⊂ 𝐻𝑟1 ⊂ 𝐻𝑟2 ⊂ 𝐿1
0,
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for any 1 < 𝑟1 < 𝑟2 <∞.
We add, just for completeness, that the parameter 1 in the notation of atoms means that some

exponential 𝑝 smaller than 1 may appear instead, for the study of 𝐻𝑝 spaces, with 0 < 𝑝 < 1.
However, we are not going to use such an opportunity in this work.

3. Hausdorff operators on the real Hardy space

In order to show how one can estimate Hausdorff operators using only atomic decompositions,
we first restrict ourselves to the case of 𝐻1(R𝑑). We shall deal with (1, 𝑞)-atoms rather than with
(1,∞)-atoms, exactly as in [4]. Thus, we begin with decomposing 𝑓 in (1).

Let 𝑓 =
∑︀
𝑘

𝑐𝑘𝑎𝑘, where 𝑎𝑘 are (1, 𝑞)-atoms and
∑︀
𝑘

|𝑐𝑘| <∞. First of all, we note that

∫︁
R𝑑

𝑎
(︀
𝑥𝐴(𝑢)

)︀
𝑑𝑥 = | det𝐴−1|

∫︁
R𝑑

𝑎
(︀
𝑥
)︀
𝑑𝑥 = 0. (12)

By changing the order of integration and summation, we arrive at

(ℋ𝑓)(𝑥) =
∫︁
R𝑑

Φ(𝑢)
∑︁
𝑘

𝑐𝑘𝑎𝑘
(︀
𝑥𝐴(𝑢)

)︀
𝑑𝑢 =

∑︁
𝑘

𝑐𝑘

∫︁
R𝑑

Φ(𝑢)𝑎𝑘
(︀
𝑥𝐴(𝑢)

)︀
𝑑𝑢, (13)

To justify the change of the order, we observe that both the right-hand side and the intermediate
integral are Lebesgue integrable in 𝑥. This follows from (12) because the function Φ | det𝐴−1(·)| is
integrable on R𝑑, the series

∑︀
𝑘 𝑐𝑘 is absolutely convergent, and, by (8), the atoms 𝑎𝑘 are uniformly

integrable. Thus, due to the du Bois-Reymond lemma (see, e.g., [8]), it suffices to verify that the
last equality in (13) holds true in the distributional sense. But this follows immediately if one uses
again the above arguments.

Let us analyze the properties of the distorted atoms 𝑎(𝑥𝐴(𝑢)), where 𝑎 satisfies (5). First, it
has mean zero because of (12). Obviously, its support is contained in a ball of radius 𝑅‖𝐴−1(𝑢)‖.
To make atoms from 𝑎(𝑥𝐴(𝑢)), we scale them as follows:

̃︀𝑎(𝑥, 𝑢) := 1

|det𝐴−1(𝑢)|
1
𝑞 ‖𝐴−1(𝑢)‖

𝑑
𝑝

𝑎(𝑥𝐴(𝑢)).

Since (︂∫︁
R𝑑

|𝑎(𝑥𝐴(𝑢))|𝑞 𝑑𝑥
)︂ 1

𝑞

6 | det𝐴−1(𝑢)|
1
𝑞

(︂∫︁
R𝑑

|𝑎(𝑥)|𝑞 𝑑𝑥
)︂ 1

𝑞

,

using (6), we obtain (︂∫︁
R𝑑

|̃︀𝑎(𝑥, 𝑢)|𝑞 𝑑𝑥)︂ 1
𝑞

6
1

|𝐵(𝐴−1(𝑢)𝑡0, 𝑅‖𝐴−1(𝑢)‖)|
1
𝑝

=
1

|𝐵(𝑡0, 1)|
1
𝑝 (𝑅‖𝐴−1(𝑢)‖)

𝑑
𝑝

, (14)

which yields that ̃︀𝑎(𝑥, 𝑢) is an (1, 𝑞)-atom.
With this in hand, let us consider ∫︁

R𝑑

Φ(𝑢)𝑎
(︀
𝑥𝐴(𝑢)

)︀
𝑑𝑢,

with 𝑎 continuing to be an (1, 𝑞)-atom. Taking into account (3), let us denote
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𝐴𝑚(𝑥) :=
1

𝛼𝑚

∫︁
2𝑚6𝑅‖𝐴−1(𝑢)‖<2𝑚+1

Φ(𝑢)|det𝐴−1(𝑢)|
1
𝑞 ‖𝐴−1(𝑢)‖

𝑑
𝑝 ̃︀𝑎(𝑥, 𝑢) 𝑑𝑢.

and
𝛼𝑚 =

∫︁
2𝑚6𝑅‖𝐴−1(𝑢)‖<2𝑚+1

|Φ(𝑢)| |det𝐴−1(𝑢)|
1
𝑞 ‖𝐴−1(𝑢)‖

𝑑
𝑝 𝑑𝑢,

for 𝑚 ∈ Z. If 𝑎𝑘 is taken rather than 𝑎, we shall denote the corresponding values by 𝐴𝑚,𝑘 and 𝛼𝑚,𝑘.
We thus have ∫︁

R𝑑

𝐴𝑚(𝑥) 𝑑𝑥 = 0.

As above, the support of 𝐴𝑚(𝑥) is related to the support of ̃︀𝑎(𝑥, 𝑢). Since the latter is within a ball
of radius 𝑅‖𝐴−1(𝑢)‖, we have that the support of 𝐴𝑚(𝑥) is within a ball of radius 2𝑚+1. Now, by
Jensen’s inequality, we obtain(︂∫︁

R𝑑

|𝐴𝑚(𝑥)|𝑞 𝑑𝑥
)︂ 1

𝑞

6
1

𝛼𝑚

∫︁
2𝑚6𝑅‖𝐴−1(𝑢)‖<2𝑚+1

|Φ(𝑢)| |det𝐴−1(𝑢)|
1
𝑞 ‖𝐴−1(𝑢)‖

𝑑
𝑝

×
(︂∫︁

R𝑑

|̃︀𝑎(𝑥, 𝑢)|𝑞 𝑑𝑥)︂ 1
𝑞

𝑑𝑢≪ 1

2
(𝑚+1) 𝑑

𝑝

.

By these, 𝐴𝑚(𝑥) (and each of the 𝐴𝑚,𝑘(𝑥)) is an atom. Subsequently, we get

(ℋ𝑓)(𝑥) =
∑︁
𝑘

𝑐𝑘

∫︁
R𝑑

Φ(𝑢)𝑎𝑘
(︀
𝑥𝐴(𝑢)

)︀
𝑑𝑢 =

∑︁
𝑘

𝑐𝑘
∑︁
𝑚∈Z

𝑎𝑚,𝑘𝐴𝑚,𝑘(𝑥),

which is an atomic decomposition, up to an absolute constant multiple. Indeed, since
∑︀
𝑚
𝛼𝑚,𝑘 is

dominated by the left-hand side of (3) and 𝐴𝑚,𝑘(𝑥) are atoms, we have a series of atoms with the
sequence of coefficients summable.

We thus have obtained an atomic decomposition for the Hausdorff operator, with the 𝐻1 norm
dominated by that of 𝑓 times

‖𝐴−1‖𝑑(1−
1
𝑞
)|det𝐴−1|

1
𝑞 =𝑊

1− 1
𝑞 𝑉

1
𝑞 .

It is worth noting that minimizing the decomposition, if needed, we can prove the result in [4]
(condition (3).

4. Hausdorff operators on the Hardy type spaces

We will now demonstrate how to adjust the estimates of the previous section for obtaining

Theorem 1. For any 𝑞 > 1 and any 1 6 𝑟 <∞, the Hausdorff operator ℋ𝑓 is bounded on the
Hardy type space 𝐻𝑟(R𝑑) provided condition (3) holds.

Proof. The proof goes along the same lines as that in the previous section. Indeed, in that proof
the treatment of an individual atom was the main technicality. After that, since the atoms were
of the same type, the condition concerned just that type of atom. Here, various (1, 𝑞𝑘, 𝑟)-atoms
are involved in the decomposition. We take into account that in any atomic decomposition all the
sums, where only (1, 𝑞𝑘, 𝑟)-atoms are involved with 𝑞𝑘 > 𝑞, give a function in 𝐻1. In other words,
every function 𝑓 in 𝐻𝑟 can be represented as 𝑓 = 𝑓1 + 𝑓2, where 𝑓1 ∈ 𝐻1 and 𝑓2 ∈ 𝐻𝑟 with atomic
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expansions by means (1, 𝑞𝑘, 𝑟)-atoms, 𝑞𝑘 < 𝑞. Obviously, we may consider 𝑓1 ∈ 𝐻1 be characterized
by (1, 𝑞)-atoms. Thus, we apply the obtained estimates separately to each of them. Therefore, the
norms to be estimated by

∑︀
𝑘 |𝑐𝑘| appear first as

(ℋ𝑓)(𝑥) =
∑︁
𝑘

𝑐𝑘
∑︁
𝑚∈𝒵

𝛼𝑚,𝑘𝐴𝑚,𝑞𝑘,𝑟(𝑥).
3

Here 𝐴𝑚,𝑞𝑘,𝑟(𝑥) is an (1, 𝑞𝑘, 𝑟)-atom, 𝑞𝑘 < 𝑞, and

𝛼𝑚,𝑘 =

∫︁
2𝑚6𝑅𝑘‖𝐴−1(𝑢)‖<2𝑚+1

|Φ(𝑢)| |det𝐴−1(𝑢)|
1
𝑞𝑘 ‖𝐴−1(𝑢)‖𝑑(1−

1
𝑞𝑘

)
𝑑𝑢.

Subsequently, we get∑︁
𝑘

|𝑐𝑘|
∑︁
𝑚

|𝛼𝑘,𝑚| =
∑︁
𝑘

|𝑐𝑘|𝑝
− 1

𝑞𝑘

∫︁
R𝑑

|Φ(𝑢)|‖𝐴−1(𝑢)‖𝑑(1−
1
𝑞𝑘

)|det𝐴−1(𝑢)|
1
𝑞𝑘 𝑑𝑢.

Since |det𝐴−1(𝑢)| 6 ‖𝐴−1(𝑢)‖𝑑, we have

‖𝐴−1(𝑢)‖𝑑(1−
1
𝑞𝑘

)| det𝐴−1(𝑢)|
1
𝑞𝑘

6‖𝐴−1(𝑢)‖𝑑(1−
1
𝑞𝑘

)|‖𝐴−1(𝑢)‖𝑑(
1
𝑞𝑘

− 1
𝑞
)| det𝐴−1(𝑢)|

1
𝑞

=‖𝐴−1(𝑢)‖𝑑(1−
1
𝑞
)|det𝐴−1(𝑢)|

1
𝑞 ,

and taking the upper bound (3), we obtain∑︁
𝑘

|𝑐𝑘|
∑︁
𝑚

|𝛼𝑘,𝑚| <∞,

which completes the proof of Theorem 1. 2

Remark 1. One can see that condition (3) is the same for any 𝑟 and the same as for 𝐻1 in
[4]. The parameter 𝑟 appears only in the atoms, that is, the family of considered functions may be
different. It is an open problem whether this result for the 𝐻𝑟 spaces can be improved or not.

5. Example

We give an example which illustrates the main result. It is two-dimensional, 𝑑 = 2, for the sake
of convenience and transparency.

Let

𝑓(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑝
− 1

𝑟
𝑘 , 1 + ...+ 1

(𝑘−1)2
6 𝑥1 < 1 + ...+ 1

𝑘2
, 0 < 𝑥2 < 1,

𝑘 = 3, 4, ...,

0, otherwise.

(15)

3Next we set

𝐴𝑘,𝑟,𝑚(𝑥) :=
1

𝛼𝑘,𝑟,𝑚

∑︁
2𝑚6

√︂
1+𝑁2

𝑘4 <2𝑚+1

1

𝑘
2
𝑞𝑘

𝑁
1
𝑞𝑘 (1 +

𝑁2

𝑘4
)
1− 1

𝑞𝑘 ̃︀𝑎𝑘,𝑟(𝑥) 𝑑𝑢.

where

𝛼𝑘,𝑟,𝑚 =
∑︁

2𝑚6

√︂
1+𝑁2

𝑘4 <2𝑚+1

𝑝
− 1

𝑞𝑘
1

𝑘
2
𝑞𝑘

𝑁
1
𝑞𝑘

(︁
1 +

𝑁2

𝑘4

)︁1− 1
𝑞𝑘 ,
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The matrix 𝐴 is

𝐴(𝑢) ≡ 𝐴 =

(︂
1
𝑁 0
0 1

)︂
.

Set

𝑎𝑘,𝑟(𝑥) =

⎧⎪⎨⎪⎩
𝑘

2
𝑞𝑘

𝑝
1
𝑟
𝑘

, 1 + ...+ 1
(𝑘−1)2

6 𝑥1 < 1 + ...+ 1
𝑘2
, 0 < 𝑥2 < 1,

0, otherwise

(16)

and check that 𝑎𝑘,𝑟 is an (1, 𝑞𝑘, 𝑟)-atom, up to a constant multiple. Indeed, its support is in the ball

of radius
√︁
1 + 1

𝑘4
, and its 𝐿𝑞𝑘 norm is dominated by 𝑝−

1
𝑟

𝑘 .
By this,

𝑓(𝑥) =
∑︁
𝑘

1

𝑘
2
𝑞𝑘

𝑎𝑘,𝑟(𝑥),

and we have

𝑓(𝑥𝐴) =
∑︁
𝑘

1

𝑘
2
𝑞𝑘

𝑎𝑘,𝑟(𝑥𝐴) =
∑︁
𝑘

1

𝑘
2
𝑞𝑘

𝑁
1
𝑞𝑘

(︁
1 +

𝑁2

𝑘4

)︁1− 1
𝑞𝑘 ̃︀𝑎𝑘,𝑟(𝑥),

where ̃︀𝑎𝑘,𝑟 is an (1, 𝑞𝑘, 𝑟)-atom (up to a constant multiple), with the support in the ball of radius√︁
1 + 𝑁2

𝑘4
.

Hence, the corresponding Hausdorff operator is subject to the decomposition

(ℋ𝑓)(𝑥) =
∫︁
R2

Φ(𝑢) 𝑑𝑢
∑︁
𝑘

𝑘
− 2

𝑞𝑘 𝑎𝑘,𝑟(𝑥𝐴)

=

∫︁
R2

Φ(𝑢)
∑︁
𝑘

𝑘
− 2

𝑞𝑘𝑁
1
𝑞𝑘

(︁
1 +

𝑁2

𝑘4

)︁1− 1
𝑞𝑘 ̃︀𝑎𝑘,𝑟(𝑥)

:=
∑︁
𝑘

𝑐𝑘̃︀𝑎𝑘,𝑟(𝑥).
Since the function 𝑔(𝑡) = 𝜆𝑡(1 + 𝜆2)1−𝑡 decreases on (0,+∞) for every 𝜆 > 0, we have

‖𝑓‖𝐻𝑟 6
∑︁
𝑘

|𝑐𝑘| 6 ‖Φ‖𝐿1

∞∑︁
𝑘=1

(︁𝑁
𝑘2

)︁ 1
𝑞
(︁
1 +

𝑁2

𝑘4

)︁1− 1
𝑞
.

The final condition follows from the bound for the latter series. Majorazing it by taking all 𝑞𝑘 = 𝑞
and splitting the sum into two, over 1 6 𝑘 6

√
𝑁 and over

√
𝑁 < 𝑘 <∞, we see that for the first

sum the estimate is exactly 𝑁2− 1
𝑞 , while the bound for the second one is better.
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