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Аннотация

Начиная с вещественной аналитической поверхности ℳ с вещественно-аналитической
конформной связностью Картана, А. Боровка построил пространство минитвисторов
асимптотически гиперболического многообразия Эйнштейна–Вейля с границейℳ. В этой
статье, начиная с симметрии конформной связности Картана, мы доказываем, что сим-
метрии конформной связности Картана на ℳ могут быть продолжены до симметрий по-
лученного многообразия Эйнштейна–Вейля.
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Abstract

Starting from a real analytic surface ℳ with a real analytic conformal Cartan connection
A. Borówka constructed a minitwistor space of an asymptotically hyperbolic Einstein–Weyl
manifold with ℳ being the boundary. In this article, starting from a symmetry of conformal
Cartan connection, we prove that symmetries of conformal Cartan connection on ℳ can be
extended to symmetries of the obtained Einstein–Weyl manifold.
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Introduction

A complex manifold 𝑀 with a conformal structure [𝑔] is a Weyl manifold if it is equipped with
a holomorphic connection 𝒟 that preserves [𝑔]. Furthermore, it is called an Einstein–Weyl manifold
if the symmetric trace-free part of the Ricci tensor of 𝒟 vanishes. In [5] N. Hitchin introduced
a twistor correspondence for 3-dimensional Einstein–Weyl manifolds which is called minitwistor
correspondence or Hitchin correspondence. Moreover, in [7] P. Jones and K. Tod gave a relation
between the work of R. Penrose on twistor spaces [9] and the Hitchin correspondence.

A. Borówka [2] starting from a real analytic surface ℳ with a real analytic conformal Cartan
connection constructed a complex surface and then proved that the constructed surface is, in fact, a
minitwistor space of an asymptotically hyperbolic Einstein–Weyl space withℳ being the boundary.
A. Borówka also gave a description on how this fits with work of Jones and Tod by explicitly realizing
the minitwistor space as a quotient of a twistor space with a local C× action andℳ being the fixed
point set.

After having a correspondence or a construction, it is natural to ask which data can be carried
through the construction and what is the resulting object and in the case of correspondence, what
will the initial data relate to in the corresponding space. One of the examples of such approach, is
the work done by A. Borówka and H. Winther [1], in which they investigate the symmetries in case
of the generalized Feix–Kaledin construction. In this article, we want to do a similar investigation for
the construction done in [2], therefore, starting from a symmetry of conformal Cartan connection on
a complex surface (see Definition 3), we try to determine sufficient conditions for which a symmetry
of the Cartan connection gives the symmetry of the resulting Einstein–Weyl structure. Our final
result is that under some mild conditions on the bundle appearing in the definition of the conformal
Cartan connection, the symmetry we start with on the boundaryℳ can be extended to a symmetry
of the minitwistor space and therefore, it induces a symmetry of the corresponding Einstein–Weyl
manifold. This result is analogous to the result in [1] where the c-projective symmetries under given
conditions extend from the fixed points set of a circle action to quaternionic symmetries.

In Section 9, we review necessary background needed for construction, then in §9, we review
the construction done in [2]. In Section 9, we follow the construction and show how the symmetry
carries through the construction and finally, we obtain a symmetry of the minitwistor space. In
Section 9, using this result together with the result from §9 we show that the symmetry we started
with on the boundary can be extended to a symmetry of the Einstein–Weyl space.

Background

Complexification: For any n-dimensional real-analytic manifoldℳ, its complexificationℳC is
a holomorphic manifold that contains ℳ as a fixed point set of the real structure (i.e. an anti-
holomorphic involution) and 𝑑𝑖𝑚CℳC = 𝑑𝑖𝑚Rℳ. ℳC can be constructed by using holomorphic
extensions of the real-analytic transition functions onℳ and the real structure will be given by the
complex conjugation. Similarly, using holomorphic extensions, real-analytic objects like functions,
bundles and connections can be extended to a neighborhood ofℳ inℳC.

Hitchin correspondence:

Definition 1. Let
(︀
ℳ, [𝑔]

)︀
be a conformal manifold with a compatible torsion-free connection

𝒟 (i.e. a Weyl connection). Then
(︀
ℳ, [𝑔],𝒟

)︀
is called an Einstein–Weyl manifold if the symmetric

trace-free part of the Ricci tensor of 𝒟 vanishes. (For more information about Einstein–Weyl
manifolds see [4], [6], [7], and [8]).

In 1967 [9] R. Penrose proposed twistor theory as a possibility for quantizing space-time and
fields and then in 1976 [10] gave a description for curved twistor theory. Later in 1982 N. Hitchin
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obtained a similar construction to Penrose and provided a one-to-one correspondence between
the three-dimensional Einstein–Weyl spaces and minitwistor spaces and in particular, proved the
following theorem:

Theorem 1 (Hitchin [5], see [2]). . Let 𝑇 be a surface such that :

1. There is a family of non-singular holomorphic projective lines CP1 each with normal bundle
isomorphic to 𝒪(2), called minitwistor lines.

2. The surface 𝑇 has a real structure, which induces the antipodal map of CP1 on lines from the
family that are invariant under this real structure.

Then the parameter space of projective lines invariant under the real structure is an Einstein–Weyl
manifold.

In 1985 [7] P. Jones and K. Tod related the work of Penrose to the Hitchin correspondence by
realizing the spaces in the Hitchin correspondence as the quotient space of the spaces in the Penrose
correspondence by a conformal Killing vector field and a holomorphic vector field respectively.
Moreover, they proved that the spaces in the Penrose correspondence can be constructed from the
quotient spaces provided that the Einstein–Weyl space is equipped with abelian monopole.

Conformal Cartan connection: (see [2], [3])

Definition 2. A conformal Cartan connection on an n-manifold Σ is a quadruple
(︀
𝑉, ⟨·, ·⟩,Λ,𝒟

)︀
where:

• 𝑉 is a rank 𝑛+ 2 vector bundle with inner product ⟨·, ·⟩ over Σ,

• Λ ⊂ 𝑉 is a null line subbundle over Σ,

• 𝒟 is a linear metric connection in the vector bundle V satisfying the Cartan condition, i.e.
𝜖 := 𝒟 |Λ mod Λ is an isomorphism from 𝑇Σ⊗ Λ to Λ⊥/Λ.

For the purposes of this article we will restrict to the case of 𝑛 = 2. Note that, unlike for
dimensions 𝑛 ≥ 3, in dimension 2 the conformal structure does not fully determine the conformal
Cartan connection.

Let Σ be a complex surface with a complex Cartan connection
(︀
𝑉, ⟨·, ·⟩,Λ,𝒟

)︀
given as a

complexification of a real analytic surface ℳ with a Cartan connection. Suppose that the fiber
bundle 𝑉 is the associated bundle to the tangent bundle 𝑇Σ. Let 𝑍 be a vector field on ℳ and
let us denote by 𝑋 its complexification on Σ and by 𝜑𝑡 the group of infinitesimal transformations
generated by 𝑋.

Definition 3. The Cartan connection is preserved by 𝜑𝑡 if and only if the following holds for
sufficiently small values of 𝑡:

1. 𝜑𝑡 preserves the line bundle Λ.

2. 𝜑𝑡 preserves the inner product, i.e. the following holds: ⟨𝑌, 𝑍⟩ =
⟨︀
(𝜑𝑡)*𝑌, (𝜑𝑡)*𝑍

⟩︀
for all

𝑌, 𝑍 ∈ Γ(𝑇Σ).

3. (𝜑𝑡)*𝒟 = 𝒟, i.e. the connection is preserved.

In this case, the vector field 𝑋 is called a symmetry of conformal Cartan connection.

Remark 5. The isomorphism 𝜖 is also preserved by the symmetry, since it preserves the
connection 𝒟 and the line bundle Λ.
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Symmetries of minitwistor spaces

The minitwistor correspondence by Hitchin [5] relates minitwistor spaces and Einstein–Weyl 3-
dimensional manifolds. In this section we discuss the relationship between the symmetries of these
spaces.

Definition 4. Let 𝑀 be a complex 3-dimensional manifold with a Weyl structure
(︀
[𝑔],𝒟

)︀
. A

null plane is a 2-dimensional subspace 𝑈 of 𝑇𝑤𝑀 for each point 𝑤 ∈ 𝑀 such that [𝑔] degenerates
on U.

Definition 5. A null surface is a 2-dimensional submanifold 𝑆 ⊂ 𝑀 such that for every
𝑤 ∈𝑀 , 𝑇𝑤𝑆 is a null plane.

The parameter space of all minitwistor lines is a complex 3-dimensional manifold 𝑀C with
the real structure induced by the real structure 𝑇 and the real submanifold 𝑀 is given as the
parameter space of minitwistor lines invariant under the real structure; 𝑀C is a complexification
of 𝑀 . Conversely, 𝑇 can be defined as the space of totally geodesic null hypersurfaces in 𝑀 . As
points 𝑙 ∈ 𝑀 correspond to real minitwistor lines in 𝑇 , therefore for points 𝑤 ∈ 𝑇 it makes sense
to consider 𝑤 ∈ 𝑙 . We define two families of submanifolds of 𝑀C by 𝑀C

𝑤 := {𝑙 ∈ 𝑀 |𝑤 ∈ 𝑙}, that
is a 2-dimensional complex submanifold and 𝑀C

𝑤,𝑤′ := {𝑙 ∈ 𝑀 |𝑤,𝑤′ ∈ 𝑙}, which is 1-dimensional.
The complexified Einstein–Weyl structure on 𝑀C can be determined as follows:

Proposition 1 (see [6]). There exists a unique torsion free complexified Einstein–Weyl
structure

(︀
[𝑔],𝒟

)︀
on 𝑀C that satisfies:

1. The family {𝑀C
𝑤}𝑤∈𝑇 and the set of null surfaces of [𝑔] coincide.

2. The family {𝑀C
𝑤,𝑤′}𝑤,𝑤′∈𝑇 and the set of geodesics coincide.

3. A curve 𝑀C
𝑤,𝑤′ is null geodesics if and only if 𝑤 is a double point in 𝑙.

Definition 6. Let
(︀
𝑀, [𝑔],𝒟

)︀
be an Einstein–Weyl manifold. A diffeomorphism is called a

symmetry of
(︀
𝑀, [𝑔],𝒟

)︀
if it preserves both the conformal structure [𝑔] and the connection 𝒟.

Let 𝑋 be a holomorphic vector field on 𝑇 and 𝜑𝑡 the group of infinitesimal transformations
generated by 𝑋.

Lemma 1. The transformation 𝜑𝑡 preserves the minitwistor lines.
Proof. 𝜑𝑡 for sufficiently small 𝑡 preserves the normal bundle 𝒪(2), therefore the minitwistor lines
are preserved. 2

If the vector field is real then it, moreover, preserves real minitwistor lines. The following theorem
is a common knowledge, however, since we were unable to find a source for it, we will state and
prove it here.

Theorem 2. Real holomorphic vector fields on 𝑇 correspond to symmetries of
(︀
𝑀, [𝑔],𝒟

)︀
.

Proof. First we want to show that the families of submanifolds {𝑀𝑤} and {𝑀𝑤,𝑤′} are preserved
by the transformation 𝜑𝑡. Observe that under the action of the transformation 𝜑𝑡 : 𝑤 ↦→ 𝜑𝑡(𝑤),
𝑤 ∈ 𝑀 , the submanifold 𝑀𝑤 are transformed into 𝑀𝜑𝑡(𝑤) := {𝑙 ∈ 𝑀 | 𝜑𝑡(𝑤) ∈ 𝑙}. Furthermore,
note that the twistor lines containing 𝑤 are the transformed into the twistor lines containing 𝜑𝑡(𝑤),
hence by Lemma 1, 𝜑𝑡(𝑀𝑤) ⊆ 𝑀𝜑𝑡(𝑤). Moreover, since 𝜑𝑡 is an isomorphism the inclusion in the
other direction is obtained by the inverse, therefore, the family of submanifolds {𝑀𝑤} are preserved.
The proof for {𝑀𝑤,𝑤′} is similar, however, it is worth to notice that it is necessary for the points
𝑤 and 𝑤′ to be sufficiently near each other. Hence, by Proposition 1 holomorphic vector fields on
𝑇 correspond to symmetries of the underlying complexified Einstein–Weyl manifold. The reality
condition on the vector fields imply that the symmetries restrict to symmetries of the underlying
real Einstein–Weyl manifold. 2



514 Р. Мохсэни

Review of the twistor construction:

In [2] A. Borówka gives a description for a construction of minitwistor spaces for asymptotically
hyperbolic Einstein–Weyl spaces. In this section, a concise review of the first part of the construction
is given, for more details and proofs see [2].

Let ℳ be a real analytic surface with a Cartan connection, by complexification we obtain a
complex surface Σ with a complexified conformal Cartan connection

(︀
𝑉, ⟨·, ·⟩,Λ,𝒟

)︀
defined as in

Definition 2. Moreover, there exists Λ0 ⊂ 𝑉 that is the annihilator of Λ and for each point 𝜎 ∈ Σ, we
will have two null planes 𝑈+

𝜎 ⊂ Λ0 and 𝑈−𝜎 ⊂ Λ0 , which are defined using the induced degenerated
inner product on Λ0

𝜎, as the solutions to ⟨𝑎, 𝑎⟩ = 0 for 𝑎 ∈ Λ0
𝜎 . Let 𝑈+ and 𝑈− be the two null

subbundles of Λ⊥ ⊂ 𝑉 defined fiberwise by these null planes with Λ = 𝑈+ ∩ 𝑈−.
Using the isomorphism 𝜖 between 𝑇Σ⊗Λ and Λ⊥/Λ given in Definition 2, two line subbundles

𝑡+, 𝑡− of the tangent bundle 𝑇Σ can be defined as follows

𝜖(𝑡+ ⊗ Λ) = 𝑈+/Λ and 𝜖(𝑡− ⊗ Λ) = 𝑈−/Λ. (1)

These define two families of curves 𝐶+ and 𝐶− as integral curves of the line subbundles 𝑡+ and
𝑡− respectively. Moreover, fiber bundle 𝐹+(respectively 𝐹−) with fibers given by 𝐹+

𝜎 := P (𝑈+
𝜎 )

[respectively 𝐹−𝜎 := P (𝑈−𝜎 )] is defined.
The connection 𝒟 on the base manifold induces a connection along the curves 𝐶+(respectively

𝐶−) and using this connection it is possible to horizontally lift the curves from 𝐶+(respectively
𝐶−) to 𝐹+(respectively 𝐹−). Furthermore, Σ can be restricted in such a way that the curves from
each family do not intersect each other.

Proposition 2. The horizontally lifted curves from 𝐶+ (respectively 𝐶−) families, locally
foliate the total space of the bundle 𝐹+ (respectively 𝐹−) and the leaf space of the foliations is a
manifold which is denoted by 𝑇+ (respectively 𝑇−).

Proof. See [2]. 2

We restrict the manifold Σ such that any horizontally lifted curve from the 𝐶+ family intersects
a horizontally lifted curve from 𝐶− family at most once and if we denote by 𝜎 ∈ Σ the points of
the intersection, then P(Λ)𝜎 = 𝐹+

𝜎 ∩ 𝐹−𝜎 holds. Therefore at any point P(Λ)𝜎 exactly one element
of 𝑇+ intersects one element of 𝑇− and it enables us to glue the leaf spaces 𝑇+ and 𝑇−.

Definition 7. 𝑇+ and 𝑇− can be glued together in the following way :

𝑇 := 𝑇+
⨆︁
∼
𝑇−, (2)

∀𝑡+ ∈ 𝑇+, 𝑡− ∈ 𝑇−, 𝑡+ ∼ 𝑡− ⇔ ∃𝜎 ∈ Σ : 𝑡+ ∩ 𝑡− =
{︀
P(Λ)𝜎

}︀
.

Definition 8. For each curve 𝑐+ ∈ 𝐶+ the family of its horizontal lifts define a projective line
in 𝑇+ which will be denoted by 𝑙+

𝑐+
and analogously 𝑙−

𝑐− in 𝑇− is defined for 𝑐− ∈ 𝐶−.

Since for each point 𝜎 ∈ Σ there exists exactly one curve from each family such that 𝜎 ∈ 𝑐±,
we will use the notation 𝑙+𝜎 := 𝑙+

𝑐+
and 𝑙−𝜎 := 𝑙−

𝑐− instead. Also note that the minitwistor lines are
deformations of these line pairs. It can be shown that 𝑇 is a minitwistor space of an Einstein–
Weyl manifold and it admits a real structure induced naturally by the initial complexification of
the Cartan connection. Furthermore, the pairs of intersecting lines 𝑙±𝜎 correspond to points on a
boundary of this Einstein–Weyl manifold.
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Construction of a vector field on the minitwistor space

Let Σ be a complex surface with a complexified conformal Cartan connection, which is a
complexification of a real analytic surface ℳ and X be a holomorphic vector field on Σ which
is obtained as a complexification of a symmetry of the conformal Cartan connection (see Definition
3) as described in Section 9. 𝑇 is a minitwistor space obtained as in [2], see Section 9 and 𝜑𝑡 is the
flow of the vector field 𝑋. In this section, we argue how 𝑋 induces a flow on the minitwistor space 𝑇 .
Then in the next section we will show that the vector field tangent to the flow is a symmetry of the
minitwistor space and therefore it induces a symmetry of the underlying Einstein–Weyl manifold.

Lemma 2. The fiber subbundles 𝑈+ and 𝑈− are preserved by 𝜑𝑡.

Proof. The transformation induced by 𝜑𝑡 preserves the inner product, therefore it preserves the
fiber bundles 𝑈+ and 𝑈−. 2

Lemma 3. Let 𝑡± be the line subbundles of 𝑇Σ defined as in §2.2. 𝑡± are preserved by 𝜑𝑡 and
hence the families of curves 𝑐±, which are the integral curves of 𝑡± are also preserved.

Proof. The line bundles 𝑡± were defined using the isomorphism 𝜖, the fiber bundles 𝑈± and the
line bundle Λ, since 𝜑𝑡 preserves all of them, 𝑡± will also be preserved. 2

Recall that the vector bundle 𝑉 is an associated bundle to the tangent bundle 𝑇Σ, hence on 𝑉
there is a transformation 𝜑𝑡, which is induced by 𝜑𝑡 as follows:

𝜑𝑡 (𝜎, 𝑣) = (𝜑𝑡(𝜎), (𝜑𝑡)*(𝑣)) . (3)

Lemma 4. The transformation 𝜑𝑡 (3) preserves the fiber bundles 𝑈±.

Proof. The fiber bundles 𝑈± are subbundles of 𝑉 . We abuse the notation and denote maps 𝜑𝑡|𝑈±

also by 𝜑𝑡. Since we proved in Lemma 2 that 𝜑𝑡 preserves the fiber bundles 𝑈±, 𝜑𝑡 will preserve
the fiber bundles 𝑈±, therefore, the diagram is well-defined. 2

Recall that as discussed in §9 the subbundles 𝑡± define two families of curves 𝐶+ and 𝐶− in Σ.
Furthermore, we horizontally lift the curves to the fiber bundles 𝐹+ and 𝐹− respectively and the
lifted curves foliate the fiber bundles 𝐹±. Now in order to show that the flow 𝜑𝑡 induces flows on
𝑇+ and 𝑇−, we have to prove

Lemma 5. The transformation 𝜑𝑡 preserves the lifted curves of 𝐶± families and therefore gives
a transformation on the leaf spaces of the curves lifted to 𝑈±.

Proof. Let 𝐶± and 𝐶± denote respectively the family of curves on Σ and the families of curves
lifted to the fiber bundles 𝑈±. Take a curve 𝑐+1 ∈ 𝐶+ and let 𝑐+1 ∈ 𝐶+ be a curve obtained by
horizontally lifting 𝑐+1 . By Lemma 3, 𝜑𝑡 maps the curve 𝑐+1 to another curve 𝑐+2 from the same
family. We want to show that 𝜑𝑡 transforms the curve 𝑐+1 into a horizontal lift of the curve 𝑐+2 . This
would imply the image of 𝑐+1 belongs to 𝐶+. Therefore, let 𝑋𝑐+1

, 𝑋𝑐+1
and 𝑋𝑐+2

be tangent vector

fields to the curves 𝑐+1 , 𝑐+1 and 𝑐+2 respectively and we denote 𝑋2 := (𝜑𝑡)*(𝑋𝑐+1
). From definition of

𝜑𝑡 (see Equation 3) we have that 𝜋*(𝑋2) = 𝑋𝑐+2
. The fact that it is a horizontal lift follows from

(𝜑𝑡)*𝒟 = 𝒟. The proof for curves from 𝐶− family is analogous. 2

Proposition 3. The constructed flow on the leaf space of curves lifted to 𝑈± is C× invariant.

Proof. The C× action maps isomorphically curves to curves and for the constructed flow 𝜑𝑡 (3)
the following holds:

𝜑𝑡
(︀
𝜎, 𝑢±

)︀
=
(︀
𝜑𝑡(𝜎), 𝜑𝑡*(𝜆𝑢

±)
)︀

=
(︀
𝜑𝑡(𝜎), 𝜆𝜑𝑡*(𝑢

±)
)︀
, ∀𝜆 ∈ C, 𝑢± ∈ 𝑈±. (4)
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which is a result of 𝜑𝑡* being a linear isomorphism. 2

In Section 9, two fiber bundles 𝐹+ and 𝐹− were defined fiberwise by 𝐹±𝜎 := P (𝑈±𝜎 ) respectively,
and as a result of Proposition 3 we obtain transformations 𝜑±𝑡 on 𝐹±. Furthermore, these bundles
were foliated by lifted curves, and their leaf spaces were denoted by 𝑇±, hence, by Lemma 5 we
obtain the following corollary.

Corollary 1. The obtained transformations descend to transformations on 𝑇+ and 𝑇− and
are denoted by 𝜑′+𝑡 and 𝜑′−𝑡 respectively.

Recall that the minitwistor space 𝑇 is obtained by the gluing of 𝑇+ and 𝑇− and we need to
check that the transformations 𝜑′+𝑡 and 𝜑′−𝑡 coincide on the gluing part.

Proposition 4. The transformations 𝜑′+𝑡 and 𝜑′−𝑡 are compatible with the gluing of 𝑇+ and
𝑇−, therefore, they induce a vector field on the minitwistor space 𝑇 denoted by 𝜑′𝑡.

Proof. The curves from the two families 𝐶+ and 𝐶− may intersect each other at most in one
point and this point lies in Λ and the gluing is given by identifying curves that intersect each other
in Λ. We proved in Lemma 5 that the flow maps the curves from each family to a curve which is
also in that family of curves. What remains to prove is that the point of intersection is preserved,
which is a consequence of the flow preserving Λ. 2

Properties of the vector field

Let �̃� be the vector field given by the flow 𝜑′𝑡 (see Proposition 4). Now by studying the properties
of �̃�, we will show that it gives a symmetry of the corresponding Einstein–Weyl space, which on
the boundaryℳ coincides with our initial symmetry of the conformal Cartan connection.

Lemma 6. The transformation 𝜑′𝑡 preserves the real structure on the minitwistor space.

Proof. Recall that both the vector field 𝑋 and the real structure on the manifold Σ were
introduced by complexification from the underlying real manifold. As the real structure on the
minitwistor space from [2] was constructed using the real structure of this complexification, it is
straightforward to show that the vector field �̃�, which arises from 𝑋 preserves this real structure.
2

Theorem 3. The real holomorphic vector field �̃� on the minitwistor space 𝑇 corresponds to a
symmetry 𝑌 on the corresponding Einstein–Weyl manifold 𝑀 .

Proof. In Section 9, we constructed the vector field �̃� and in Lemma 6, we proved that it is
in fact a real vector field. Therefore, as an immediate result of Theorem 2, �̃� corresponds to a
symmetry on 𝑀 , which will be denoted by 𝑌 . 2

Starting from the vector field 𝑍 on real analytic surface ℳ, which is the symmetry of Cartan
connection, by complexification we obtained a vector field𝑋 on the complex surface Σ. Furthermore,
we constructed the vector field �̃� that as was proved in Theorem 3 corresponds to the symmetry
𝑌 on the Einstein–Weyl manifold 𝑀 , which hasℳ as its boundary. Now we are ready to state the
main result of the paper.

Theorem 4. Let ℳ be a real analytic surface with a conformal Cartan connection and a
symmetry 𝑍. Suppose that the vector bundle 𝑉 used in Definition 2 is an associated bundle of the
tangent bundle 𝑇ℳ and let 𝑀 be an Einstein–Weyl manifold constructed fromℳ via construction
from [2]. Then there exists a vector field 𝑌 ′ on the manifold with boundary 𝑀 ∪ℳ such that

𝑌 ′|ℳ = 𝑍 (5)

and 𝑌 ′|𝑀 is a symmetry of the Einstein–Weyl structure.
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Proof. We take 𝑌 ′|𝑀 = 𝑌 . The line pairs 𝑙±𝜎 are preserved by the vector field �̃�, which is a result
of Lemma 5. These intersecting line pairs correspond to points on Σ and the real ones to points on
ℳ. As a result �̃� induces a transformation on ℳ, which by definition is equal to 𝑍 since �̃� was
constructed using the vector field 𝑋 that is a complexification of 𝑍. 2

Conclusion

Starting from a symmetry of conformal Cartan connection on a complex surface, under sufficient
conditions we showed that it can be extended to the minitwistor space and we denoted the obtained
symmetry by �̃� and later proved that it is a real holomorphic vector field. Furthermore, we proved
that real holomorphic vector fields on the minitwistor space correspond to symmetries of the
resulting Einstein-Weyl structure, hence, the corresponding symmetry 𝑌 on the Einstein-Weyl
manifold was obtained. Since, symmetries of the Einstein-Weyl structure form a Lie algebra, it is
natural to consider the computation of the Lie algebra as further research. This result is analogous
to the result in [1] where the 𝑐-projective symmetries under given conditions extend from the fixed
points set of a circle action to quaternionic symmetries.
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