ЧЕБЫШЕВСКИЙ СБОРНИК Том 14 Выпуск 3 (2013)

УДК 512.543

О ПОЧТИ АППРОКСИМИРУЕМОСТИ КОРНЕВЫМИ КЛАССАМИ ОБОБЩЕННЫХ СВОБОДНЫХ ПРОИЗВЕДЕНИЙ И HNN-РАСШИРЕНИЙ ГРУПП

Д. В. Гольцов (г. Иваново)

Аннотация

Для некоторых обобщенных свободных произведений и HNN-расширений групп получены критерии почти аппроксимируемости корневым классом.

Ключевые слова: почти аппроксимируемость корневым классом групп, обобщенное свободное произведение групп, HNN-расширение.

ON THE VIRTUAL RESIDUALITY ROOT-CLASS RESIDUALITY OF GENERALIZED FREE PRODUCTS AND HNN-EXTENSION OF GROUPS

D. V. Goltsov

Abstract

The necessary and sufficient conditions of virtual root-class residuality for some generalized free products and HNN-extensions are obtained.

Keywords: virtually root-class residuality, generalized free product of groups, HNN-extension.

1. Введение

Пусть \mathcal{K} — непустой класс групп.

Группа G называется аппроксимируемой классом \mathcal{K} (или, короче, \mathcal{K} -аппроксимируемой), если для любого неединичного элемента a группы G существует гомоморфизм группы G на некоторую группу из класса \mathcal{K} , при котором образ элемента a отличен от 1. Группа G называется почти \mathcal{K} -аппроксимируемой, если она содержит некоторую \mathcal{K} -аппроксимируемую подгруппу конечного индекса.

Пусть группа G почти \mathcal{K} -аппроксимируема. Рассмотрим семейство $(H_i)_{i\in I}$ всех \mathcal{K} -аппроксимируемых подгрупп конечного индекса группы G. Число

$$n = \min_{i \in I} [G : H_i]$$

будем называть индексом почти \mathcal{K} -аппроксимируемости группы G.

Пусть как и выше \mathcal{K} — непустой класс групп. Класс \mathcal{K} называется корневым [1], если выполнены следующие три условия:

- 1. Если группа A принадлежит классу K и B подгруппа группы A, то группа B также принадлежит классу K.
- 2. Прямое произведение любых двух групп из класса K принадлежит классу \mathcal{K} .
- 3. Если 1 < C < B < A субнормальный ряд группы A такой, что факторгруппы A/B и B/C принадлежат классу K, то в группе A существует нормальная подгруппа D такая, что $D \subseteq C$ и A/D принадлежит классу \mathcal{K} .

Примером корневого класса может служить класс ${\mathcal F}$ всех конечных групп и класс \mathcal{F}_p всех конечных p-групп.

Здесь рассматривается аппроксимируемость обобщенных свободных произведений групп корневыми классами.

- В [2, с. 429] приводится следующий результат К. Грюнберга: для того, чтобы любое свободное произведение групп аппроксимируемых данным корневым классом \mathcal{K} само было \mathcal{K} -аппроксимируемой группой необходимо и достаточно, чтобы любая свободная группа была \mathcal{K} -аппроксимируемой.
- В [3] Д. Н. Азаров и Д. Тьеджо доказали, что любая свободная группа аппроксимируема любым корневым классом. Поэтому свободное произведение любого семейства групп, аппроксимируемых корневым классом K, само является К-аппроксимируемой группой. Здесь мы доказываем следующее утверждение.

ТЕОРЕМА 1. . Пусть $(A_{\lambda})_{\lambda\in\Lambda}$ — некоторое семейство групп и пусть A= $*_{\lambda \in \Lambda} A_{\lambda}$ — свободное произведение групп A_{λ} . Группа A почти аппроксимируема корневым классом \mathcal{K} тогда и только тогда, когда все A_{λ} почти \mathcal{K} -аппроксимируемы и индексы почти \mathcal{K} -аппроксимируемости групп A_{λ} ограничены.

Рассмотрим теперь свободное произведение P групп A и B с объединенными подгруппами Н и К. Если группы А и В аппроксимируемы корневым классом \mathcal{K} , то группа P уже не обязана быть \mathcal{K} -аппроксимируемой. Большинство результатов о \mathcal{K} -аппроксимируемости группы P получены в случае, когда \mathcal{K} совпадает с классом всех конечных групп или с классом всех конечных р-групп. Оба эти класса являются корневыми. Наиболее исследованным аппроксимационным свойством обобщенных свободных произведений является финитная аппроксимируемость, т. е. аппроксимируемость классом \mathcal{F} всех конечных групп. Исследования в данном направлении как правило представляют собой доказательство финитной аппроксимируемости свободного произведения P групп Aи В с объединенными подгруппами Н и К при определенных ограничениях на группы A и B и объединяемые подгруппы H и K. Так, например, Γ Баумслагом в [4] доказано, что свободное произведение двух финитно аппроксимируемых групп с конечной объединенной подгруппой является финитно аппроксимируемой группой. Аналогичный результат для аппроксимируемости корневым классом уже не имеет место, поскольку, например, обобщенное свободное произведение двух конечных p-групп не обязано быть \mathcal{F}_p -аппроксимируемой группой. Тем не менее, если \mathcal{K} — некоторый класс конечных групп, являющийся корневым, то свободное произведение двух К-аппроксимируемых групп с конечными объединенными подгруппами является почти К-аппроксимируемой группой. Данное утверждение является частным случаем доказанной ниже теоремы. Эта теорема будет доказана в более общей ситуации — для свободного произведения произвольного семейства групп с одной объединенной конечной подгруппой.

Пусть $(G_{\lambda})_{\lambda \in \Lambda}$ — некоторое (возможно бесконечное) семейство групп. И пусть

$$G = (*_{\lambda \in \Lambda} G_{\lambda}, H)$$

— свободное произведение групп G_{λ} с одной объединенной подгруппой H. В работе [5] Д. Н. Азаровым доказано следующее утверждение, обобщающее упомянутый выше результат Баумслага.

Пусть для каждого $\lambda \in \Lambda$ группа G_{λ} финитно аппроксимируема и подгруппа H конечна. Тогда группа $G=(*_{\lambda \in \Lambda}G_{\lambda},H)$ финитно аппроксимируема тогда и только тогда, когда для каждого $\lambda \in \Lambda$ в группе G_{λ} существует нормальная подгруппа U_{λ} конечного индекса, тривиально пересекающая H, и такая, что индексы $[G_{\lambda}:U_{\lambda}]$ ограничены в совокупности.

В [5] получен аналогичный критерий для аппроксимируемости группы G классом \mathcal{F}_p всех конечных p-групп. Здесь мы рассмотрим свойство почти аппроксимируемости такого свободного произведения корневым классом \mathcal{K} . Нами получен следующий результат.

ТЕОРЕМА 2. Пусть группа $G = (*_{\lambda \in \Lambda} G_{\lambda}, H)$ финитно аппроксимируема и подгруппа H конечна. Группа G тогда и только тогда почти аппроксимируема корневым классом K, когда для каждого $\lambda \in \Lambda$ группа G_{λ} почти K-аппроксимируема и индексы почти K-аппроксимируемости групп G_{λ} ограничены в совокупности.

Отсюда и из упомянутого выше результата Г. Баумслага вытекает следующее утверждение.

Следствие 1. Пусть P = (A * B, H = K) - cвободное произведение групп А и В с конечными объединенными подгруппами Н и К. Если группы А и В финитно аппроксимируемы и почти аппроксимируемы корневым классом K, то и группа P почти K-аппроксимируема. B частности, если группы A и Bпочти аппроксимируемы корневым классом \mathcal{K} , состоящим из конечных групп, то группа P почти \mathcal{K} -аппроксимируема.

А. Л. Шмелькин в работе [6] доказал, что произвольная полициклическая группа почти \mathcal{F}_p -аппроксимируема для каждого простого числа p. Поэтому частным случаем следствия 1 является следующее утверждение.

Следствие 2. Свободное произведение любых двух полициклических групп c конечными объединенными подгруппами является почти \mathcal{F}_p -аппроксимируемой группой для каждого простого числа р.

Хорошо известно, [7] что HNN-расширение финитно аппроксимируемой группы с конечными связанными подгруппами само является финитно аппроксимируемой группой. Простые примеры показывают, что этот результат не может быть распространен с финитной аппроксимируемости на аппроксимируемость произвольным корневым классом, но тем не менее, нам удалось доказать следующий результат.

Teopema 3. $\Pi ycmb$ $C^* = (C, t, t^{-1}Ht = K) - HNN-pacuupehue группы$ C с конечными связанными подгруппами H и K. Если группа C финитно аппроксимируемы и почти аппроксимируемы корневым классом \mathcal{K} , то и группа C^* почти K-аппроксимируема. В частности, если группа C почти аппроксимируемы корневым классом \mathcal{K} , состоящим из конечных групп, то группа C^* $nочти \mathcal{K}$ -аnnроксимируема.

Отсюда и из отмеченного выше результат А.Л. Шмелькина следует, что HNN-расширение полициклической группы с конечными связанными подгруппами является почти \mathcal{F}_p -аппроксимируемой группой для каждого простого числа р.

2. Доказательство теоремы 1

Пусть \mathcal{K} — некоторый корневой класс групп, пусть $(A_{\lambda})_{\lambda \in \Lambda}$ — некоторое семейство групп и пусть

$$A = *_{\lambda \in \Lambda} A_{\lambda}$$

— свободное произведение групп A_{λ} .

Очевидно, что если группа G почти \mathcal{K} -аппроксимируема, то любая подгруппа этой группы почти \mathcal{K} -аппроксимируема, и ее индекс почти \mathcal{K} -аппроксимируемости не превосходит индекса почти \mathcal{K} -аппроксимируемости группы G. Поэтому, если группа A почти \mathcal{K} -аппроксимируема, то ее подгруппы A_{λ} почти \mathcal{K} -аппроксимируемы, и индексы почти \mathcal{K} -аппроксимируемости групп A_{λ} ограничены индексом почти \mathcal{K} -аппроксимируемости группы A. Таким образом, необходимость в теореме очевидна. Для доказательства достаточности сначала докажим следующую лемму.

ЛЕММА 1. . Пусть все группы A_{λ} конечны и их порядки ограничены. Тогда существует гомоморфизм группы A на конечную группу, инъективный на всех A_{λ} .

ДОКАЗАТЕЛЬСТВО. Так как порядки групп A_{λ} ограничены, то все эти группы с точностью до изоморфизма исчерпываются конечным набором групп B_1 , B_2 , ..., B_n . Для каждого $\lambda \in \Lambda$ обозначим через φ_{λ} изоморфизм группы A_{λ} на одну из групп B_i . Тогда изоморфизмы φ_{λ} можно продолжить до гомоморфизма φ группы A на прямое произведение групп $B_1, B_2, ..., B_n$. Этот гомоморфизм является искомым. Лемма доказана.

Пусть теперь для каждого $\lambda \in \Lambda$ группа A_{λ} почти \mathcal{K} -аппроксимируема и индексы почти \mathcal{K} -аппроксимируемости групп A_{λ} ограничены. Покажем, что свободное произведение A групп A_{λ} почти \mathcal{K} -аппроксимируемо.

По условию для каждого $\lambda \in \Lambda$ в группе A_{λ} существует \mathcal{K} -аппроксимируемая подгруппа B_{λ} такая, что индексы $[A_{\lambda}:B_{\lambda}]$ ограничены. Без потери общности можно считать, что для каждого $\lambda \in \Lambda$ подгруппа B_{λ} является нормальной в группе A_{λ} . Пусть

$$C = *_{\lambda \in \Lambda} A_{\lambda} / B_{\lambda}.$$

— свободное произведение фактор-групп A_{λ}/B_{λ} . И пусть ε — гомоморфизм группы A на группу C, продолжающий естественные гомоморфизмы $A_{\lambda} \to A_{\lambda}/B_{\lambda}$. Так как порядки групп A_{λ}/B_{λ} ограничены, то по лемме 1 существует гомоморфизм ρ группы C на некоторую конечную группу D инъективный на всех A_{λ}/B_{λ} . Обозначим через L ядро гомоморфизма $\varepsilon \rho$. Тогда L — нормальная подгруппа конечного индекса группы A и для каждого $\lambda \in \Lambda$ $A_{\lambda} \cap L = B_{\lambda}$. По теореме Куроша L раскладывается в свободное произведение некоторой свободной группы F и некоторых подгрупп вида

$$x^{-1}A_{\lambda}x \cap L = x^{-1}(A_{\lambda} \cap L)x = x^{-1}B_{\lambda}x,$$

где $x \in A$. Д. Н. Азаров и Д. Тьеджо [3] доказали, что свободное произведение любого семейства групп, аппроксимируемых корневым классом \mathcal{K} , является \mathcal{K} -аппроксимируемой группой. Кроме того в [3] доказано, что свободная группа аппроксимируема любым корневым классом. Так как свободная группа F и подгруппы $x^{-1}B_{\lambda}x \cong B_{\lambda}$ являются \mathcal{K} -аппроксимируемыми, то и группа L также \mathcal{K} -аппроксимируема. Таким образом, группа A почти \mathcal{K} -аппроксимируема.

Доказательство теоремы 2 3.

Пусть \mathcal{K} — некоторый корневой класс, пусть $G = (*_{\lambda \in \Lambda} G_{\lambda}, H)$ — свободное произведение групп G_{λ} с конечной объединенной подгруппой H, и пусть группа G финитно аппроксимируема.

Предположим, что группа G почти \mathcal{K} -аппроксимируема, т. е. содержит \mathcal{K} аппроксимируемую подгруппу индекса n. Тогда все G_{λ} почти \mathcal{K} -аппроксимируемы, и их индексы почти \mathcal{K} -аппроксимируемости ограничены числом n.

Наоборот, пусть группы G_{λ} почти \mathcal{K} -аппроксимируемы и индексы почти \mathcal{K} аппроксимируемости групп G_{λ} ограничены числом n. Так как группа G финитно аппроксимируема и H — конечная подгруппа группы G, то в группе Gсуществует нормальная подгруппа N конечного индекса такая, что $N \cap H = 1$. По теореме X. Нейман [8, с. 122] подгруппа N раскладывается в свободное произведение некоторой свободной группы F и некоторых подгрупп вида

$$x^{-1}G_{\lambda}x \cap N = x^{-1}(G_{\lambda} \cap N)x,$$

где $x \in G$. Группы $x^{-1}(G_{\lambda} \cap N)x$ изоморфны некоторым подгруппам в группах G_{λ} . Отсюда из того, что группы G_{λ} почти \mathcal{K} -аппроксимируемы и их индексы почти \mathcal{K} -аппроксимируемости ограничены, следует, что аналогичным свойством обладают и подгруппы $x^{-1}(G_{\lambda} \cap N)x$.

Так как свободная группа F является \mathcal{K} -аппроксимируемой группой, группы $x^{-1}(G_{\lambda} \cap N)x$ почти \mathcal{K} -аппроксимируемы и их индексы почти \mathcal{K} -аппроксимируемости ограничены, то по теореме 1 группа N почти \mathcal{K} -аппроксимируема. Отсюда и из того, что индекс подгруппы N в группе G конечен, следует, что и группа G почти \mathcal{K} -аппроксимируема.

4. Доказательство теоремы 3

Пусть C — группа, H и K — подгруппы группы C, φ —изоморфизм подгруппы H на подгруппу K. И пусть

$$C^* = \langle C, t; t^{-1}ht = h\varphi(h \in H) \rangle$$

— HNN-расширение группы C со связанными подгруппами H и K. Будем предполагать, что подгруппы H и K конечны. И пусть группа C финитно аппроксимируема и почти аппроксимируема корневым классом \mathcal{K} . Покажем, что группа C^* почти \mathcal{K} -аппроксимируема.

Так как группа C почти \mathcal{K} -аппроксимируема, то в ней существует подгруппа U конечного индекса аппроксимируемая классом \mathcal{K} . Без потери общности можно считать, что подгруппа U нормальна в C. Так как группа C финитно аппроксимируема, а подгруппы H и K конечные, то в группе C существует нормальная подгруппа V конечного индекса такая, что $V \cap H = 1$ и $V \cap K = 1$. Пусть $M = U \cap V$. Тогда M — нормальная подгруппа конечного индекса группы $C, M \cap H = 1, M \cap K = 1$ и группа M аппроксимируема классом K.

Так как $H \cap M = 1 = K \cap M$, то отображение φ_M подгруппы $HM/M = \{hM: h \in H\}$ группы C/M на подгруппу $KM/M = \{kM: k \in K\}$ группы C/M, сопоставляющее каждому элементу hM из HM/M элемент $h\varphi M$ из KM/M, является изоморфизмом. Поэтому можно рассматривать HNN-расширение

$$C_{_{M}}^{*}=\langle C_{_{M}},\ t;\ t^{-1}\overline{h}t=\overline{h}\varphi_{_{M}}\ (\overline{h}\in HM/M)\ \rangle$$

группы $C_{\scriptscriptstyle M}=C/M$ со связанными подгруппами HM/M и KM/M. Так как группа $C_{\scriptscriptstyle M}$ конечная, то группа $C_{\scriptscriptstyle M}^*$ финитно аппроксимируема [7].

Очевидно, что существует гомоморфизм $\rho_{\scriptscriptstyle M}:C^*\longrightarrow C_{\scriptscriptstyle M}^*$, продолжающий естественный гомоморфизм $\varepsilon_{\scriptscriptstyle M}:C\longrightarrow C_{\scriptscriptstyle M}$ и такой, что $t\rho_{\scriptscriptstyle M}=t$. Тогда для каждого элемента a из C выполняется $a\rho_{\scriptscriptstyle M}=aM$.

Так как группа C_M^* финитно аппроксимируема и ее подгруппа C_M конечна, то существует гомоморфизм σ группа C_M^* на конечную группу \overline{C} , иньективный на подгруппе C_M . Тогда произведение $\rho_M \sigma$ является гомоморфизмом группы C^* на конечную группу \overline{C} . Поэтому ядро L гомоморфизма $\rho_M \sigma$ является нормальной подгруппой конечного индекса группы C^* .

Поскольку $C \cap Ker$ $\rho_M = M$ и σ инъективен на подгруппе $C_M = C\rho_M$, то $C \cap Ker$ $\rho_M \sigma = M$, т. е. $L \cap C = M$. Тогда $L \cap H = L \cap C \cap H = M \cap H = 1$. Таким образом, подгруппа L тривиально пересекаются со связанной подгруппой H. Поэтому в силу теоремы A. Карраса и Д. Солитера [8, с. 288] подгруппа L раскладывается в свободное произведение свободной группы F и некоторых подгрупп вида

$$L \cap x^{-1}Cx = x^{-1}(L \cap C)x = x^{-1}Mx,$$

где $x \in C^*$. Поскольку группа F и подгруппы $L \cap x^{-1}Cx$ аппроксимируемы классом \mathcal{K} , то и группа L аппроксимируема классом \mathcal{K} . Отсюда и из того, что L является подгруппой конечного индекса в группе C^* , следует, что группа C^* почти \mathcal{K} -аппроксимируема.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Gruenberg K. W. Residual properties of infinite soluble groups // Proc. London Math. Soc. 1957. Vol. 7. P. 29—62.
- 2. Магнус К., Каррас А, Солитэр Д. Комбинаторная теория групп. М.: Наука, 1974.
- 3. Азаров Д. Н., Тьеджо Д. Об аппроксимируемости свободного произведения групп с объединенной подгруппой корневым классом групп // Науч. тр. Иван. гос. ун-та. Математика. 2002. Вып. 5. С. 6—10.

- 4. Baumslag G. On the residual finiteness of generalized free products of nilpotent groups // Trans. Amer. Math. Soc. 1963. Vol. 106, № 2. P. 193—209.
- 5. Азаров Д. Н. О финитной аппроксимируемости свободных произведений групп с одной объединенной подгруппой // Сиб. мат. журн. 1997. Т. 38. C. 3-13.
- 6. Шмелькин А. Л. Полициклические группы // Сиб. мат. журн. 1968. Т. 9. C. 234—235.
- 7. Baumslag B., Tretkoff M. Residually finite HNN-extensions // Commun. in Algebra. 1978. Vol. 6, № 2. P. 179—194.
- 8. Линдон Р., Шупп П. Комбинаторная теория групп. М.: Мир, 1980.

Ивановский государственный университет Поступило 18.09.2013