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1. Introduction, preliminaries and problem statement

In the representation of multidimensional data (in some sections of mathematics, technology,
economics, etc.) vectors and matrices are especially useful when modeling and studying abstract and
real systems, the description of which requires a lot of information. It is convenient to represent this
information using matrices. With this approach, the analysis of systems is reduced to the analysis
of the properties of matrices. The main mathematical apparatus of algebra is matrices; they are
used in the study of systems of linear equations, linear and quadratic forms and linear mappings of
vector spaces.

In the works of E Cartan([1]), C.L. Siegel ([2]), Hua Luogeng ([3]), I.I.Pjateckii-Sapiro ([4]),
as well as in [5] the matrix approach of presenting the theory of multivariable complex analysis is
widely used. It mainly deals with the classical domains and related questions of function theory and
geometry. The importance of studying classical domains is that they are not reducible, i.e. these
domains are, in a sense, model domains of multidimensional space.

In recent times, scientists have achieved many significant results in the classical fields, and at the
same time, a number of open problems have been formulated. For example, in [6] the regularity and
algebraicity of mappings in classical domains are studied, and in [7| harmonic Bergman functions
in classical domains are studied from a new point of view. In the paper, [22] holomorphic and
pluriharmonic functions are defined for classical domains of the first type, the Laplace and Hua
Luogeng operators are studied also. A connection was found between these operators.

In complex analysis, studies of specific classes play an important role domains. The well-known
Riemann theorem states that any simply connected domain D C C, the boundary of which contains
at least two points, is conformally equivalent to the unit disc. This theorem ceases to be true in
C™, when n > 1: there is no biholomorphic map of the unit ball

B"(1) = {z€C": |z < 1}

in a polycircle
U ={zeC": x| <1,.., |z <1},

where |z| = /(z,2) = \/]z1|2 + |z + ... + |22

For convenience, we present the following definitions (see, for example, [4], [8]):

DEFINITION 1 (HOMOGENEOUS DOMAIN). The domain D C C™ is called homogeneous if the
group Aut (D) of automorphisms of this domain is transitive, that is, for any pair of points z1, z2 € D
there exists an automorphism ¢ € Aut (D), such that ¢ (z1) = 2.

DEFINITION 2 (SYMMETRIC DOMAIN). The homogeneous domain D C C" is called symmetric
if for any point ¢ € D such an automorphism ¢ € Aut (D), that:

1) ¢(€) = ¢ but ¢ (2) # z, if z € D s different from (;

2) p o =e, where e € Aut (D) is the identity mapping.

DEFINITION 3 The domain D C C" is called an irreducible domain if it is not a direct product
of bounded symmetric domains of lower dimension.

DEFINITION 4 The bounded domain D C C™ is called classical if the complete group of its
holomorphic automorphisms is a classical Lie group and it is transitive on it.

In homogeneous domains, the automorphism groups ([|9], [10]) can be used to find integral
formulas. Domains with rich automorphism groups are often implemented as matrix domains (|3],
[11]). They turned out to be useful in solving various problems of function theory.

Complex homogeneous bounded domain are of great interest from different points of view.
This is due to the fact that they are a relatively wide class of domains in C™, for which a number
of meaningful, essentially multidimensional results have been obtained ([3], [12], [13] and etc.).

E. Cartan (see [1]) in 1935 initiated a systematic study of bounded homogeneous domains,
found all homogeneous homogeneous domains in the spaces C? and C3. He gave a classification of
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all bounded symmetric regions. These domains are divided into equivalence classes with respect to
biholomorphic mappings. Each such class can be specified by specifying one area that belongs to
it. Further, it is obvious that it is sufficient to consider only irreducible classes, that is, classes of
domains that are not products of bounded symmetric domains of lower dimensions. In general, as
E. Cartan established [1], there are six types of classes of irreducible bounded symmetric domains.
Domains belonging to four of them are called classical because their automorphism groups are
classical semisimple Lie groups. Two of these types are special in the sense that each of them occurs
in the space C" of only one dimension n, respectively for n = 16 and n = 27.
Consider the classical domains (see.[3], [1]):

%I(m,k):{Ze(C[mxk} :I<m>—27’>0},

Rip(m) = {Z € Clmxm|: 1" — 27 > 0,v7' = 7},

3‘fm(m)z{ZEC[mxm] :I(m)+27>o,vz’:fz},

Rrv (n) = { 2eC (2 =201 >0, |(z2)] < 1},

here (™) is the identity matrix of order m, 7' is the complex conjugate matrix of the transposed
matrix Z' (H > 0 for a Hermitian matrix H means, as usual, that H is positive definite). All these
domains are homogeneous symmetric convex complete circular domains centered at O (O is zero
matrix).

If we write the elements of the matrices Z € C[m x k] as a point in the space C™*:

2= {211y oy Z1ky 221 ees 22k cvey Zmleees Zmk ) € Cc™mk, (1)
then we can assume that Z is an element of the space in C™*, i.e., we arrive to the isomorphism
Clm x k] = C™*,
Therefore, the dimensions of the classical domains above four, are equal, respectively,

m(m + 1) m(m — 1)

k
e 2 ’ 2

, 1.

Writing out explicitly the transitive group of automorphisms of four types of classical
domains and matrix balls (see, for example, [14], [15]) associated with classical domains, by direct
computation one can find the Bergman and Cauchy-Szegs kernels for these domains. And then
(using the properties of the Poisson kernel), we find the Carleman formula, which restores the value
of a holomorphic function in the domain itself from its values on some boundary sets of uniqueness
(see [16], [17], [18], [19]). In this case, the scheme for finding the Bergman and Cauchy-Szegs kernels
from [3], [12], [20] is used. In [21] the volumes of a matrix ball of the third type and a generalized Lie
ball are calculated. The full volumes of these domains are necessary to find the kernels of integral
formulas for these domains (Bergman, Cauchy-Szegs, Poisson kernels, etc.) and is used for the
integral representation of functions holomorphic in these domains, in the mean value theorem, and
in other important concepts.

The Bergman space on bounded symmetric domains is a fundamental concept in the analysis.
It is equipped with a natural projection, i.e. the Bergman projection, determined by the property
of the reproducing nucleus. On the other hand, the weighted Bergman spaces are also important in
harmonic analysis (see, for example [13]).
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DEFINITION 4 ([23]). Let {¢, (2) ,v =0,1,2,...} be a complete orthonormal system of functions
in L* (D). The Bergman kernel (or kernel function' ) Kp (z,() is the sum of the series

Y eu(2)en (€)= Kp (2,4) (2)

which is holomorphic by z and antiholomorphic by (
For example (see [8], [23] ), the Bergman kernel for a ball with radius R, B"(R) =
{z € C" : |z| < R}, has the form

n!R?
n o\ ntl’
" (RQ - Zk(k)

k=1

Kgn(r) (2,€) =

The aim of this work is to find optimal estimates for the Bergman kernels for the classical

domains Ry (m, k), Rrr (m), Rrrr (m) and Ry (n), respectively, through the Bergman kernels in
balls from the spaces C™F, C T , C - and C". For this, we use the statements of the

Sommer-Mehring theorem (see [24]) on the extension of the Bergman kernel and some properties
of the Bergman kernel.

THEOREM 1 (SOMMER-MEHRING). Let D C G are domains in C", where the domain D is
bounded and univalent. If the Bergman kernel (kernel function) Kp (z,Z) can be continued into the
domain G as a real analytic function, it follows that: :

a) Bvery function f € L? (D) can be holomorphically continued to the domain G;

b) If {pu (2),v =1,2,...} — is a closed orthonormal system of functions in the domain D equality

Kp (257 E) = Z Pv (z) Pv (C)
v=1

takes place in the domain G, x G¢;
o0
c) for every function f € L? (D) the expansion f(z) = Y. ayp, (2) remains valid in the whole
v=1

domain G;

d) The function Kp (Z,QT) holomorphically to the wvariable z and antiholomorphic by to the
variable ¢ in the domain G, X G¢;

e) (reproducing property Bergman kernel) The integral representation

f2) = / F(O) Kb (0 due
D

1s valid at all points z € G;
f) (extreme property of the Bergman kernel) for functions f (z) € L? (D), satisfying the condition
[ flp2py < 1, at all points z € G the equality holds

Kp (z,%) = max|f (2)[%.

In other words, the Bergman kernel for any transitive circular region is equal to the ratio of the
volume density to the Euclidean volume of the domain (we recall that if the domain D C C™ admits

'In classical Russian literature, the Bergman kernel is usually called the domain kernel function (see, for example,
[23], [8])- At the present time, such a term would not be very apt, since we have three kernels (Bergman, Cauchy-Szeg6
and Poisson) that could bear this name.
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the transformation group z = e?w, then we call D a circular domain, if, in addition, with a point,
z and the point rz (0 < r < 1) lies in D, then we call D a the complete circular domain). Hua
Luogeng in [3| constructed Bergman kernels for four types of classical domains, being guided only
by this consideration and without resorting to complete orthonormal systems, and in this book one
can also find explicit expressions for the Bergman kernel, groups of automorphisms of the domain

§R[ (m, ]{7) ,§R[[ (m) s §R[]] (m) n §R1V (n)

2. Estimate for the Bergman Kernel for the Lie Ball

Let 7y (n) be a classical domain of the fourth type (this domain is called a Lie ball (see
[3])). It is known [3], that the Bergman kernel for the Lie ball Ry (n) has the form

) 1
K%IV(”)(Z’C) - V (%IV (n)) (1 -2 <Z,C_> + <Z,Z> <C_’ E>)n7

where V (Rry (n)) = W full volume of the Lie ball Ry (n).
Let us first prove the following lemma.
LEMMA 1. The Lie ball Rpy (n) is contained in the unit ball B™ (1) from the space C".

PROOF. Let any z € Ry (n). Then we have the following relations

(1-1P) =z =120 + (227 >

> <Z72>2 - |<27Z>’2 > <272>2 -1= |Z’4 - L
Hence |z|° —1 < 0, i.e. z € B" (1) . Hence,
Rrv (n) CB"(1). (3)

Lemma 1 is proved. O
The following is true.
THEOREM 2. If the Bergman kernel Ky, (n)(2, 2) extends to the domain B" (1) as a real analytic
function, then at the points z € B™ (1) the inequality

KB"(l) (Zv 2) < K?Rfv(n) (Z¢ 2) :
PrROOF. Using (3) we compare the Bergman kernels defined in these balls and by Theorem 1

(property e) ), due to the Cauchy-Bunyakovsky-Schwarz inequality, we have

Kgn(1) (2,2) = | Kgn(1) (¢, 2) Ky (n) (2,C)dv (¢) <

§RI‘/
3 3
<| [ mewcala©] | [ K @OPa©] <
Rrv(n) R1v(n)
3 3
< /}Kﬁnm ¢,z \dV : / | Ky (n) (2,5)\2651/(0 : (4)

(1) Rrv(n)
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Now, using holomorphy in the variable z and antiholomorphism in the variable ¢ (i.e., K (z, ¢ ) =

K (¢, z)- is the property of conjugate symmetry of the Bergman kernel) from (4) we obtain the
equality:

1 1
2 2

/ ‘K]B”(l) (Cv Z)|2d1/ (C) ' / }KERI\/(H) (Z, C_) ’2d1/ (C) =
(1)

R1v(n)

N|=
N |=

= /K]Bnu)(C,Z)KBm)(C,Z)dl/(() /KéRIV(n)(Z,C)KénIV(n)(Z,E)dV(C) =
\gi(1) Ry (n)

=
S

= / Kpgn(1) (¢, 2) Kpn(r (2,¢)dv (€) / Ky (2,0) Kyypn) (6, 2)dv (O | =
\er (1) Rev ()
1 1
= (KBn(l) (2,5))2 (K%IV(n) (Z,Z))2. (5)
Thus, from the relations(4) and (5) the following inequality follows:

KBn(l) (2,2) < Kmlv(n) (2,2).
Theorem 2 is proved. O

Note that for n =1

_ _ 1
Kgi(1) (2,2) = Ky, (2,2) = —
T (1 — || )

On the other hand, based on the above, we can estimate from above the Bergman kernel

Kw,y(n)(2, 2). For points z € B" (i), takes place

V2
a 1
A=Yl < 5

In this way
14 [z, 2)]2 =2z > 1 -2z > 0. (6)

Considering that |(z, z)| < |2|?, we have
3
1—uaaﬁ>1—pﬁ>1>o. (7)

From the inequality(6) and (7) we get z € Ry (n). Hence,

B"Q%)C%WOW

In the same way, we obtain the following statement.

THEOREM 3. If the Bergman kernel is KBn< 1\ (2,2) continues to the domain Ry (n) as a
V2
real analytic function, then at the points z € Ry (n) the inequality holds

K%IV(H) (2,2) < KB”< 1 ) (2,2).

2
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3. Estimates for the Bergman kernel for the classical domains

§R[ (m, k), %][ (m) and %HI (m)

Now we give estimates for the Bergman kernel for other types of classical domains. For this, we

first prove the following lemma, which establishes relations between the classical domains R (m, k),
m(m+1) m(m—1)

R (m), Rrrr (m) and balls from the space C™* C— =2, C~ 2z, respectively.
LEMMMA 2. The following relations hold:

a)
B™ (1) ¢ Ry (m, k) ;
b)
m(m+1) 1
# (g) <o
C) (m-1)
Bmm (1) C?RH[ (m)

PRrROOF. a) It is known [25], that for any Z € C[m x k] when m < k, there exist unitary
matrices U of order m and V of order k£ such that

A1 O 00 0
7 U 0 A 00 0 v,
0 0 A0 0 O

for some A1 = A9 > ... > \,, = 0. Hence it follows that
det (10 = 22') = (1= A3) .. (1= AL) = det (10" — 2'Z).

Therefore, for a given Z € C [m x k| the relation I™) — ZZ' > 0 is executed if and only if 1 — A2 > 0
or A;<1,s=1,...,m.
On the other hand, for Z = {211, ..., 21k, 221+, 22k+ s Zml-es Zmk } € B™F (1), we have

m k m k m
1Z12 =D el =D 0 22 = Sp (ZZ’) =Y X<l
s=1 j=1 s=1 j=1 s=1
Whence A\; < 1(s=1,...,m) and Z € Ry (m, k). Hence,
B™ c R; (m, k).

b) Let Z € Ry (m). It is known [25], that for any symmetric matrix Z € C [m x m], there exists
a unitary matrix U € U (m) and real numbers A\; > Ay > ... > A\, 2 0, such that

Z = U'diag (M, ..., Am) U = U'AU.

In this way,
I — 77 = 10" —'A20 = 10" — U7 (M2,...,0%)°0 =
=U'diag (1 — M, ..,1=)2,) U.
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This equality implies that Z € R;; (m) if and only if 1 — A2 > 0 and Ay < 1(s =1,...,m). On the

other hand, for Z € Bm(mH) (%) we have

m

1 = 1
HZH2 = Z ’ZSj’2 = Z Zsjgsj = 5517 (ZZ) + 5 Z ‘Zss’2 -

1<sysm 1<s<j<m s=1

1 & u
52 Z 2] <
=1 =1

m(m+1)

and thus > A2 < 1. Therefore, \s < 1,5 =1,...,m and B~ 2 (%) C Rrr(m).

s=1
c) Let Z € Ry (m). It is known [25], that for any skew-symmetric matrix Z € C[m x m], there
exists a unitary matrix U € U (m) and Ay > Ay = ... 2 A\, 2 0, v =[], such that

B 0 N 0 A\]
7=v|( o>+ +(-M i)

_ 0 X\ 0 AN\ a7
Z-U[(_)\1 0)+ +< A, O)+0}U
when m is odd. Here the direct sum of the matrices A and B, ie., < A +B > is defined as
A 0
(4 3)

Further, when m is even, we have

2 2
i gr_ [(1=A 0 N (1= 0 \]
1™y zz UK 0 1_A%>+...+< 0 1-a)|U"

Similarly, when m is odd, we have

2 2
i) o o [(1=A 0 N o 1=22 0 N\
'™+ 7z U[( o 1) T D) T

when m-is even,

It follows that Z € ;77 (m) if and only if Ay < 1(s=1,...,7).
For Z € B™

1ZIP= > lelP= D zgEy= sp (22" Z)\2<1

1<sysm 1<s<gs<m

: (1), we have

This means that \s < 1(s=1,...,7), u Z € %77 (m). Hence, B (1) C Rrrr (m).

Lemma 2 is proved. O
It is known [3], that the Bergman kernels for the domains R; (m, k), R;r (m) and Rrrr (m)
have the form:

O pp— :
Ralmk) S5 5T Ry (k) det™F (10m) — 277)
1 1
K. Z) = 7
wrr(m) (2) = Gam Ty qop (1 - 22)’
1 1

K z) = 7
Rrrr(m) (2,2) V (Rrrr (m)) det™1 ([(m) —i—ZZ)7
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where

V (R;(m,k)) = 120 (m = 1)l (k- 1)!

mk

12 (m+k—1)0
m(m+1) 2141 (2m — 2)!

m!(m+1)...(2m — 1)V
mim=1) 2141 (2m — 4)!

(m—1)Iml...(2m — 3)!’

V(Rir(m))=mn

V (?R[][ (m)) =T

volumes of the domain Ry (m, k), Rrr (m) and Rrrr (m), respectively.

The following theorem is proved in the same way as Theorem 2.
THEOREM 4. The following statements are true:

a) if the Bergman kernel is Kgmx (1) (2, 2) continues to the domain %1 (m, k) as a real analytic

function, then at the points z € Ry (m, k) the following inequality holds

K%](m,k) (27 2) < KIBm’“(l) (Z, 5) ;

b) if the Bergman kernel is K m(m+1) (z,Z) continues to domain Ry (m) as a real analytic
B— =2z (L

V)
function, then at the points z € Rrr (m) the inequality holds

KS‘I‘CU(M) (275) < KBm(TgH) <L) (272)3

2

¢) if the Bergman kerne K wmm-1 (2, Z) extends into the domain Ryry (m) as a real analytic
B2 (1)

function, then at the points z € Ry (m) the inequality holds

2

Kyyr(m) (2, 2) < KBM(D (2,2).
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